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Abstract 

Radio-telemetry was used to investigate seasonal movement and home range of brown 

trout Salmo trutta (size range 188–420 mm FL, N = 30) in two reaches of the Noguera 

Pallaresa River (Ebro Basin, northeast Spain) subjected to different flow regulation 

schemes. NP-1 reach is a by-passed section with near natural flow conditions whereas 

the downstream reach NP-2 is subjected to daily pulsed flow discharge (i.e. 

hydropeaking) from an upstream hydropower station. Significant differences in home 

range size ( 95 % kernel estimates) and seasonal movement pattern between study 

reaches were found. Mean home range size was (µ ± SE) 112.1 ± 11.5 m in the by-

passed reach NP-1 and increased significantly in the hydropeaking reach NP-2 up to 

237.9 ± 37.2 m. There was a large individual variability in fish home range size within 

reaches. Most of the seasonal differences in fish movement among reaches were 

associated with the spawning season. Pulsed discharge events in NP-2 during daytime in 

summer (lasting about 3 hours and increasing water flow from 1 m3 s-1 to 20 m3 s-1) did 

not cause significant displacements in either upstream or downstream direction during 

the duration of the event. Our results highlight the importance of habitat connectivity in 

hydropeaking streams due to the need of brown trout to move large distances among 

complementary habitats, necessary to complete their life cycle, compared to unregulated 

or more stable streams. 

 

Keywords: pulsed discharge; home range; diel cycle; river connectivity; radio-

tracking; salmonids; management 
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Introduction 

Flow dynamics is a major determinant of physical habitat in streams and play a crucial 

role for aquatic organisms (Bunn & Arthington, 2002; Poff & Allan, 1995; Poff & 

Zimmerman, 2010). In regulated rivers, the natural flow regime has been greatly 

modified because of the impoundment and release of water according to variations in 

human demands (e.g. hydroelectric production, water supply for domestic, agricultural, 

and industrial activities). Hydropower-related pulsed flows (commonly designated by 

hydropeaking) are the periodic releases of water from reservoirs associated with on-

demand hydroelectric generation (Moog, 1993) and result in significant hourly and diel 

fluctuations in magnitude, duration, and frequency of streamflow. Consequently, 

hydropeaking operations alter the riverine habitat, including the bank and channel 

morphology, water depth, wetted area, water velocity, substrate composition and 

temperature (Gore & Pett, 1989; Magilligan & Nislow, 2005; Olden & Naiman, 2010). 

Since flow fluctuations caused by hydropeaking exceed those observed naturally (Poff 

et al., 1997), negative impacts on riverine organisms such as benthic invertebrates and 

fish are expected. For example, the resulting rapid changes in river discharge affects the 

invertebrate drift (Bruno et al., 2013; Gibbins et al., 2007; Lauters et al., 1996; 

Rocaspana et al., 2016), and reduce both the quantity and quality of habitat available to 

fish (Liebig et al., 1999; Person, 2013; Young et al., 2011).  

Fish movement is a critical behaviour that determines habitat selection, foraging 

efficiency, predator refuge or spawning (Jacobson & Peres-Neto, 2010; Kahler et al., 

2001), and is a key factor in understanding how populations respond to rapid 

environmental change and perturbations. Fish may cope with short-term flow changes 

caused by hydropeaking by moving from an original habitat to a new suitable habitat 

(Taylor et al., 2014). The effects of hydropeaking on fishes vary among species and 
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river types. For example, Atlantic salmon (Salmo salar Linnaeus, 1758) shows 

contrasting patterns during hydropeaking events, while some individuals have high site 

fidelity other move  large distances in response to flow pulses. The brook trout, 

Salvelinus fontinalis (Mitchill, 1814), exhibits higher movement rates during flow 

pulses (Scruton et al., 2003). This pattern is similar to the reported in the Iberian barbel 

(Luciobarbus bocagei Steindachner,1864), fish inhabiting an hydropeaking river exhibit 

larger and more continuous home ranges than those individuals from an unregulated 

river (Alexandre et al., 2015). In the brown trout (Salmo trutta Linnaeus, 1758), 

previous studies have shown a weak influence of hydropeaking on its movement 

pattern. For instance, Bunt et al. (1999) reported a minimal influence of pulsed 

discharges, although there was a high inter-individual variation, while most of the 

individuals remained sedentary others showed a high degree of mobility. In other study, 

brown trout from a hydropeaking reach showed larger home ranges, but differences 

were not significant due to the large individual variation, and no short time effects on 

movement were observed during peak flow events, i.e. no fish were displaced 

downstream (Heggenes et al., 2007). 

In the Iberian Peninsula there are more than 1300 hydroelectric power plants in 

operation (Espejo & García, 2010; Manzano-Agugliaro et al., 2017), most in headwater 

streams inhabited by the brown trout. The impact of river regulation and altered flow 

regimes, along with other factors such as overfishing and genetic introgression, have 

caused a marked decline both in the abundance and range of native brown trout 

populations (Almodóvar & Nicola, 2004, 1999; Aparicio et al., 2005; Benejam et al., 

2016). Data on the influence of pulsed discharges from hydropower stations on 

movements and home range of brown trout in Iberian rivers are lacking, but such data 

are essential to enhance and implement of both management and conservation measures. 
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In this context, the aim of this study is to assess the effect of hydropeaking on the 

seasonal movement patterns, diel cycle and home range of brown trout from late 

summer to winter, thus including the spawning season. We hypothesized that trout are 

not displaced downstream during peak flows because substrate heterogeneity, which 

may provide physical refuge reducing water (e.g. by obstruction). However, seasonal 

movements and home range may be influenced by repeated flow pulses in hydropeaking 

reaches.  

 

Methods 

Study area 

Brown trout movements were monitored in two reaches of the Noguera Pallaresa River 

(140 km of length, 40.3 m3 s-1 of average flow, and a catchment area of 2807 km2), a 

tributary of the Segre River in the Ebro Basin, north-eastern Iberian Peninsula (Figure 

1). Study river reaches had an unconstrained channel with stony streambed, and a well-

developed riparian forest. The hydrology is influenced by snow melt in spring and 

increased rainfall in autumn, typical of the Mediterranean climate (Figure 2). The fish 

assemblage is mainly composed of native brown trout of the Mediterranean lineage 

(Aparicio et al., 2005), although the introduced rainbow trout, Oncorhynchus mykiss 

(Walbaum) and the European minnow (Phoxinus sp.) are occasionally recorded. 

The Noguera Pallaresa River is regulated, within the study area, by the Esterri 

hydropower plant that uses water from the Borén Reservoir and Unarre stream (Figure 

1). Two tagging reaches (NP-1 and NP-2 hereafter) were defined to study brown trout 

movement patterns under different flow regime scenarios (Figure 1;Table 1). NP-1 is a 

by-passed section located downstream of the Borén Reservoir and upstream of the 

Esterri hydropower plant outlet. This reach receives the inflow from the Bonaigua 
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stream, an unregulated tributary which restores a semi-natural flow regime in the study 

reach. NP-2 is located downstream of the Esterri plant and during the study period river 

discharge was characterized by daily-pulsed flows from hydroelectric peaking, 

increasing the base flow 10-30 times for about 3 h once or twice a day (Figure 2). 

 

Fish tagging and tracking 

Brown trout were captured by electrofishing (Hans-Grassl GmbH ELT60-IIH backpack 

electrofisher, DC pulsed, 1.3 KW) and radio transmitters were surgically implanted 

(Table 2). Tagging was performed in August 2012. Two sizes of radio tags (MST-720: 

Size 7 × 18 mm, weight in air 1.3 g; and MST-820: 8 × 20 mm, 2.1 g; Lotek Wireless 

Inc., Newmarket, Ontario, Canada), according to fish size. Transmitter weight in air 

ranged from 0.5 to 1.8 % of the fish’s body weight. Before tag surgery, fish were 

individually anaesthetised (clove oil; 0.05 mL/L stream water) and placed on a V-

shaped padded board for surgery. A maintenance dosage of anaesthetic was 

continuously pumped over the gills during surgery. Tags were implanted using a 

modified shielded-needle technique (Ross & Kleiner, 1982). Thus, a 1.0 cm incision 

was made with a scalpel on the mid-ventral line anterior to the pelvic girdle, the radio 

transmitter was inserted into the body cavity above the pelvic girdle, and whip antenna 

was exited through a different puncture using a hollow needle. The incision was closed 

with two or three independent silk sutures. Total handling time was usually < 5 minutes, 

never exceeding 10 minutes. After surgery, trout were held in keep-nets for 

approximately 2–4 hours and released within 50 m of the capture site when fully 

recovered. All fish were treated in compliance with the national regulations for the use 

of animals for scientific purposes. 
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Radio-tracking began one week after tagging to ensure full recovery and 

resumption of normal activity, and extended at ca. 10-day intervals from August to 

December, thus including trout spawning season, which in the study area occurs from 

early November to early December. Additionally, from August 29 to September 1 

tagged individuals were radio-tracked during diel cycles. Fish positions were 

determined four times per day (sampling intervals: 06:00–08:00 h, 12:00–14:00 h, 

17:00–19:00 h and 22:00–24:00 h) to track morning, afternoon, evening and night 

movements. In the hydropeaking site (NP-2), fish were also positioned three times 

during flow pulses (i.e. immediately before, after the start, and at the end) for measuring 

possible trout displacements caused by hydropeaking. The hydropeaking events took 

place in the morning and lasted three hours (from 10:00 to 13:00 h).  

Fish were positioned with a manual tracking receiver (IC-R20, Icom America 

Inc., Kirkland, Washington, USA) connected to a three-element Yagi antenna by 

walking along the bank. Trout position was fixed either visually, signal strength or 

triangulation, and a GPS was used to log positions along the longitudinal axis of the 

stream. According to the GPS manufacturer’s specifications, accuracy was estimated to 

be about 5 m. Fish status (i.e. alive or dead) was determined by direct observation, when 

possible, or by tracking upstream displacement. Fish displacement distance was 

measured with Geographic Information System software, QGIS 2.6.0 

(http://www.qgis.org) as the linear distance between the initial and final position of an 

individual along the longitudinal axis of the stream. Positive values were assigned to 

upstream movements and negatives to downstream movements. 

 

Statistical analyses 

http://www.qgis.org/
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Differences in fish fork length among  reaches were analysed with analysis of variance 

(one-way ANOVA). Individual home range was calculated using the kernel-density 

estimation, which is considered preferable to linear range because it reveals the internal 

structure of the home range and is also indicated for small sample sizes (Seaman & 

Powell, 1996). Kernel density estimations with barriers were computed in R through the 

adehabitatHR package (Calenge, 2006). This approach uses the shortest distance 

between points without intersecting a defined barrier, in this case the river banks. The 

area that incorporates 95 % of the utilization distribution (i.e. the minimum area on 

which the probability to relocate the animal is 0.95) was calculated as an estimate of 

individual home range (Worton, 1989). The bandwidth is a smoothing value that 

determines the width of the kernel and was set to h = 25 by iterative visual inspection of 

outputs and evaluating the results (Gitzen et al., 2006). Mixed Model Analysis of 

covariance (Mixed Model ANCOVA) was used to compare movement variables, such 

as home range and displacement distances, among study reaches, sampling dates, diel 

periods and between hydropeaking events, using fish fork length as the covariate. 

Following the methods described in Rogers and White (2007) individual fish were 

included as the sampling unit to avoid pseudoreplication issues. We started with the 

most complex model, introducing all possible sources of variation, including 

interactions of covariates × factors, following García-Berthou & Moreno-Amich (1993). 

Then, we simplified the model by removing non-significant interactions (i.e. P > 0.10) 

to increase statistical power, and when the covariate was not significant (i.e. P > 0.10) it 

was also deleted from the model (so a Mixed Model ANOVA was used). Estimated 

marginal means were also used to describe the differences between factor levels. 

Estimated marginal (or size-adjusted) means of a dependent variable are the means for 

each level of the factor after adjusting for fish fork length (see Alcaraz & García-
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Berthou, 2007; García-Berthou & Moreno-Amich, 1993; Rovira et al., 2016). 

Preference for movement direction (i.e. the proportion of upstream and downstream 

movements) was assessed with a G-test of independence, and a Student’s t-test was 

used to test whether mean signed movement significantly deviated from zero. 

Correlation between trout home range and fish fork length were analysed using 

Pearson’s correlation coefficient. All quantitative variables were log-transformed for the 

analyses because homoscedasticity and linearity were clearly improved. All data 

analyses were performed with SPSS 23.0. 

 

Results 

Of the 34 brown trout initially tagged in the two study reaches, 30 individuals were 

tracked for the duration of the study: 15 in NP-1 and 15 in NP-2. Four trout disappeared 

rapidly after tagging, probably because of predation, angling or transmitter failure. 

Mean size of radio-tagged brown trout did not significantly differed between reaches 

(ANOVA; F1, 29 = 0.370, P = 0.55) (Table 1). 

Mean fish displacement between successive locations were lower in the by-passed 

reach (NP-1, µ = 16.27 m ± SE = 2.85) than in the hydropeaking reach (NP-2: µ = 

125.36 m ± SE = 23.56). Maximum displacement tracked was 132 m in NP-1 and 1355 

m in NP-2. The analysis of the overall displacement pattern showed that after 

accounting for fish length (Mixed-Model ANCOVA; F1, 31.53 = 7.03, P = 0.012) the total 

distance moved by brown trout differed significantly between sampling reaches (F1, 24.19 

= 14.614, P < 0.001), being larger in NP-2. ANCOVA size-adjusted estimated marginal 

means (µ ± SE) were 0.751 ± 0.109 and 1.328 ± 0.105 in NP-1 and NP-2. No 

interaction effects were detected (P = 0.32), and reach was a more important factor than 

fish fork length (power analysis) in explaining such differences. The direction pattern, 
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for fish movement > 5 m (GPS estimated accuracy), did not differ between reaches (G = 

0.074, df = 1, P = 0.79), and there was the same proportion of upstream and downstream 

movements (G = 0.36, df = 1, P = 0.55).  

The temporal distribution of movements varied between study reaches (Figure 3). 

In the control reach (NP-1) movement distance significantly varied among sampling 

dates (Mixed Model ANCOVA, F11, 75.17 = 2.63, P = 0.007) and was positively related 

(Pearson’s r = 0.38, N = 100, P < 0.0001) to fish fork length (F1, 34.25 = 5.11, P = 

0.030). Differences among sampling dates were explained by an increase in upstream 

movements of some individuals before the spawning period and downstream 

movements after the spawning (Figure 3). A similar pattern was observed in NP-2, but 

observed differences were not statistically significant (Mixed Model ANOVA, F11, 101.74 

= 1.47, P = 0.16). Movement was not significantly related to fish length in the 

hydropeaking reach (P > 0.28). Most of the differences in mean movement distance 

among sampling dates were generally due to a few individuals with medium or long 

movements, thus, the upstream : downstream movement ratio did not show significant 

differences per sampling date (P > 0.46 in both reaches). 

Mean 95 % kernel home range size was (µ ± SE) 112.1 ± 11.49 m (ranging from 

73.2 to 224.5 m) in NP-1 and 237.9 ± 37.22 m (ranging between 82.5 and 568.9 m) in 

NP-2 (Figure 4). Trout home range size (95 % kernel estimate) showed significant 

differences between study reaches (Mixed Model ANCOVA, F1, 30 = 13.53, P = 0.001), 

after accounting for fish fork length (F1, 30 = 4.32, P = 0.046). Reach was a more 

important factor than fish fork length (power analysis) in explaining such differences. 

Home range was shorter in NP-1 reach, ANCOVA size-adjusted estimated marginal 

means (µ ± SE) were 2.027 ± 0.052, 2.295 ± 0.051 in NP-1 and NP-2, respectively. 

Home range overall increased with fish fork length (Pearson’s r = 0.39, N = 30, P  = 
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0.033), but there was a large individual variability in fish home range within reaches, 

thus, while some individuals showed a sedentary behaviour others exhibited a large 

degree of mobility. This variability was particularly pronounced in hydropeaking reach, 

NP-2 (Figure 4). 

The detailed analysis of the diel movement patterns of the brown trout (Mixed 

Model ANCOVA) showed that diel activity was not significantly related to fish fork 

length (F1, 22.25 = 2.10, P = 0.16) or FL × factors interactions (P > 0.12), and therefore 

was not included in further analysis (i.e. a Mixed Model ANOVA was used). After 

excluding fish length, there were no differences in diel activity (F3, 177.16 = 0.421, P = 

0.74), although it was observed an increase in diel activity at night in NP-1 and both at 

night and morning in NP-2 (Table 2). Trout displacements were larger in the 

hydropeaking reach than in the by-passed reach (F1, 21.96 = 5.13, P = 0.034), ANOVA 

size-adjusted estimated marginal means (µ ± SE) were 0.438 ± 0.103 in NP-1 and 0.765 

± 0.101 in NP-2. The movement ratio (i.e. upstream : downstream movement ratio) did 

not show significant differences between study reaches (G-test, P = 0.86), among diel 

events (P = 0.92) or among diel events within reaches (P = 0.86 in NP-1, and P = 0.77 

in NP-2). Furthermore, the movement ratio did not differ from 1 : 1 in any diel period in 

both study reaches (P > 0.24, and P > 0.16 in NP-1 and NP-2, respectively). 

We also analysed the movement behaviour of brown trout in relation to 

hydropeaking events by comparing displacements of the “before-mid” period (measured 

as the distance moved by a given individual from before the start of the hydropeaking to 

the mid hydropeaking event) and “mid-end” period (from the mid hydropeaking to 

immediately after the finish) (see Table 2). Mean fish displacement between 

hydropeaking periods were not significantly related to fish fork length (Mixed Model 

ANCOVA, P = 0.99) or to the fork length × hydropeaking period interaction (P = 0.29). 
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“Mid-end” fish displacements was slightly larger than “before-mid” displacement 

(Table 2), but not statistically significant (Mixed Model ANOVA, P = 0.27). The net 

movement after hydropeaking events did not differ significantly from zero (Student’s t-

test, t25 = 1.68, P = 0.11), but there was a higher proportion of upstream movements at 

the beginning of hydropeaking events (“before-mid”) (G-test, G = 9.26, df = 1, P = 

0.002) compared to “mid-end” periods (Table 2). The net movement direction between 

hydropeaking events was marginally upstream (P = 0.083), see Table 2 & Figure 5). 

 

Discussion 

Movement patterns of brown trout were influenced by pulsed flow discharges, with 

trout increasing home range size in the hydropeaking reach (NP-2) when compared to 

the by-passed reach (NP-1). Our results are comparable to those reported by previous 

studies which showed that brown trout were more sedentary in rivers with more 

hydrologically stable conditions (Bachman, 1984; Heggenes, 1988a; Knouft & Spotila, 

2002; Young, 1994), increasing home range size in hydropeaking rivers (Bunt et al., 

1999; Heggenes et al., 2007; Scruton et al., 2005). Similar results have been reported for 

other fish species exposed to hydropeaking, such as the cyprinid Luciobarbus bocagei 

(Alexandre et al. 2015). These contrasting results on home range size between reaches 

might be due to differences in availability of complementary habitats necessary to 

complete their life cycle (Fausch et al., 2002). In concordance with that, movement 

pattern in the by-passed reach was similar to brown trout populations from unregulated 

Mediterranean streams, characterized by restricted home range size due to the close 

availability of suitable habitats for shelter, feeding and spawning (Aparicio et al. 2018). 

However, repeated flow pulses change substrate composition and distribution by 

altering the erosion and sedimentation patterns (Vericat et al., 2008), thus reducing the 
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heterogeneity of the river bed and causing shifts in key habitats for fish, such as gravel 

beds reduction and changes in channel morphology (Gibbins et al., 2007; Vericat et al., 

2006). Consequently, the distance between complementary habitat types increase under 

hydropeaking conditions, forcing fish to move longer distances to seek the best-suited 

habitats for their optimum living requirements (Albanese et al., 2004; Bunt et al., 1999). 

There was a clear effect of hydropeaking regimes on the movement pattern of brown 

trout, but with a marked variability among individuals. This individual variability in 

movement patterns has been frequently observed in stream salmonids (Bunnell et al., 

1998; Clapp et al., 1990; Heggenes et al., 2007; Ovidio et al., 2002; Quinn and Kwak, 

2011), partly due to ontogenetic differences related to different life history strategies 

between larger and smaller individuals (Ayllón et al., 2010). Thus, some studies have 

shown a positive relation between movement distance and fish length (Clapp et al., 

1990; Meyers et al., 1992; Quinn & Kwak, 2011; Young, 1994). Our results also show a 

positive relationship between home range size and fish length. Other possible source of 

individual variation could be related to behavioural phenotypes, for instance Höjesjö et 

al. (2007) showed that dominant brown trout individuals had larger home ranges than 

subordinates.  

The movement pattern of brown trout varied temporally, particularly associated 

with the spawning season, such as upstream movements of some individuals in October 

and downstream movements in December. Increased brown trout movement is often 

observed in preparation for spawning (Bettinger and Bettoli, 2004; Burrell et al., 2000; 

Ovidio, 1999) followed by fast downstream movement after spawning (Burrell et al., 

2000; Meyers et al., 1992; Ovidio, 1999). Differences among study reaches in the range 

extension of the spawning-related movements may be due to different availability of 

suitable spawning substrates. The by-passed reach (NP-1) offers a wide range of gravel 
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beds, which are the necessary spawning grounds for the brown trout, thereby implying 

no need for long displacements. However, spawning habitat (i.e. gravel beds) was more 

limited in the hydropeaking affected reach NP-2 (see Table 1). The highest movement 

activity of brown trout coincided with the onset of spawning period around the 

beginning of November when most of the individuals performed longer movements and 

settled in areas with abundant gravel beds where spawning fish were later observed 

(personal observations of the authors). There were no significant differences in trout 

diel activity, thus suggesting that brown trout individuals were active during the day and 

night. These results agree with a recent study showing an absence of diel cycling in the 

summer feeding activity of brown trout in the study area (Rocaspana et al., 2016), and 

other works reporting that brown trout individuals are active during the day and night in 

summer (Clapp et al., 1990; Young et al., 1997). 

Trout individuals exhibited a higher proportion of upstream movements in NP-2 

at the beginning of hydropeaking events. Positive rheotaxis responses of fish to the 

increase in water velocity may confer benefits, for instance, by increasing the 

interception of drifting prey or to remain in the same position under high flow 

conditions (Arnold, 1974). Trout individuals may be susceptible to being displaced 

downstream during flow pulses due to high water velocities. However, our results did 

not show marked downstream displacements in relation to hydropeaking events and are 

similar to those reported by previous works that did not find effects of peaking flows on 

downstream movements by adult trout (Bunt et al., 1999; Cocherell et al., 2010; Gido et 

al., 2000; Heggenes et al., 2007). In the hydropeaking reach NP-2 streambed substrate 

was dominated by coarser substrates (boulders and cobble) that provide sheltered areas 

with reduced water velocities, and thus preventing downstream displacement (Bunt et 

al., 1999; Heggenes, 1988b; Taylor et al., 2014). Resistance to downstream 
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displacement is also mediated by fish length. Radio-tagged trout in the present study 

corresponded to adult individuals (mean FL range: 235.5 – 283.7 mm), which are 

characterized by a superior swimming performance than smaller trout, which are more 

likely to be displaced downstream by high flows (Crisp & Hurley, 1991; Heggenes & 

Traaen, 1988; Thompson et al., 2011).  

In summary, our results highlight that in the hydropeaking reach the range of 

movements of the brown trout increases, which has marked implications for the species 

management. Connectivity between hydropeaking reaches and contiguous upstream 

sections should have a higher priority in streams subjected to hydropeaking. Otherwise, 

limitation of fish movements, hindering or impeding access to complementary habitats, 

can lead to a reduction of the fitness of brown trout populations and may affect their 

productivity and long-term persistence. Alternatively, if connectivity cannot be restored 

or guaranteed, habitat improvement projects should also be taken into account in 

compensating potential losses in the availability of important stream features such as 

coarse substrates for velocity shelters or gravel substrates for spawning grounds. 
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Table 1. Reach features during the sampling period, and brown trout radio-tracking 

data. Mean ± standard error, when necessary, is shown. 

Variable 
Reach code 

    NP-1    NP-2 

   
Tagging coordinates 

   42° 37' 48" N 

1° 7' 26" E 

    42° 37' 5" N 

1° 7' 44" E 

Hydropeaking regime No Yes 

Elevation range (m a.s.l.)    951 – 968     930 – 951 

Mean slope (%)    1.46     0.76 

Mean stream width (m) 13.2 ± 0.6 13.0 ± 0.5 

Flow range (m3 s-1) 0.4 – 3.5 0.5 – 15.0 

   
Mesohabitat units (%)   

   Pool 13 16 

   Run 30 32 

   Riffle 59 53 

   
Substrate composition (%)   

   Boulder 62 76 

   Cobble 21 21 

   Gravel 17 3 

   Sand/Silt 2 0 

   
Number of fish tagged 16 18 

Fork length (mm) 235.5 ± 14.0 242.9 ± 10.2 

Observations (N) 201 243 

   
Home range (m)  112.1 ± 11.5 237.9 ± 37.2 

Home range (m) - median 98.1 223.7 
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Table 2. Mean movement (m) and proportion of upstream displacements of radio-

tagged brown trout per reach, diel periods and during hydropeaking events (Before-mid: 

distance moved from before the start of the flow pulse to the mid of the event; Mid-end: 

distance moved from the mid of the event to immediately after the finish; Net 

movement: distance moved from before the flow pulse to immediately after the finish). 

Only fish with displacements > 5 m (GPS accuracy) were included in direction analysis. 

Hydropeaking occurred from about 10:00 to 12:00 hours, thus hydropeaking 

movements in NP-2 are included in the morning diel movements.  

Period 

NP-1   NP-2 

Mean SE 
% Upstream 

displacements 
 Mean SE 

% Upstream 

displacements 

        
Diel movements        

Night 11.77 3.96 66.7  24.86 11.68 52.9 

Morning 4.97 1.57 60.0  43.63 16.82 69.2 

Afternoon 8.20 4.85 75.0  10.62 2.80 50.0 

Evening 7.00 2.34 50.0  15.05 6.44 60.0 

        

Hydropeaking movements        

Before-mid     21.27 7.16 92.3 

Mid-end     26.28 9.37 40.0 

        
Net movement     31.15 11.68 75.0 
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Figure 1. Location of the study area in the Noguera Pallaresa River (Ebro River basin). 

NP-1 reach is a by-passed section upstream from the Esterri hydropower plant (A); NP-

2 reach is downstream from the outlet of the Esterri hydropower plant. Red dashed lines 

are the channels connecting the river to hydroelectric plant. The arrow indicates the 

direction of water flow. Photographs by Enric Aparicio. 

Figure 2. Top: Flow regime (monthly averages per study reach for the period 2001-

2012.  Bottom: Flow regime in NP-2 during the 48 h radiotracking cycle. Black 

triangles are the tracking times.    

Figure 3. Left: Box-plots of brown trout movement (m) per sampling occasion (from 

August to December) in the study reaches. Upstream and downstream movements are 

indicated as positive and negative. Each box corresponds to the 25th and 75th percentiles, 

the dark line inside the box represents the median, error bars are the minimum and 

maximum values, and the filled circle is the mean. Note different y-axis scale. Right: 

Relationship of sampling date with estimated marginal means of distance displacements 

for brown trout. 

Figure 4. Ranked home ranges (95 % kernel estimates) of brown trout per study reach. 

NP-1 (N = 15) and NP-2 (N = 15) sampled from August to December 2012. 

Figure 5. Box-plots of brown trout movement (m) in the hydropeaking reach (NP-2) 

during flow pulses. Upstream and downstream movements are indicated as positive and 

negative. See Fig. 3 for statistics given. Open circles are individual movement 

observations. 
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