
 
 
 
 

 
 
 
 
 
 
 

 

 

This is the peer reviewed version of the following article: Fry, Ellen L., Jonathan R. 

De Long, Lucía Álvarez Garrido, Nil Alvarez, Yolima Carrillo, Laura Castañeda‐

Gómez, and Mathilde Chomel et al. 2018. "Using Plant, Microbe, And Soil Fauna 

Traits To Improve The Predictive Power Of Biogeochemical Models". Methods In 

Ecology And Evolution 10 (1): 146-157. Wiley. doi:10.1111/2041-210x.13092., which 

has been published in final form at https://doi.org/10.1111/2041-210X.13092. This 

article may be used for non-commercial purposes in accordance with Wiley Terms 

and Conditions for Use of Self-Archived Versions 

http://www.wileyauthors.com/self-archiving. 

 
 
 
 

https://doi.org/10.1111/2041-210X.13092
http://www.wileyauthors.com/self-archiving


A
cc

ep
te

d
 A

rt
ic

le

This article has been accepted for publication and undergone full peer review but has not 

been through the copyediting, typesetting, pagination and proofreading process, which may 

lead to differences between this version and the Version of Record. Please cite this article as 

doi: 10.1111/2041-210X.13092 

This article is protected by copyright. All rights reserved. 

Methods in Ecology and Evolution 

 
DR ELLEN  FRY (Orcid ID : 0000-0001-7513-2006) 

MR JONATHAN RICHARD DE LONG (Orcid ID : 0000-0002-7951-4818) 

DR YOLIMA  CARRILLO (Orcid ID : 0000-0002-8726-4601) 

DR SHUN  HASEGAWA (Orcid ID : 0000-0003-0502-0361) 

PROFESSOR BRAJESH  SINGH (Orcid ID : 0000-0003-4413-4185) 

PROFESSOR RICHARD D BARDGETT (Orcid ID : 0000-0002-5131-0127) 

 

Article type      : Commentary 

 

Handling editor: Robert Freckleton 

 

Using plant, microbe and soil fauna traits to improve the predictive power of biogeochemical 

models 

 

Ellen L. Fry1*, Jonathan R. De Long1,2*, Lucía Álvarez Garrido3,8, Nil Alvarez4, Yolima Carrillo3, 

Laura Castañeda-Gómez3, Mathilde Chomel1, Marta Dondini5, John E. Drake3,6, Shun Hasegawa7, 

Sara Hortal3, Benjamin G. Jackson9, Mingkai Jiang3, Jocelyn M. Lavallee1, Belinda E. Medlyn3, 

Jennifer Rhymes1,10, Brajesh K. Singh3, Pete Smith5, Ian C. Anderson3, Richard D. Bardgett1, 

Elizabeth M. Baggs9 and David Johnson1 

 

1 School of Earth and Environmental Sciences, Michael Smith Building, The University of 

Manchester, Manchester M13 9PT, UK 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

2 Department of Terrestrial Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, 

Wageningen, The Netherlands 

3 Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, 

NSW 2751, Australia 

4 IRTA Aquatic Ecosystems, Ctra. de Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Catalonia, 

Spain 

5 Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St Machar Drive, 

Aberdeen, AB24 3UU, UK  

6 Department of Forest and Natural Resources Management, SUNY College of Environmental Science 

and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA 

7 Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå 

SE-901 83, Sweden 

8 Department of Animal Biology, Plant Biology and Ecology, University of Jaén, Jaén, Spain 

9 Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK  

10 School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, 

Plymouth, PL4 8AA, UK 

 

*Shared first authorship  

Corresponding author: Jonathan R. De Long 

Phone: 00-31-64-595-9869 

Email: j.delong@nioo.knaw.nl 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Running head: Organismal traits inform process-based models 

 

Abstract 

1. Process-based models describing biogeochemical cycling are crucial tools to understanding 

long-term nutrient dynamics, especially in the context of perturbations, such as climate and 

land-use change. Such models must effectively synthesise ecological processes and 

properties. For example, in terrestrial ecosystems, plants are the primary source of 

bioavailable carbon, but turnover rates of essential nutrients are contingent on interactions 

between plants and soil biota. Yet, biogeochemical models have traditionally considered plant 

and soil communities in broad terms. The next generation of models must consider how shifts 

in their diversity and composition affect ecosystem processes.  

2. One promising approach to synthesise plant and soil biodiversity and their interactions into 

models is to consider their diversity from a functional trait perspective. Plant traits, which 

include heritable chemical, physical, morphological and phenological characteristics, are 

increasingly being used to predict ecosystem processes at a range of scales, and to interpret 

biodiversity-ecosystem functional relationships. There is also emerging evidence that the 

traits of soil microbial and faunal communities can be correlated with ecosystem functions 

such as decomposition, nutrient cycling and greenhouse gas production.  

3. Here, we draw on recent advances in measuring and using traits of different biota to predict 

ecosystem processes, and provide a new perspective as to how biotic traits can be integrated 

into biogeochemical models. We first describe an explicit trait-based model framework that 

operates at small scales and uses direct measurements of ecosystem properties; second, an 

integrated approach that operates at medium scales and includes interactions between 

biogeochemical cycling and soil food webs; and third, an implicit trait-based model 

framework that associates soil microbial and faunal functional groups with plant functional 

groups, and operates at the Earth-system level. In each of these models we identify 
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opportunities for inclusion of traits from all three groups to reduce model uncertainty and 

improve understanding of biogeochemical cycles. 

4. These model frameworks will generate improved predictive capacity of how changes in 

biodiversity regulate biogeochemical cycles in terrestrial ecosystems. Further, they will assist 

in developing a new generation of process-based models that include plant, microbial and 

faunal traits and facilitate dialogue between empirical researchers and modellers.    

 

1. Introduction  

Recent improvements in computational power and co-ordinated research efforts into modelling 

ecosystem processes have advanced our understanding of biogeochemical cycles. However, a better 

understanding of the interactions between plants, microbes and animals is crucial to reduce 

uncertainty in carbon (C) cycling and the modelling of biogeochemical processes. Important aspects 

of these cycles include C turnover times (He et al. 2016), soil organic matter dynamics (Cotrufo et al. 

2015), and soil carbon sink strength under a range of climate scenarios (Sofi et al. 2016). This will 

help address pressing challenges such as soil C loss and food security (Lehmann & Kleber 2015). Yet 

there is a gap between the requirements of modellers and the empirical data produced through 

experimental research. Empirical data related to the functional role of organisms is needed to 

parameterise models under a range of spatial and temporal scales, ecosystem types and abiotic 

conditions. The consideration of functional traits promises to generate data that can help inform 

biogeochemical models (Violle et al. 2007; Moretti et al. 2017). Functional traits are heritable 

morphological, physiological or phenological attributes of organisms that affect their growth, survival 

or reproduction, and thus, indirectly, fitness (Reich 2014). Many traits are commonly categorised as 

‘effect traits’ and/or ‘response traits’. Effect traits determine the effect of the organism on ecosystem 

processes, while response traits are characteristics that change in response to an external driver such 

as climate (Lavorel & Garnier 2002). Many traits may be both effect and response traits. Using 

functional effect traits instead of traditional diversity measures can generate more meaningful model 
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predictions, because traits can offer mechanistic insight into the link between organisms and 

ecosystem function (Díaz et al. 2004; De Deyn, Cornelissen & Bardgett 2008; Faucon, Houben & 

Lambers 2017).  

Traits have been widely used to predict how organisms influence ecosystem functioning, with a 

large focus on plant traits (Lavorel & Garnier 2002; Faucon, Houben & Lambers 2017). For example, 

in tropical forests, stoichiometric traits of the tree canopy are strongly linked with nutrient cycling 

rates (Asner et al. 2015; Both et al. 2018), while at local scales, physical and chemical traits of leaves 

and roots can affect soil C storage (De Deyn, Cornelissen & Bardgett 2008) and decomposition 

(Carrillo et al. 2017; Martin, Newton & Bullock 2017). One key advantage is that traits do not use 

taxonomy or numbers of species to infer function, which has previously been criticised (see the 

diversity-stability debate; McCann 2000). The intense focus on plant traits has resulted in the 

discovery of resource-use and performance related strategies. For example, the ‘leaf economics 

spectrum’ uses leaf nitrogen content, specific leaf area, and leaf lifespan to describe a continuum 

ranging from ‘fast’ to ‘slow’ growing species that affects ecosystem functioning (Wright et al. 2004). 

The principles employed in this approach may also apply to microbes and fauna, and literature is 

beginning to emerge on this theme (Allison 2012; Krause et al. 2014; Aguilar-Trigueros et al. 2015).  

Soil microbes and fauna are key drivers of ecosystem processes, and contribute to ecosystem 

stability. However, frameworks to capture trait syndromes for soil organisms are in their infancy. 

Given the importance of soil microbes and fauna for biogeochemical cycles (Carrillo, Ball, Bradford, 

Jordan & Molina 2011; de Vries et al. 2013; Kardol, Throop, Adkins & de Graaff 2016), this gap 

represents a major hurdle when incorporating soil microbial and faunal traits into C and 

biogeochemical models. Furthermore, modelling ecosystem processes requires that traits must be 

constrained into the most parsimonious set of descriptors, so as not to over fit the model. Taking 

lessons learned from plant trait literature, it may be possible to identify microbial and faunal 

characteristics that are quantitatively linked to ecosystem processes to improve model 

parameterisation without exhaustive screening (Díaz et al. 2016; Kardol, Throop, Adkins & de Graaff 

2016).  
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Soil biogeochemical models have long been used to describe the processes of C and elemental 

cycling in soil, but plants and microbes, two of the key drivers of these processes, are typically 

included only in reductionistic terms because of the difficulty of accurately characterising these 

groups of organisms (Wieder, Grandy, Kallenbach, Taylor & Bonan 2015). The increasing rate of 

collection of new data on plants, as well as soil microbes and fauna, offers an opportunity to build on 

the advances made by previous models (e.g., CENTURY: Parton, Schimel, Ojima & Cole 1994; 

DAYCENT: Parton, Hartman, Ojima & Schimel 1998; TEM: Zhuang et al. 2011; CLM4: Koven et 

al. 2013). Soil fauna have been included in biogeochemical models in broad terms, such as nematode 

and microarthropod biomass C (Grandy, Wieder, Wickings & Kyker-Snowman 2016; George et al. 

2017). Increasingly, more nuanced models are possible due to better understanding of the role of 

faunal groups and availability of more comprehensive data on traits of these groups at different spatial 

and temporal scales. Evidence from soil food web models indicates that inclusion of plant, microbial 

and soil faunal traits and their interactions is imperative to improve the predictive power of 

biogeochemical models (Allison 2012; Wieder, Bonan & Allison 2013; Filser et al. 2016; Faucon, 

Houben & Lambers 2017; Funk et al. 2017). To move forward, we propose that gaps in knowledge of 

measuring and understanding functional traits must be addressed and general principles must be 

identified. 

Here, we propose frameworks to incorporate plant, microbial and soil faunal traits in predictive 

models to better simulate the dynamics of biogeochemical cycles in terrestrial ecosystems. We use the 

decomposition of soil organic matter (SOM) as an example because it is a key driver of the terrestrial 

C cycle, and will likely be affected by global climate change (Davidson & Janssens 2006). Moreover, 

there are well-established mechanisms to suggest that plants, microbes and soil fauna interact in 

context-specific ways to influence decomposition (Swift, Heal & Anderson 1979; Allison 2012; Filser 

et al. 2016), making them ideal candidates for inclusion in such models. First, we highlight 

knowledge gaps in the traits framework and the potential for sets of traits (e.g., stoichiometry, 

resource capture strategy) between plants, microbes and soil fauna to correlate. Second, we seek to 

bridge the gap between modellers and experimental ecologists by outlining what types of data are 
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feasible to collect and useful as inputs to models (Table 1). Finally, we discuss the uses and 

limitations of three types of commonly used models (i.e., explicit, integrated and implicit) and 

describe why incorporating traits from plants, microbes and fauna will help improve the predictive 

power of these models.  

 

2. The potential for using traits to describe biogeochemical processes  

Plant traits have been used extensively to understand the links between plant communities, ecosystem 

processes and environmental change (Funk et al. 2017). This approach has several advantages, 

including cost and time effectiveness, and the ability to scale trait distributions from the individual to 

the landscape level. For example, plant traits change predictably across climatic envelopes (Díaz et al. 

2004), elevational gradients (Read, Moorhead, Swenson, Bailey & Sanders 2014) and management 

regimes (de Vries et al. 2012). In fact, exploring plant traits across chronosequences (i.e., space-for-

time substitution, as seen across successional gradients; Walker, Wardle, Bardgett & Clarkson 2010) 

has allowed for a better understanding of how traits can predict ecosystem processes at both temporal 

and spatial scales (Wardle, Walker & Bardgett 2004; Kumordzi et al. 2015). Arguably the most 

important aspect of functional traits is the strong links identified with biogeochemical processes. Soil 

C storage across biomes can be influenced by traits including leaf nitrogen (N) content and relative 

growth rate (De Deyn, Cornelissen & Bardgett 2008), while similar traits drive decomposition 

(Carrillo et al. 2017). As such, aboveground plant traits have typically been considered to fall on a 

spectrum between those promoting fast and slow cycling of nutrients (analogous to r- and k-strategists 

in microbial commnuities), with plants with ‘slow’ traits promoting the formation of more stable 

SOM than plants with ‘fast’ traits (De Deyn, Cornelissen & Bardgett 2008). Extending this paradigm 

to microbial and faunal groups may be possible. For example, increasing leaf N is likely to increase 

palatability for soil fauna and microbes, and so N-rich leaves are likely to be preferentially 

decomposed by highly exploitative r-selected microbial and faunal groups. This suggests that plant, 

microbe and soil fauna traits might align in predictable ways (Box 1). However, the fast-slow 

decomposition paradigm has recently been challenged, with greater emphasis on the accessibility of 
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SOM as opposed to the chemical composition (Lehmann & Kleber 2015). Therefore, relative resource 

use rates of the three groups may have important connotations for whether decomposable SOM is 

incorporated into microbial or faunal biomass. 

Recent literature has identified the most important microbial traits that can predict or be predicted 

by ecological processes (Aguilar-Trigueros et al. 2015; Treseder & Lennon 2015) (Table 1). A key 

distinction has been drawn between free-living microbes and those dependent on host species. It is 

assumed that responses of the free-living species are more environmentally mediated, while microbes 

dependent on host species (e.g., mycorrhizal fungi, rhizobia) may respond primarily to cues from the 

host plant (Friesen et al. 2011; Crowther et al. 2014). Fungi can have mutualistic, pathogenic and 

saprotrophic life cycles, with accompanying variation in morphology, chemistry and resource use 

efficiency (Aguilar-Trigueros et al. 2015). This variation creates a major hurdle for those trying to 

find unifying principles across microbial groups. Additionally, the assembly of a free-living fungal 

community is largely based on environmental gradients, with resource availability being a key 

determinant. This could mean a decoupling of plant and microbial community assembly processes 

under environmental stress (Box 1). Accordingly, Crowther et al. (2014) presented a continuum based 

on resource use, with highly competitive fungal taxa occurring in resource-rich, low-stress conditions, 

and stress-tolerant taxa occurring when resources are scarce or conditions are harsh. However, the 

problem herein is that many of these spectra account for ‘response traits’ not ‘effect traits’, and are 

therefore potentially too variable or context-specific for models that aim to predict ecosystem 

function. Further, resource availability for plants may not match resource availability for fungi, partly 

because of more conservative resource use, partly because of differing stoichiometric requirements 

(de Vries et al. 2012). A similar problem is likely to apply to bacterial distributions (Martiny, Jones, 

Lennon & Martiny 2015). Knowledge of abundances, or presence/absence of certain important 

bacterial groups with specific functional traits, such as methane oxidising bacteria and phosphate 

solubilising bacteria, is likely to be the most effective way of including bacteria in models, given the 

problems with dormancy (Fierer 2017) and defining bacterial species (Caro-Quintero & 

Konstantinidis 2012). 
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Trait classifications for soil fauna are beginning to emerge. For example, Pey et al. (2014) 

suggest 20 trait measurements in five broad categories (i.e., morphology, physiology, feeding, life 

history, and behaviour) that can be utilised across invertebrates. Moretti et al. (2017) proposed 

standardized measurements for 29 traits known to be sensitive to global stressors and to affect 

ecosystem processes (Table 1). As fauna tend to be mobile, community weighted mean (CWM) traits 

may be useful to predict ecosystem processes. Traits such as feeding habit or body size are 

particularly responsive to environmental changes (Farská, Prejzková & Rusek 2014), and functional 

diversity metrics based on these traits are effective in describing decomposition (Milcu & Manning 

2011). We need to identify traits that can encompass the structure of the food web to be able to 

include several trophic groups and their interactions. Taken together, plant, microbial and soil faunal 

traits offer a way to improve the accuracy of biogeochemical models, but for the latter two groups, a 

crucial first step is to disentangle the role of response and effect traits.  

There are some issues concerning the integration of plant, microbe and soil fauna traits into 

biogeochemical models. One major consideration is the turnover rate of microbial and faunal 

communities. In contrast to plants, microbes and soil fauna often have a high turnover rate, and they 

can adapt their metabolism or feeding strategies quickly to new conditions. Additionally, faunal 

composition may rapidly change. Resource use and turnover are likely useful traits to describe these 

groups, because they correlate directly with biogeochemical processes, with relative biomass of each 

group dictating the importance of that group in the system (Crowther et al. 2014; Fierer 2017). 

Further, we need to find a set of easily measurable descriptors for traits across all three groups that 

will describe key soil functions, such as decomposition, robustly across a range of conditions and 

biomes. There are potential shortcuts using prior knowledge obtained from the plant traits literature. 

The biomass ratio hypothesis states that the influence of an individual or species on a function is 

proportionate to its biomass in the ecosystem (Grime 1998). Therefore, it is possible that rather than 

measuring complex, continuous traits, categorical data such as feeding group could be constrained to 

an ordinal scale and weighted by abundance (i.e., CWM) (Fierer et al. 2014). Assessing activity of the 
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whole community could offer a solution, and there are numerous methods, including the measurement 

of enzyme activities involved in decomposition and respiration rates, to achieve this. 

We also need to include interactions between plants, microbes and soil fauna into models because 

these interactions can have large effects on C fluxes (Johnson et al. 2005; Kanters, Anderson & 

Johnson 2015). Of primary consideration is the level of organization within soil food web 

communities. There are extensive data regarding the assembly of soil food webs associated with 

particular plant species that can inform explicit models (Yen et al. 2016), but such data need to 

demonstrate quantitative correlations with biogeochemical cycling. However, it remains uncertain as 

to when, how and why these associations form and deteriorate across larger scales (Nilsson & 

McCann 2016). Furthermore, transfers of C and N between plants, microbes and soil fauna are 

relatively well characterized and have been used in models examining food web energy flows (Pausch 

et al. 2016). The next step is to apply this knowledge to test broader hypotheses (Table 2). Ideally, we 

need to know whether plant, microbial and faunal groups respond in the same direction under a given 

scenario. For example, under a drought event, plants may temporarily stop photosynthesizing, thereby 

reducing root exudation, which leads to a reduction in bacterial biomass and thereby soil fauna (Box 

1). There are likely to be other scenarios where one group can capitalize on the decline of the others, 

and these scenarios are likely to be unpredictable and thus difficult to include in models. Therefore, in 

order to create unifying principles across plants, microbes and soil fauna, it is imperative to identify 

traits that have robust relationships with function (e.g., nutrient requirements) and avoid highly plastic 

traits in order to be able to use them across large spatial scales and contrasting environmental 

conditions. 

 

3. Incorporating a trait-based approach into biogeochemical models 

Models require several data formats, depending on their scope. For example, an explicit 

decomposition model can use raw data from field experiments, such as CWM leaf traits or abundance 

of soil fauna. Integrated and implicit models, however, may need data in the form of correlation 
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coefficients between the drivers of decomposition, as well as reasonable a priori parameter values. 

These requirements make it difficult to acquire appropriate data for such models. For the microbial 

and faunal traits, an ideal starting point would be to assemble databases of traits across ecosystems, 

climates and land use types (Burkhardt et al. 2014) that resemble the TRY database for plants (Kattge 

et al. 2011). However, as such databases are assembled for microbes and soil fauna, caution must be 

taken to account for variability in the data that might be due to inherent factors such as intraspecific 

variability, and the use of different methods to measure microbial and faunal traits. 

Recently, there has been considerable effort to develop working trait-based models, although 

at the time of writing, models are yet to include all three taxonomic groups (i.e., plants, microbes 

and fauna). For example, there are models based on plant community assembly (Xu, Medvigy, 

Powers, Becknell & Guan 2016), microbial processes (Allison 2012; Wieder, Bonan & Allison 

2013; Wieder, Grandy, Kallenbach & Bonan 2014; Hararuk, Smith & Luo 2015), and certain 

faunal groups (van Bodegom, Douma & Verheijen 2014; Yen et al. 2016). However, model 

generalisation remains challenging due to the complexity of modelling interactions between 

groups, as well as limited data availability and scalability. Uncertainty in modelling 

biogeochemical processes has two components, namely those arising from detail and precision in 

the data, and those from the model itself (Keenan, Carbone, Reichstein & Richardson 2011). 

Quantification of data and model uncertainties is therefore imperative to determine the accuracy 

and interpretability of model predictions. Regardless of the type of model, it is important that 

model parameters are continually tested using appropriate data, and that they are used in 

ecosystems where they have been developed and validated. The evaluation of a process-based 

model depends strictly on the quality, type and frequency of the measured values used to test the 

model. 

In order to construct an effective model for linking biological communities with decomposition 

rates across multiple trophic levels, there is a need for robust trait data that incorporates spatial and 

temporal elements. Although there have been numerous case studies exploring individual response or 

effect traits, little is known about interactions between traits (e.g., trade-offs), associations between 
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response and effect traits across and within trophic levels, and variation of traits within and between 

species across space and time (i.e., trait plasticity) (Ackerly & Cornwell 2007; Krause et al. 2014). 

Belowground biotic traits, such as specific root length or microbial growth efficiency, have not been 

properly quantified in terms of their optima, intra- and interspecific variation, trade-offs, and 

functionality (Bardgett 2017; Laliberté 2017). Quantifying which traits affect which processes and 

how such relationships vary across space and time is vital for process-based models. As a first step, 

well-coordinated data collection efforts are needed on trait correlations along trophic and 

environmental gradients (Wieder et al. 2015). To achieve this, there is an urgent need to identify traits 

that are relatively easy to measure yet informative in that they strongly interact with environmental 

gradients and/or are crucial for fitness (McGill, Enquist, Weiher & Westoby 2006) (Table 1). Once 

links between traits and ecosystem function have been established across contrasting spatial and 

temporal scales, it will be important to determine if their inclusion improves the predictive power of 

models. 

 

Types of models that will benefit from incorporating plant, microbial and soil faunal traits 

Depending on the complexity and the predictive power needed, microbes and soil fauna can 

be either explicitly or implicitly represented in an ecosystem model (Figure 1). There are a 

number of ways models can be grouped or defined. Below we outline three possible 

frameworks to incorporate belowground organism traits and processes in biogeochemical 

models: 1) an explicit trait-based model framework that operates at the small scale (space or 

time, or both) and uses direct measurements of ecosystem properties; 2) an integrated 

approach that operates at a medium scale and includes interactions between a model 

component on biogeochemical cycling and a model component on the soil food web, either of 

which could be populated with measured data; and 3) an implicit trait-based model 

framework that operates at a large scale (i.e., Earth system) and associates microbial and soil 
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faunal functional groups with plant functional groups. To fit with the focus of this 

manuscript, we separated the models based on how microbes and soil fauna are represented 

in the models, as well as the spatial or temporal scale at which each model is best equipped to 

operate (Figure 1). The scope of this separation is to discuss possible frameworks to 

incorporate belowground traits into soil process based models.  

 

Explicit models 

Explicit models seek to parameterise relationships between variables, typically known as the 

dependent and independent variables. Such models in the context of biogeochemical cycling 

explicitly include microbial biomass. The goal of these models is to predict the dependent 

variable (e.g., decomposition) (Parton, Schimel, Cole & Ojima 1987). Explicit trait-based 

models, such as those developed for the simulation of microbial communities (e.g., Allison 

2012) and faunal communities (Filser et al. 2016), require extensive knowledge of the intra- 

and interspecific trait variation along environmental gradients and their effects on ecosystem 

pools and fluxes. Two major advantages of this approach are: (1) the explicit 

parameterization of traits allows for measured values as direct model input; and (2) complex 

interactions between organisms are allowed and may lead to emergent properties, such as top-

down or bottom-up regulation of food web structure. For example, in Figure 1a, microbial 

communities could be represented by r-selected (Rmic) and K-selected (Kmic) groups, with 

Rmic defined by traits that exhibit fast-growing attributes that compete with plants for easily 

available nutrients, and Kmic as slow-growing, but able to utilize recalcitrant materials (e.g., 

Wieder et al. 2015). To simulate these processes, we need to determine the growth and 

nutrient uptake efficiencies of Rmic and Kmic, and the trait-function and trait-abiotic 

relationships. Further, the relationship between Rmic and Kmic and soil fauna (i.e., grazers, 

predators) will need to be better understood. This framework explicitly simulates trait trade-
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offs of different belowground biotic groups, which is useful for understanding fine-scale, 

non-linear system dynamics. Understanding of how belowground traits should be 

incorporated into the mathematical equations of such models has shown promising 

development (McCormack et al. 2017) (e.g., specific root length, Table 1). In addition, 

models incorporating this level of complexity may exhibit unrealistic simulation behaviours 

(e.g., Hararuk, Smith & Luo 2015). Explicit trait-based models will benefit from efforts that 

quantify how the traits of different biotic groups affect ecosystem processes across different 

ecosystems, which may be achieved through meta-analysis and enhancement of trait 

databases (Table 2; Funk et al. 2017). 

 

Integrated models 

Integrated models are a mix of measured and inferred variables. These process-based models 

have been developed from an understanding of how soil is affected by its abiotic and biotic 

properties, land management and climate (McGill 1981; Smith et al. 1998). This approach 

integrates soil food web (i.e., microbial and soil faunal interactions driven by inputs from 

plants) and biogeochemical models (see Table 2 for examples of potential research 

questions). Here, mass and C are recycled in the biogeochemical model and plant, microbial 

and soil faunal functional traits affect the rate of mass transfer as a consequence of the soil 

food web simulation (Figure 1b). These models operate at different timescales and spatial 

resolutions, as the biogeochemical model does not directly simulate population demography 

and community assembly. The level of complexity of the soil food web model varies 

depending on the research question and data availability, with soil food webs either 

condensed into a metric of biodiversity or explicitly represented by their respective plant, 

microbial and soil faunal groups. A metric of community diversity could be calculated for the 

soil food web model and used to modify the rate of decomposition in the biogeochemical 
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model (dashed arrows in Figure 1b). For this integrated model to work, however, connections 

on how soil food webs affect elemental transfers, and how plant ecophysiology affects 

competition and demography must be quantified. Additionally, the ability to track changes in 

vegetation functional trait composition through time and space without tracking species 

composition along different trophic levels is necessary.  

 

Implicit models 

Finally, implicit models are often used to attempt to predict functions or processes at the global scale. 

Well-known examples of implicit models include the CENTURY model, which predicts soil C, N and 

nutrient turnover based on SOM turnover and plant functional type (Parton, Schimel, Ojima & Cole 

1994). Implicit trait-based models (Figure 1c) incorporate belowground biotic traits by making the 

assumptions that microbial and soil faunal functional traits have clear associations with plant 

functional traits, and their responses to environmental perturbations are similarly predictive (see Box 

1; Table 2). Such an approach would allow Earth system models to maintain the basic structure of 

their simulation of decomposition. Implicit models assume that plant attributes exhibit top-down 

control on processes such as decomposition. Therefore, microbial and soil faunal groups are expected 

to be adapted to such controls. This means that relationships between diversity, disturbance and 

productivity are well established in a given location. Most of the existing land surface models 

operating at large spatiotemporal scales have adopted this approach (e.g., CLM: Yang et al., 2014; 

CABLE: Wang et al., 2010; O-CN: Zaehle & Friend, 2010). 

 

While this approach enables Earth system simulations at coarse spatial resolutions, at the 

time of writing, such simulations cannot incorporate intraspecific trait variation of microbes 

and soil fauna and their potential consequences for ecosystem processes. The possibility that 

plant, microbial and faunal traits do not respond similarly to stress, and are not subject to the 

same spatial or temporal patterns, are also beyond the scope of the current models because of 
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limitations in data (Box 1). One solution could be the integration of statistical tools such as 

Bayesian hierarchical modelling to estimate intraspecific trait variation and species 

interactions (Funk et al. 2017). However, this only provides a probabilistic estimate of the 

consequence of multiple ecosystem processes. Nevertheless, this approach represents a 

compromise among factors such as data availability, scalability, and predictive power, and is 

practical based on existing Earth system models.  

 

The way forward  

Ultimately, without improved communication between those who collect empirical data and those 

who model biogeochemical cycles, efforts to close the knowledge gaps are doomed to fail. Here, we 

suggest five important steps to unite research efforts: 

1. Determine standardised approaches to measure microbial and soil faunal traits. Plant 

traits are typically easier to measure than microbe and soil fauna traits (Table 1), but this 

hurdle must be overcome in order to successfully populate models with traits from all three 

groups.  

2. Determine which plant, microbial and soil faunal traits are the best predictors. Traits 

that are associated with resource economy and stoichiometry are strong contenders, but traits 

linked to morphology and longevity cannot be overlooked, as they potentially infer links with 

amount of resources added to the system and turnover rate (Table 1). This stage will require 

that models are run and their validity checked by comparing predicted outputs to real data.  

3. Acquire knowledge about the interactions between traits, between individuals (within 

and between taxonomic groups), and trade-offs that might affect the model’s predictive 

ability. For example, increasingly, alignment between mycorrhizal fungi and plant hosts are 

known and can be included in models. Including data on habitat filtering of various 

taxonomic groups from a trait-based perspective would also be extremely useful. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

4. Determine whether plant, microbe and fauna traits align in a predictable way, 

particularly in response to stress and trophic and environmental gradients. Assessing the 

plasticity and inherent intraspecific variation of traits and also including “extended 

phenotypes” (e.g., pathogen susceptibility, rhizosphere community composition), as traits 

themselves would help achieve this goal.  

5. Determine how to generate the best data for the different model types (i.e., explicit, 

integrated, explicit). This aim requires close dialogue between modellers and field ecologists 

to determine which questions can be answered using different models (Table 2).  

 

More generally, when designing large-scale or long-term empirical studies, we recommend including 

the expertise of a modeller, in order to ensure the data is appropriate for use in models. Only through 

integration of plant, microbial and soil faunal traits, as well as a more robust dialogue between 

modellers and empiricists, will the next generation of biogeochemical models more accurately 

represent Earth system processes. 
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Figure 1. 

 

  

Figure 1. Three biodiversity-biogeochemical model types that could be developed to 

incorporate biotic traits of plants, microbes and soil fauna. A) An explicit small-scale trait 

model that simulates plant traits (e.g., root and shoot stoichiometry, quality) and microbial 

traits (e.g., r- versus K-selected, carbon use efficiency) and trade-offs, with the transfer of 

carbon between the soil food web (including trophic cascades) and soil biogeochemical 

cycling (e.g., decomposition) explicitly simulated. B) An integrated small-scale model 

through the connection of a biogeochemical model and a soil food web model. Carbon moves 

through the biogeochemical model, whereas the soil food web model simulates functional 

trait attributes or community metrics of different plant functional types (PFT), r- and K-

selected microbes and soil fauna such as grazers and predators. Such models only provide 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

output to influence the rate of carbon movement in the biogeochemical model, here 

decomposition. C) An implicit large-scale model, with microbial functional types (MFT) 

coupled with PFT. Traits are used to parameterise the association and trade-offs between 

MFT and PFT. Therefore, the traditional decay rate constant for soil organic matter is 

replaced by MFT-specific functions that account for the size and type of the target MFT and 

abiotic factors (e.g., temperature, energy transfer, soil pH). Soil organic matter that is 

decomposed is partitioned into fast, slow and passively cycling pools to better account for 

variability in soil residency time. Scalability is enabled through this approach, making such 

models more useful for Earth system modelling. Boxes represent different physical and 

biological pools, and lines represent different coupling relationships (i.e., explicit, integrated, 

implicit).  
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Table 1. Hypothetical a priori usefulness and measurability of plant, microbial and faunal traits to our proposed explicit, integrated and implicit 

biogeochemical models. Note that the measurability designations of easy, medium and hard in this table are approximations and may vary across 

ecosystems and focal species. 

Taxa Trait Measurability of trait Usefulness for model References 

  
Easy Medium Hard 

Explicit 

model 

Integrated 

model 

Implicit 

model  

Plant Morphology Growth form  

Height  

Leaf area  

Rooting architecture 

 Root diameter 

Root area 
   

(Cornelissen 

et al. 2003) 

Longevity Relative growth rate 

Life span 

Seed mass 

Seed number  

Seed bank longevity 

Dispersal 

  

   

Stoichiometry Leaf/root C, N, P 

content/ratios 

 

  

   

Resource economy Leaf dry matter  

Leaf toughness  

 

Specific leaf area 

Photosynthetic/ 

respiration capacity 

Regulation of 

stomatal 

conductance (g1) 

Specific root length 

   

Microbe Morphology Fungi: Hyphal 

exploration type 

Bacteria: Gram 

negative or Gram 

positive  

Fungi: Mycelial 

architecture 

Hyphal length 

Maximal hyphal 

growth rate 

 

   

(Aguilar-

Trigueros et 

al. 2015; 

Buchkowski, 

Bradford, 

Grandy, 

Schmitz & 

Wieder 2017) 

Longevity All:  Growth rate  

 

All:  Death rate 

Predation 

Competition  
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Stoichiometry  All: C:N:P ratios   
   

Resource economy Fungi: Hyphal 

diameter  

Chitin wall thickness 

Free-living to symbiotic 

Bacteria: Feeding 

substrate  

Substrate affinity Free-

living to symbiotic  

Fungi: Production 

of non-enzymatic 

substances 

(antibiotics) Enzyme 

activity 

Bacteria: C use 

efficiency 

Community 

dynamics  

 

 

 

 
  

Fauna Morphology Mode of movement 

Aggregation 

/gregariousness  

 

  

   

(Pey et al. 

2014) 

Longevity Egg size  

Clutch size  

Age at maturity 

Population density  

Growth rate  

Life span 

 

   

Stoichiometry C:N:P ratios   
   

Resource economy Feeding substrate 

 

Activity time  
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Table 2. Questions that can be addressed by different trait-based ecosystem models. Explicit, 

integrated and implicit models are best equipped to answer ecological questions across fine, 

medium and large spatial and/or temporal scales, respectively, and therefore the questions are 

organised to reflect this hierarchy. 

Type of model Potential questions 

Explicit model  

How can a particular trait be incorporated into an ecosystem model? 

How do different ecological strategies that are represented by different 

combinations of traits affect ecosystem fluxes and pools? 

What emergent processes arise from introducing complexity into soil C 

cycling? 

Integrated model 

How do alterations to the soil food web influence soil C storage? 

Is soil C storage differentially affected by ‘top-down’ vs. ‘bottom-up’ 

control of soil food webs? 

How does drought influence soil C storage? 

How does an increase in productivity change food webs? 

How does land management influence CO2 emissions? 

How does earthworm invasion influence soil organic matter dynamics? 

How do changes in diversity affect soil organic matter composition? 

Implicit model 

What is the effect of land use or management change on soil C stock? 

How does spatial variation in the projected changes of climate drivers 

influence soil C storage? 

How does global warming affect soil C stocks? 
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Box 1. Connecting traits across groups: plants, microorganisms and animals  

A number of paradigms have been proposed to classify organisms within groups according to 

their functional traits. For example, 

 Grime (1977) proposed the competitor/stress tolerator/ruderal (C-S-R) framework to explain 

how plants with different traits adapt under 

different environments. Wright et al. (2004) built upon this concept, suggesting that plants 

can be globally classified along a spectrum from those that are fast growing and promote fast 

nutrient cycling, to those that grow more slowly and promote slower nutrient cycling, known 

as the ‘leaf economics spectrum’. It would be desirable from a modelling perspective to align 

functional effect traits across plants, microbes and soil animals using one of these existing 

paradigms, but this presents challenges. Microbes have generally been classified along an r-

selected to K-selected continuum, which has been the main framework for including 

microbes in models (Figure 1; Wieder et al. 2015). Further, soil animals exhibit ‘behavioural 

traits’ (Pey et al. 2014), adding additional complexity, and allowing them to readily move 

between resource patches. Attempting to create such frameworks for soil animals is still in its 

infancy, though recently there has been growing interest in attempting to describe the patterns 

(Grandy, Wieder, Wickings & Kyker-Snowman 2016). Certain links among groups of 

organisms are relatively well established, particularly between plants and microbes. For 

example, out of 30 commonly measured plant functional traits (Cornelissen et al. 2003), 14 

have been identified as microbial mediated (Friesen et al. 2011). One way to further develop 

these known links is to consider a ‘bottom up’ scenario, where plants influence microbes, 

which influence fauna in a simple hierarchy. This is likely to select for different 

characteristics (i.e., different sectors of the C-S-R framework) for each group. For example, a 

stressed plant (S) is likely to offer an increased resource pool due to root sloughing and 

exudation, which would favour the ruderal-selected microbial community (R), which could 
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offer opportunities for competitive groups of soil fauna (C). This is depicted in a conceptual 

diagram showing C-S-R triangles rotated accordingly across taxonomic groups (see inset b). 

Krause et al. (2014) adapted the C-S-R framework to explain microbial community 

functional traits, arguing that microbial communities employ similar strategies to those used 

by plants. We suggest that on small or local scales, they often do not. This is because plants, 

microbes and animals operate at different spatial, temporal scales and resource requirements, 

and a catastrophic event for one group could lead to an opportunity for another (e.g., Birch 

1958). Conversely, overall patterns of resource economy have been identified across larger 

landscape scales that indicate that there are general patterns that may align with management 

intensity or climate. Intensive management often increases nutrient availability, which selects 

for ‘competitive’ plant species (C) and bacterial-dominated food webs. Nutrient poor 

ecosystems select for stress-tolerant (S) species, which leads to fungal-dominance (de Vries 

et al. 2012; de Vries et al. 2013). This may therefore be an appropriate assumption for larger 

scale implicit models, and thus plant functional type may be sufficient to infer the activity of 

the rest of the soil food web (but see van Bodegom et al. (2012). Please note that the C-S-R 

framework highlighted here is only one possible scenario under which plant, microbial and 

soil faunal trait spectra may align. Alternative alignments of trait spectra between plants, 

microbes and soil fauna that could help inform the creation of models are certainly possible. 
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