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Abstract 25 

In recent decades, wild cherry has been one of the species most widely used for 26 

reforestation in Europe. Studies aiming to select and improve trees to give them the best 27 

growth rates and wood properties have increased in response to growers’ demands. 28 

However, information relating to key physiological processes such as transpiration or 29 

stomatal conductance and to the effect of the common practice of pruning on plant-water 30 

relations is scarce. The main objective of this study was to assess the effects of 31 

environmental conditions on canopy conductance dynamics. Its secondary objective was 32 

to examine the short- and medium-term effects of branch pruning on tree transpiration, 33 

growth and derived water productivity. To this end, we measured sap flow in an 34 

experimental plantation where trees were subjected to drip irrigation and rain-fed 35 

conditions and where variables characterizing climate, soil and tree growth were also 36 

monitored. The results demonstrated that the Jarvis-Stewart approach was appropriate for 37 

studying the responses of canopy conductance to environmental factors. As well as the 38 

role of vapour pressure deficit and net radiation in controlling the daily variations of 39 

canopy conductance, the single effects of decreasing soil water content (optimum relative 40 

extractable water, REW, higher than 0.4) and increasing air temperature (optimum of 41 

21ºC), as summer conditions approached, were correctly incorporated into the modelling 42 

exercise. Soil water content exerted the greatest control on canopy conductance for trees 43 

growing under rain-fed conditions, while air temperature did for irrigated trees. Pruning 44 

significantly reduced transpiration to about 35% when pre- and post- sub-periods were 45 

compared, but also affected annual water productivity regardless of the irrigation 46 

treatment. To assess the long-term effects of pruning on water productivity, 47 

measurements in both pruned and unpruned trees would be desirable. 48 
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Introduction 51 

Agriculture in Mediterranean areas suffers natural water scarcity and high 52 

unpredictability of extreme climatic events, both expected to increase in the future and 53 

thus affecting crop production (Fereres and Soriano, 2007). Diversification of land use 54 

may allow farmers to adapt better to these new conditions, given that plant species differ 55 

in their environmental responses. In Europe, forest plantations for wood production have 56 

been widely promoted in recent decades, mainly to confront desertification and rural 57 

abandonment (e.g. EU Regulation 2080/92), especially short-rotation plantations of 58 

species with rapid growth rates.  59 

In the last two decades, wild cherry (Prunus avium L.) has been a species widely used in 60 

reforestation programmes that used noble hardwood (Ducci et al., 2013; Montero et al., 61 

2003). Studies aiming to select and improve wild cherry trees in order to give them the 62 

best growth rates, forms and wood properties have increased in response to growers’ 63 

demands (Ducci et al., 2013; Nocetti et al., 2010; Diaz et al., 2007; Curnel et al., 2003; 64 

Martinsson, 2001). Wild cherry plantations have also been established in Mediterranean 65 

areas, although these areas are outside the natural range of this species and irrigation is 66 

normally required to face summer drought (Ducci et al., 2013) and to reduce the rotation 67 

length when grown under such conditions (Molina et al., 2016a). Most of the irrigated 68 

plantations are nowadays managed in line with selvicultural guidelines, which are mainly 69 

concerned with the effects of pruning and thinning interventions on diameter growth 70 

(Vilanova et al., 2018; Cisneros et al., 2006). However, in contrast with tree plantations 71 

for fruit or nut production, little attention has been paid to the role of environmental 72 

conditions and management on tree transpiration in plantations for wood production (e.g. 73 



Lambs et al., 2008; Cabibel and Isbérie, 1997), even though this variable is essential to 74 

proper irrigation and to the evaluation of new water management strategies, especially in 75 

areas with limiting conditions (Fereres and Soriano, 2007).  76 

Understanding to what extent canopy stomatal conductance (gc) is dependent on 77 

environmental variables is crucial, given its essential role in the regulation of both water 78 

losses by transpiration and CO2 uptake for photosynthesis and, therefore, in plant growth 79 

and yield (Granier et al., 2000; Jarvis and McNaughton, 1986). For this reason, gc is 80 

considered a good plant-based indicator for irrigation purposes (Hernandez-Santana et 81 

al., 2016). However, its use for management purposes is greatly limited by the difficulty 82 

of monitoring it continuously and by the errors associated with the subsequent up-scaling 83 

from leaves to tree or canopy surfaces (Ewers and Oren, 2000). In contrast to this 84 

approach, the “up-bottom” approach, based on the combination of the Penman-Montheith 85 

equation and sap flow measurements, provides a direct estimate of gc, as the canopy is 86 

considered as a big “leaf” (Magnani et al., 1998). The Jarvis-Stewart modelling approach 87 

(Stewart, 1988; Jarvis, 1976) is commonly used for studying the combined effects that 88 

environmental factors such as vapour pressure deficit or soil water content may have on 89 

gc (del Campo et al., 2019; Kučera et al., 2017; Hernandez-Santana et al., 2016). The 90 

multiplicative approach followed in the modelling assumes that environmental factors 91 

affecting gc are not interacting, so every effect is described singly (Granier et al., 2000; 92 

Jarvis, 1976). However, as summer approaches in semi-arid conditions, advancing soil 93 

water depletion, vapour pressure deficit reduction and air temperature increase may affect 94 

gc in concert, meaning that their separate effects could not be assessed properly. The 95 

combined study of sap flow in trees subjected to distinct environmental conditions may 96 

help overcome this problem for a particular species. In this respect, comparing trees which 97 



are well-watered with trees growing under natural semi-arid conditions may help greatly 98 

to isolate, for example, the effect of soil water availability on stomatal regulation.     99 

Branch pruning in forest plantations is a common practice that aims to get a maximum of 100 

free tree trunks and so increase timber value (Springmann et al., 2011; Kupka, 2007). 101 

While most of the literature on branch pruning focuses on its effects on Eucalyptus 102 

plantations (e.g. Muñoz et al., 2008; Pinkard et al., 2004; Pinkard and Beadle, 2000), for 103 

which it has been suggested that an optimum of pruning 40 to 50% of the total crown 104 

increases diameter growth, the results in wild cherry tree plantations indicate the opposite, 105 

with negligible or even negative effects of pruning on diameter and height growth 106 

(Springmann et al., 2011; Kupka, 2007). On the other hand, branch pruning immediately 107 

reduces transpiration by removing part of the trees’ leaf area and by reducing the ratio 108 

between leaf area and conducting sapwood (Forrester et al., 2012). It may also improve 109 

the water status of the retained leaves and increase their stomatal conductance (Pinkard 110 

et al., 1998), counterbalancing the reduction in transpiration. The effect that this practice 111 

may have on tree water use is still poorly documented for wood plantations, unlike fruit 112 

plantations, which means it is not well known how much water productivity or the water 113 

transpired per yield (Molden et al., 2010) might be affected.   114 

The study reported here specifically addressed transpiration of wild cherry trees during 115 

the two growing periods by measuring sap flow in an experimental plantation where trees 116 

were subjected to contrasting soil water content treatments, i.e. drip irrigation versus rain-117 

fed conditions. Variables characterizing environmental conditions and tree growth were 118 

also monitored. The first growing period was characterized by typical crown temporal 119 

evolution for broad-leaf species, while the second growing period saw intense crown 120 

pruning of all the trees in the plantation. The main objective of this study was to assess 121 

the effects of environmental conditions on canopy conductance dynamics by following 122 



the Jarvis-Stewart modelling approach during the first growing period. Secondly, we 123 

assessed the short- and medium-term effects of branch pruning on tree transpiration, 124 

growth and derived water productivity. 125 

Materials and methods 126 

Study site and experimental design  127 

The site is located near Barcelona, at IRTA’s experimental station in Caldes de Montbui 128 

(41º36´47´´ N, 2º10´11´´ E) at a height of 170 m asl. The climate is Mediterranean with 129 

a mean annual (1991-2010) temperature of 14.4 ± 0.2ºC, reference evapotranspiration of 130 

846.8 ± 23.3 mm and rainfall of 599.4 ± 33.4 mm. Data were obtained from a weather 131 

station on the site (Servei Meteorològic de Catalunya, UTM X430803, UTM 132 

XY4607309).  133 

The experimental plantation was established in 2006 at a tree density of 625 trees ha-1 and 134 

with spacing between the trees and between the rows of 4 m (16 m2 tree-1), and used the 135 

clone Salamanca 4 (Sa-4) most planted in Mediterranean areas of Spain. The selected site 136 

was an alluvial terrace with two zones clearly showing different soil performances and 137 

separated by a transition zone with mixed materials from both. The experimental design 138 

followed a split-plot structure with three replications arranged in a complete block design 139 

(Molina et al., 2016a). The main plot factor was soil management (soil tillage to 30 cm 140 

depth versus no tillage) and the sub-plot factor was drip irrigation (I, irrigated or NI, non-141 

irrigated). The sub-plots were separated from each other by buffer tree rows and each sub-142 

plot contained four sample trees. Irrigated treatments were drip-irrigated from May to 143 

September with 4 emitters (16 l h−1tree−1) and daily doses were calculated at the beginning 144 

of each week as a function of the weekly sums of reference evapotranspiration and rainfall 145 

during the previous week. There was no irrigation when evapotranspiration was lower 146 

than rainfall (Molina et al., 2016a). 147 



In December 2010, average tree height was 4.7±0.1 m and the mean diameter at breast 148 

height was 5.7±0.1 cm. Trees were pruned every two to three years during the growing 149 

season, with approximately one third of the total crown volume removed from the lowest 150 

part of crowns.  151 

Measurements of meteorology and soil water content 152 

Meteorological conditions were measured at two locations, i.e. 2 m high at a standard 153 

weather station located in an open area 50 m away from the plantation and at a tower 154 

placed approximately in the centre of the plantation and 2 m above the canopy’s height. 155 

At the standard weather station, rainfall (ECRN-100, Decagon Devices, Pullman, USA), 156 

air temperature and humidity (RH-T sensor, Decagon Devices, Pullman, USA), wind 157 

velocity and wind direction (Davis cup anemometer, Decagon Devices, Pullman, USA) 158 

and solar radiation (PYR Solar radiation sensor, Decagon Devices, Pullman, USA) were 159 

measured every 60 seconds and averaged every 30 minutes (Em-50, Decagon Devices, 160 

Pullman, USA). At the tower, net radiation (Q7.1-L REBS Net Radiometer, Campbell 161 

Scientific, USA) was measured together with air temperature and humidity, wind velocity 162 

and wind direction and solar radiation (with the same sensors described above). The data 163 

collected were systematically verified by comparison with data from an official 164 

meteorological station (Servei Meteorològic de Catalunya, UTM X430803, UTM 165 

Y4607309) located about 500 m from the plantation. 166 

 Soil water content (SWC) was measured under the crown projection of sample trees with 167 

3 sensors for each tree. At the mid-point between the southern drip emitter and the tree 168 

trunk (I), and at the same position for the non-irrigated trees (NI), 10 cm-long probes (10-169 

HS, Decagon Devices, Pullman, USA) were vertically inserted, with their centres at soil 170 

depths of 25, 50 and 100 cm. 60-second measurements were averaged and stored every 171 

30 minutes (Em-5, Decagon Devices, Pullman, USA). To avoid bad contact between the 172 



sensors and the soil matrix, gravel was removed before installation. Sensor readings were 173 

systematically corrected by taking into account the volumetric percentage of gravel 174 

calculated for each measurement point (Molina et al., 2016a). 175 

Time series of SWC for every probe were later converted to relative extractable water by 176 

roots (REW, dimensionless), following Granier et al. (2000): 177 

REW = (W – Wm) / (WFC-Wm)                                                                                     Eq.(1) 178 

where W is the 30 min-value of soil water content (cm3·cm-3), Wm is the minimum soil 179 

water content during the study period and WFC is the soil water content at field capacity. 180 

Finally, mean REW values were obtained for both I and NI trees.  181 

Canopy cover, tree growth dynamics and tree biomass removal by branch pruning 182 

Relative canopy cover (RCC, %) was calculated approximately every twenty days in the 183 

early morning by means of sky-oriented photographs taken with an 18 mm-lens Canon 184 

EOS 400D digital camera mounted on a tripod 50 cm high and horizontally levelled. Two 185 

sky-oriented photographs were taken of each tree at two fixed positions (north and south) 186 

50 cm apart from the tree trunk. The images were analysed with a standard software that 187 

calculates RCC based on HUE data for every sample tree by considering all the pixels in 188 

green, brown and yellow (Casadesus et al., 2007).  189 

Tree diameter (cm) was measured monthly at breast height (1.4 m) with a diameter tape; 190 

and tree height (m) was obtained with a telescopic height pole at the beginning and end 191 

of every year. 192 

All the trees in the experimental plantation were pruned in the second year of the study 193 

(mid-June 2013): from one to four branches were cut from the lowest part of the tree 194 

crowns. Weight of total fresh biomass removed for each tree was calculated in the field, 195 



while dry total weight was obtained after calculating the ratios of fresh to dry weight for 196 

the leaves and woody materials (1 sub-sample taken from each sample tree) in the 197 

laboratory. In addition, allometric relationships were obtained from the diameters of all 198 

the branches removed by the pruning. 199 

Sap flow: measurements, potential sources of errors and tree transpiration estimate 200 

Sap flow was measured in all the sub-plots: one tree in each in the 2012 growing season 201 

and two trees in each in the 2013 growing season. For this study, we selected the trees 202 

growing in the part of the plantation with better soil performance, characterized by a 203 

sandy-clay-loam texture, about 10% gravel content and available soil water of 112 mm 204 

to a soil depth of 100 cm. Also, given that soil management showed no significant effect 205 

on tree growth rates (Molina et al., 2016a), trees from both soil treatments were included. 206 

Thus sap flow sensors based on the heat ratio method (HRM) (Burgess et al., 2001), 207 

installed in mid-March, measured 4 and 3 trees (2012) and 6 and 5 trees (2013) for I and 208 

NI treatments, respectively. The biometric characteristics of the trees measured are given 209 

in Table 1.  210 

[TABLE 1 AROUND HERE] 211 

Sap flow sensors (ICT International, Australia) were programmed to measure every 100 212 

seconds and to average the data every 30 minutes. One sensor was installed at each sample 213 

tree, 1.3 m high and on the east side of the trunk. The velocity of the heat pulse emitted 214 

by the heater needle was measured by thermocouples placed 1.25 and 2.75 cm from the 215 

cambium, and 5 cm above and below the heater (Burgess et al., 2001). Thermal diffusivity 216 

and wood moisture fraction values were calculated from several tree ring cores, following 217 

Kravka et al. (1999). To correct heat pulse velocities when necessary, the alignment of 218 

the probes was checked yearly by testing the difference between the measurements and 219 



the baseline, which corresponded to the zero sap flow measured during the first leafless 220 

week in December. A possible underestimate caused by the probe-induced effects of 221 

wounding (Barret et al., 1995) was assessed for each sample tree by comparing the time 222 

series of mean daily sap flow values normalized by reference evapotranspiration and 223 

REW. This controlled the effects of environmental conditions on trees’ dynamics. Clear 224 

decreases (approximately 3 days long) were observed in the time series between 15 and 225 

25 days after sensor installation, followed by very similar patterns that did not seem to be 226 

further affected by wounding. According to these dynamics and following the 227 

recommendations of Wiedemann et al. (2016) for correcting the wound effect in diffuse-228 

porous species, correction factors were calculated for each sample tree by comparing the 229 

normalized mean daily sap flow values between the 10-days periods of before and after 230 

the described wounding effect appeared. Thus, the time series of sap flow for each tree 231 

were multiplied by the obtained correction factors, and the sap flow data which covered 232 

the period from sensor installation until the decrease leaded by the wounding effect were 233 

not included in further analyses. 234 

As azimuthal and radial variations of sap flux density may lead to major biases in tree 235 

transpiration calculations (e.g. Kume et al., 2012), two independent experiments were run 236 

during the 2014 growing season in order to establish the application of correction factors 237 

to our previous sap flow data when necessary (Molina et al., 2016b). Both experiments 238 

used sensors which estimate sap flow based on measurements of heat pulse velocity at 239 

different sapwood depths. Briefly, the azimuthal variation was analysed by measuring sap 240 

flux density by 4 HRM sensors (as used in this work) located at the four compass points 241 

of 6 trees. The radial variation was tested by measuring sap flux density with 242 

Compensation Heat Pulse Method (CHPM) sensors (Green et al., 2003) placed 1.0, 1.9 243 

and 3.0 cm from the cambium of 14 trees (east side). On the one hand, the azimuthal 244 



variation results showed that the ratio between the sap flux density on the east side and 245 

the average from the four sides ranged from 0.73 to 1.46, with no clear systematic pattern 246 

observed between trees. Thus, in this study no further correction was made to the readings 247 

taken on the east sides. On the other hand, we considered that our HRM sensors with 248 

measurements at two sapwood depths were sufficient to characterize the radial profile of 249 

sap flux density in our small trees (inner measurement covering a mean 72.4% of total 250 

sapwood in 2013, the study year with the highest values), as comparisons between the 251 

radial profiles obtained with HRM and CHPM measurements followed similar patterns 252 

in most of the sample trees.  253 

Sapwood increment during the growing season was also taken into account because the 254 

wild cherry trees were young and they can be considered a fast-growing species at this 255 

age (Guan et al., 2012). It was assumed that sapwood depth grew proportionally to tree 256 

diameter in the growing season, as in other young fast-growing trees (Guan et al., 2012). 257 

To estimate the sapwood area from stem diameters, thickness of sapwood and bark was 258 

visually identified in several tree cores during the experiment (Molina et al., 2016b; 259 

Nadezhdina et al., 2002). Sapwood area (SW, cm2) was calculated monthly as a function 260 

of diameter at breast height (SW = 0.93 x DBH1.9028, R2=0.98, n=20). Moreover, based 261 

on our field observations and following Beauchamp et al. (2013), as the sensors remained 262 

in a fixed location during the growing season, trees grew around the sensors. For each 263 

month, the sapwood area was divided into two concentric bands (outer and inner band), 264 

delimited by the mid-point between the thermocouple locations (Bleby et al., 2004; 265 

Hatton et al., 1990). The sapwood increment during the month was assigned to the outer 266 

thermocouples, i.e. the cross-section area of the outer band was equal to the increment 267 

band due to the growth of trees around the sensors during the month plus the previous 268 

outer band. Tree transpiration (l·s-1) was calculated by multiplying the outer band by the 269 



sap flux density measured in the outer thermocouples; and the inner band, by the inner 270 

sap flux density measured in the inner thermocouples; and then adding both and 271 

multiplying this value by numeric factors to obtain the proper units.  272 

Data treatment and analysis 273 

Canopy conductance responses to environmental factors 274 

The responses of canopy conductance (gc, mm·s-1) to environmental factors were studied 275 

for the 2012 growing season, in order to avoid the effect that branch pruning has on 276 

canopy cover and thus on transpiration dynamics. The period in which canopy cover 277 

showed very similar values (from mid-April to mid-November) was selected. gc was 278 

computed by the inverse form of the FAO-Penman–Monteith equation (Allen et al., 279 

2006), as follows: 280 

gc = 
ga·∂·λ·Ea

Δ·Rn-λ·Ea·(Δ+∂)+pa·cp·ga·(es-ea)
·1000                                              Eq.(2) 281 

where ga is the aerodynamic conductance (mm·s-1), ∂ the psychrometric constant (66.5 282 

Pa K-1), λ the latent heat of vaporisation calculated from air temperature (2.407-2.511 283 

MJ·kg-1), Ea the mean transpiration for I and NI trees normalized by dividing tree 284 

transpiration by crow projection (mm·s-1), Δ the slope of the saturated vapour pressure 285 

versus temperature curve, Rn the available energy (MJ·m-2·s-1; assumed to be equal to net 286 

radiation and ignoring the usually small changes in net soil- and within-canopy heat 287 

fluxes), pa (kg·m-3) is the density of air, cp the specific heat of air at constant pressure 288 

(1.013 MJ·kg-1·K-1), and (es – ea) (Pa) the saturation vapour pressure deficit, VPD. 289 

Aerodynamic conductance was calculated from wind speed according to Thom (1975): 290 

ga = 
𝑘2·𝑢

[ln⁡(
𝑧𝑚−𝑧𝑑

𝑧0
)]
2 ·1000                    Eq. (3) 291 



 292 
where k is the von Kármán constant (0.40), u (m·s-1) wind speed measured at height zm 293 

(8 m), zd (m) the zero-plane displacement height (taken as 0.75 h where h is the average 294 

canopy height of 6 m), and z0 (m) the surface roughness (0.1 h). 295 

gc was estimated for daytime hours and when DPV was higher than 600 Pa due to the 296 

likely errors associated with sap flow measurements under low DPV values (Ewers and 297 

Oren, 2000; Granier et al., 2000). In addition, as only dry-canopy conditions were 298 

considered (García-Santos et al., 2009; Harris et al., 2004), the time intervals with 299 

measured rainfall and a post-precipitation period of 4 h to allow the canopy to fully dry 300 

out were excluded.  301 

The gc values found with Eq. (1) were all regressed against net radiation (Rn, MJ·m-2·s-302 

1), vapour pressure deficit (VPD, kPa), air temperature (T, ºC) and relative extractable 303 

soil water content (REW). Different non-linear relationships proposed in the literature 304 

were compared (see, for instance, Kučera et al., 2017; Harris et al., 2004) by studying the 305 

fit of the regression lines between the measured and the modelled values and the visual 306 

inspection of residuals. The relationships (henceforth response functions) were estimated 307 

for the upper envelope of data points by the quantile regression technique (quantiles 308 

ranging from 95 to 98%) in order to reduce as much as possible the effects that the other 309 

interacting environmental factors may have when describing the single relationships 310 

(Figure 1). In addition, since a time lag between tree sap flow and canopy transpiration 311 

has often been reported as leading to an increase in the scatter of data in the relationships 312 

between gc and environmental variables (Kučera et al., 2017; Granier et al., 2000), the fit 313 

for different time lags (from 30 minutes to 2 hours) was studied, with the fit without any 314 

time lag being the one that correlated better with all the environmental variables.   315 

[FIGURE 1 AROUND HERE] 316 



The response functions selected were the following:  317 

f(Rn) = 
Rn

Rn+a0    
                                                                                                             Eq. (4) 318 

f(VPD) = a1-a2·ln(DPV)                     Eq. (5) 319 

f(T) = T2·a3+T·a4           Eq. (6) 320 

f(REW) = 
(a5+a6·REW-((a5+a6·REW)2-2.8·a5·a6·REW)^0.5)

1.4
          Eq. (7) 321 

The empirical multiplicative algorithm defined by Stewart (1988) and following Jarvis 322 

(1976) was then adopted: 323 

gc = g0 + gmax·f(Rn)·f(VPD)·f(T)·f(REW)        Eq. (8) 324 

where gc is the estimated canopy conductance, go is the baseline canopy conductance not 325 

modulated by environmental conditions and considered as cuticular conductance 326 

(Magnani et al., 1998) and gmax is maximum canopy conductance (mm·s-1), which is 327 

multiplied by the response functions that affect stomatal closing and opening and for 328 

which values ranging from 0 (full closure) to 1 (maximum stomatal opening) are assigned.  329 

The optimum models were selected by considering three datasets: data from the I trees 330 

(model I), data from the NI trees (model NI) and data from both I and NI trees (general 331 

model). The parameters for every tested model were calibrated by minimizing the 332 

differences between the predicted and the observed values through the Gauss-Newton 333 

algorithm (Annex 1). The different multiplicative model structures were compared 334 

through the Akaike information criterion (AIC), which is a model optimality 335 

measurement that trades off complexity and the fit of the model (Akaike, 1973), so that 336 

the models with the lowest AIC value were selected (Annex 1). The performance of the 337 

selected models for the three datasets was evaluated by splitting the 2012 data into two 338 



datasets, one for calibrating the parameters (even days) and the other for validating them 339 

(uneven days) (Granier et al., 2000; Gash et al., 1989). Model goodness-of-fit was 340 

evaluated in terms of mean squared errors of prediction (MSE, mm·s-1), normalized root-341 

mean-square deviation (NRMSD, %) and by studying the fit of the regression lines 342 

between the observed and the predicted values (Kučera et al., 2017; Petzold et al., 2011).  343 

Assessing the branch pruning effects on tree transpiration, growth and water 344 

productivity 345 

Branch pruning effect was assessed in two ways. On the one hand, cumulative tree 346 

transpiration from the 7-day sub-periods before and after pruning was statistically 347 

compared through paired t-student tests for the I (n=6 trees) and NI (n=5 trees) trees, 348 

given the similarity in the environmental conditions (Table 2). On the other hand, total 349 

transpired water, wood volume increment and water productivity, as the ratio between the 350 

former variables (WP, m3·l-1) (Molden et al., 2010; Fereres and Soriano, 2007), were 351 

calculated for every study year. The wood data for the sample trees were obtained from a 352 

previous study carried out within the experimental plantation (Molina et al., 2016a). In 353 

this case, the statistical comparisons through paired t-student tests included the trees in 354 

which transpiration was measured in both growing seasons (n= 7; Table 1).  355 

[TABLE 2 AROUND HERE] 356 

All statistical analysis, non-linear and quantile regressions were done in R (R Core Team, 357 

2013). Statistical tests and fitted parameters were significant with a significance level of 358 

p<0.05.  359 

Results 360 

Environmental conditions during the study period  361 



Both growing seasons were characterized by dry summers (June-August) with low 362 

rainfall inputs (63 and 43 mm in 2012 and 2013, respectively, or 14 and 7% of annual 363 

rainfall) and high values for reference evapotranspiration (mean daily values of 5 and 4 364 

mm day-1 in 2012 and 2013, respectively) (Figure 2), although it was higher in 2012 due 365 

to the higher magnitude of the environmental drivers (Table 3). The REW dynamics 366 

reflected the different water inputs in the I (rainfall + irrigation) and NI (rainfall) trees: 367 

6,417 and 6,903 mm versus 414 and 485 mm for the 2012 and 213 growing seasons, 368 

respectively. Furthermore, the NI trees showed strong soil water depletion in both 369 

growing seasons, although this started later in 2013 because of a higher rainfall recharge 370 

in early spring (121 versus 63 mm in April 2012 and 2013).  In contrast, REW in the I 371 

trees was most of time close to 1 (close to field capacity) and consequently higher than 372 

0.4 as the threshold from which tree transpiration is expected to be affected (Granier et 373 

al., 2000), except for a period of about 20 days between April and May 2012 when 374 

irrigation system failed.  375 

[FIGURE 2 AROUND HERE] 376 

[TABLE 3 AROUND HERE] 377 

Modelling the canopy conductance responses to environmental factors 378 

The temporal dynamics of relative canopy cover and tree transpiration for the 2012 379 

growing season are shown in Figure 3.  380 

According to the deciduous character of wild cherry tree, the sprouting of the leaves made 381 

canopy development to start at the beginning of April, reaching its maximum values in 382 

June (68.7±9.6 versus 50.8±15.3% for I and NI, respectively). Leaves remained in crowns 383 

until the end of November.   384 



Transpiration at the beginning of the growing season clearly followed the pattern in 385 

canopy cover and was quite similar in the two treatments, although it showed steadily 386 

diverging decreases for both I and NI trees as summer conditions approached. The 387 

differences in timing and magnitude for the transpiration responses between the I and NI 388 

trees indicated that the regulation of stomatal conductance was not affected in the same 389 

way by the environmental conditions (Figure 4). For both treatments, and with the 390 

magnitude depending on the day considered, canopy conductance was maximum at early 391 

hours; after peaking, it decreased to a lower value that was maintained during the central 392 

hours; then it peaked again before decreasing until the end of the hours of light (Figure 393 

4).  394 

[FIGURE 3 AROUND HERE] 395 

[FIGURE 4 AROUND HERE] 396 

The canopy conductance modelling started with the analysis of all the possible 397 

combinations among the response functions (Annex 1). Table 4 shows the optimum 398 

models when considering one, two or three response functions, since the models did not 399 

converge when all the environmental variables were included. As indicated by both the 400 

reduction in the AIC values and the statistics quantifying the model’s goodness-of-fit 401 

(Table 4), the steady introduction of the response functions improved the model 402 

performance for the I and NI datasets (model I and model NI), while the general model 403 

achieved the best results when taking into account two response functions instead of three. 404 

The environmental variables considered varied depending on the model: while the 405 

response function introduced for soil moisture improved both model fit and quality for 406 

model I and the general model, it was the response function for air temperature that did 407 

so in the case of I trees (Annex 1). The comparisons between the observed and the 408 

modelled values showed poor results when including all the data (general model), but 409 



acceptable results for the I and NI datasets (model I and model NI), although the latter 410 

had a slightly better model performance, as indicated by an adjusted R2 of 0.81 (Figure 411 

5) and a NRSMD value of 6.21% (Table 4). It should also be noted that both model I and 412 

model NI, but especially the latter, underestimated canopy conductance for high observed 413 

values (Figure 5). 414 

[FIGURE 5 AROUND HERE] 415 

[TABLE 4 AROUND HERE] 416 

Branch pruning effects on transpiration, growth and water productivity 417 

Mean total dry weight removed by pruning was 7.20 ± 2.38 kg·tree-1, while relative 418 

canopy cover reduction showed a mean value of 52.7 ± 9.7%. As expected, biomass 419 

removal correlated significantly with relative canopy cover reduction; and the allometric 420 

relationships between branch diameter and total fresh weights showed very good fits 421 

(Annexes 2 and 3). Pruning also affected tree transpiration in the short term, with 422 

significantly higher cumulative values for both I (p=0.042) and NI (p=0.048) trees in the 423 

pre-pruning period, translated into mean decreases of 30.9 ± 20.7 and 38.4 ± 26.8%, 424 

respectively.  425 

To assess the effect of branch pruning in the medium term, wood increment, total 426 

transpired water and water productivity in 2012 and 2013 were compared. Paired t-427 

students’ tests showed that tree transpiration, though higher in 2012, did not differ 428 

between 2012 and 2013 in either I or NI trees. However, wood increment was 429 

significantly higher in 2013 despite the reduction of crown biomass by pruning (Figure 430 

6), while water productivity also showed significantly higher values in 2013 for both I 431 

and NI trees (Figure 6). It is, therefore, important to highlight the influence of the timing 432 

of pruning when evaluating water productivity. In the period before the 2013 pruning, 433 

most of the diameter growth had already been achieved, with 74 and 96% of the total 434 



diameter increment for I and NI trees, respectively (Figure 7). In contrast, in the same 435 

period of 2012, characterized by worse soil water content conditions, diameter growth 436 

accounted for 62 and 58% of the total diameter increment for I and NI trees, respectively.  437 

[FIGURE 6 AROUND HERE] 438 
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 440 

 441 

Discussion  442 

Wild cherry transpiration and canopy conductance under drip irrigation and rain-fed 443 

conditions  444 

Our cherry trees (7 years old in 2012) gave mean transpiration values of 3.1 and 6.2 litres 445 

day-1 in the 2012 growing season (Figure 3, right), when growing under rain-fed 446 

conditions (NI) or drip irrigation (I), respectively. These values are in the low range when 447 

compared with other cherry plantations growing in Mediterranean areas, which was 448 

probably caused by the reduced ratios between leaf area and conducting sapwood in our 449 

trees because of the intensive pruning in the initial years of the plantation. Juhász et al. 450 

(2013) found cumulative values ranging from 10.9 to 23.6 litres day-1 for trees of a similar 451 

age and tree density to ours, but selected and managed for fruit production. Cabibel and 452 

Isbérie (1997) compared transpiration during one summer month in 12 year-old trees 453 

growing under irrigation versus rain-fed conditions and obtained 101 versus 15 litres day-454 

1, respectively. Chifflot (2003) observed mean tree water consumption of about 5 litres 455 

day-1 in 17 year-old wild cherry trees growing under irrigation conditions. Finally, Lambs 456 

et al. (2008) found mean tree water consumption of 9.5 litres day-1 in 7-year old wild 457 

cherry trees growing under rain-fed conditions.  458 



In line with the tree transpiration observed, canopy conductance (maximum values no 459 

higher than 0.02 mm· s-1; Figure 4) was also much lower than in other broad-leaf species, 460 

since there is no available information for cultivated wild cherry trees for direct 461 

comparisons. As examples, Magnani et al. (1998) obtained a mean value of 5 mm·s-1 in 462 

a mature beech forest, while del Campo et al. (2019) obtained maximum values close to 463 

2 mm·s-1 in a disperse oak coppice forest growing under water-limited conditions. 464 

Daily courses of canopy conductance in I and NI trees were quite similar, although the 465 

magnitude and the cumulative effect of the environmental variables differed, as discussed 466 

below. Normally, canopy conductance was large early in the morning under conditions 467 

of sufficient solar radiation and low vapour pressure deficit (Figure 4). This then 468 

decreased steadily during the day before a second maximum of canopy conductance was 469 

sometimes observed late in the afternoon (Kučera et al., 2017; Magnani et al., 1998).   470 

Canopy conductance response to environmental conditions 471 

The aerodynamic coupling between plant and atmosphere is considered a prior 472 

requirement to a proper assessment of canopy conductance responses to environmental 473 

variables (Zhang et al., 2016; Magnani et al., 1998; McNaughton and Jarvis, 1983). In the 474 

air surrounding leaves, a quasi-laminar flow of heat and vapour (boundary-layer 475 

resistance) is likely to appear, which results in the turbulent flow (turbulent resistance) 476 

driven by air eddies not being directly linked to the physiological behaviour of leaves and 477 

decreasing aerodynamic conductance. To evaluate this, the classical approach of 478 

McNaughton and Jarvis (1983) is normally followed (e.g. del Campo et al., 2019; Zhang 479 

et al., 2016), where a decoupling coefficient Ω is calculated. Broad-leaf forests are 480 

recognized as those ecosystems that are more prone to be decoupled due to both large leaf 481 

size and higher stomatal than aerodynamic conductance (Magnani et al., 1998; Jarvis and 482 



McNaughton, 1986). This aspect is, however, only partially true for tree plantations 483 

growing under low tree density conditions and low values of LAI, in which the leaf 484 

boundary layer may have a negligible effect on aerodynamic conductance (del Campo et 485 

al., 2019; Zhang et al., 2016; Nicolás et al., 2008). In our case, calculated Ω values were 486 

no higher than 0.01 at any time (data not shown), indicating a very high coupling between 487 

tree crowns and atmosphere under our experimental conditions (Magnani et al., 1998).  488 

After calculation of gc values by means of the inverted form of the Penman-Monteith 489 

equation, the second step in the modelling exercise was to study the various relationships 490 

between gc and the environmental variables measured under optimal conditions (upper 491 

envelope through quantile regression at 95-98%). gc followed the generally expected 492 

patterns; all the selected relationships had already been satisfactorily used for other 493 

species and environmental conditions: the Michaelis-Menten quadratic form for net 494 

radiation (Thornley and Johson, 1990), the negative relationship with ln D (Oren et al., 495 

1999) and the polynomial relationships with air temperature (Gash et al., 1989) and with 496 

REW (Granier et al., 2000). From these fits, information for better management of wild 497 

cherry tree plantations for timber production can be drawn. Optimum responses of canopy 498 

conductance to temperature were in the range of 15 to 25ºC, with the optimum 499 

temperature value being close to 21ºC. In addition, the effect of REW on canopy 500 

conductance was almost linear until reaching a value close to 0.4, after which a plateau 501 

was observed. While the observed pattern of gc with REW is commonly described 502 

elsewhere (Granier et al., 2000), the effect of temperature was more similar to effects 503 

reported for species growing under non-limiting conditions, such as poplar in Germany 504 

(Petzold et al., 2011) or cypress and cedar in mountain areas of Japan (Saito et al., 2017). 505 

In this sense, the clone considered in the present study (Salamanca-4) comes from a region 506 

of Spain where climate is continental and rainfall does not act as a limiting factor. The 507 



clear steep decrease in gc from the optimum temperature to higher values indicates that 508 

transpiration was highly controlled by stomatal regulation once summer conditions 509 

approached, when days with maximum temperatures between 30 and 45ºC showed 510 

relative canopy conductance of about 10% in both I and NI trees.  511 

The general model taking into account both I and NI data did not show satisfactory results, 512 

since the different responses of canopy conductance between the I and NI trees to 513 

environmental factors such as REW lead to poor fits. In contrast, the modelling of the I 514 

and NI datasets independently showed model performances comparable to other studies 515 

that followed a similar modelling procedure (Kučera et al., 2017; Granier et al., 2000; 516 

Magnani et al., 1998). While the daily variations in gc were highly controlled by the 517 

dynamics of net radiation and DPV, the progressive response of gc to summer conditions 518 

differed between the models considered. In the case of the general model, as the response 519 

functions for DPV and net radiation were followed by that for REW, it can be stated that 520 

REW exerted greater control on stomatal regulation in our clones of wild cherry trees 521 

than air temperature did. This, however, was not the case for the I trees, for which REW 522 

also probably affected gc dynamics (especially at the beginning of the growing period), 523 

but to a lesser extent than air temperature did. This aspect, together with the clear negative 524 

impact of REW leading to a decreased gc pattern in the NI trees, highlight the key roles 525 

of both interacting environmental factors in controlling the progressive physiological 526 

adjustments of Prunus avium to semi-arid conditions. Furthermore, the cumulative 527 

diameter increments in the July-November period of 2012, like those with more 528 

pronounced differences between the treatments, showed very similar values (42.8 versus 529 

38.4 for I and NI), thus indicating that the single control on growth of air temperature 530 

(whether controlling gc, photosynthetic activity or both) can be comparable to the effects 531 

of REW and air temperature acting in concert.  532 



The effect of branch pruning on transpiration, growth and water productivity 533 

In our study, branches were removed to a predetermined height at the beginning of the 534 

summer period, as a better wound occlusion was expected at that time (Springmann et al., 535 

2011). It is clear that branch pruning directly reduces the leaf area available for 536 

photosynthesis and transpiration. Intuitively, one would expect pruning to reduce the 537 

growth of trees, at least in the short term. However, the photosynthetic activity of 538 

remaining leaves may be enhanced by pruning, leading to a compensatory growth effect 539 

(Pinkard et al., 1998). This has been seen especially in Eucalyptus plantations, for which 540 

it has been suggested that an optimum total crown reduction of about 50% increases 541 

diameter growth in the medium term (e.g. Muñoz et al., 2008; Pinkard et al., 2004; 542 

Pinkard and Beadle, 2000). In contrast, negligible or even negative effects have been 543 

described in wild cherry plantations (Springmann et al., 2011; Kupka, 2007). Springmann 544 

et al. (2011) found significant lower stem diameter growth in the years after pruning, 545 

when comparing conventionally pruned and control trees. In our case, despite the lack of 546 

unpruned trees in the experiment, the results may also help improve the management of 547 

noble wood plantations by taking into account not only growth aspects but also water use 548 

considerations. Comparison between the pre- and post-pruning periods under similar 549 

environmental conditions showed that a mean canopy reduction of about 53% (52.4 550 

versus 53.1% for I and NI trees) was translated into tree transpiration decreases of 31 to 551 

38%. This non-linear relationship between biomass removal and water consumption 552 

contrasts with the significant linear relationships between pruning intensity or leaf area 553 

removed and tree transpiration observed by Bayala et al. (2002) and Kou-Tan Li et al. 554 

(2003), which is probably explained by the differing stomatal responses to the micro-555 

meteorological conditions between the remaining upper leaves and those removed by 556 

pruning from the base of crowns. Nicolás et al. (2008) pointed out that shaded leaves of 557 



lemon trees transpired less than exposed ones and that stomatal conductance was less 558 

important in controlling transpiration due to bigger decoupling between gc of the shaded 559 

leaves and the atmosphere. Therefore, the removing of upper leaves with better light 560 

conditions in our trees would probably cause transpiration to reduce the crown in a more 561 

linear way.    562 

 Apart from the short-term effects, water productivity in 2012 and 2013 was significantly 563 

enhanced by tree pruning due to both reduced transpiration and increased wood volume 564 

production, regardless of the irrigation treatment. Most tree diameter growth was 565 

achieved before pruning in 2013 for both the I and NI trees, while this was not the case 566 

for the same time period in 2012. As shown here, as summer conditions approach, the 567 

responses of canopy conductance to vapour pressure deficit and air temperature gradually 568 

move away from the optimum ones, which points to the crucial role of soil water content 569 

at this time of year for obtaining optimum growth rates. Therefore, to maximize water 570 

productivity, irrigation must be controlled accurately and branches need to be pruned 571 

properly.  572 

Conclusions 573 

This study demonstrates the suitability of the Jarvis-Steward approach for a proper 574 

assessment of the effects of environmental factors on the regulation of canopy 575 

conductance in wild cherry trees growing under Mediterranean conditions and two 576 

contrasting water availability regimes. Apart from the role of vapour pressure deficit and 577 

net radiation in controlling the daily variations of canopy conductance, the single effects 578 

of decreasing soil water content and increasing air temperature, as summer conditions 579 

approach, were properly described and incorporated into the modelling exercise. As 580 

expected, soil water content exerted the highest control on canopy conductance for trees 581 



growing under rain-fed conditions, while air temperature was the most limiting factor for 582 

irrigated trees. In addition, branch pruning significantly reduced transpiration to about 583 

35% when the pre- and post-sub-periods were compared, and affected water productivity 584 

regardless of the irrigation treatment. An investigation into the long-term effects of 585 

pruning on water productivity in both pruned and unpruned trees would be desirable for 586 

a further assessment of conventional pruning in tree plantations to produce noble wood. 587 
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 763 

Figure captions 764 

Figure 1. Examples of the non-linear regressions between relative canopy conductance 765 

and the environmental variables of net radiation and REW 766 

Figure 2. Time series of (a) reference evapotranspiration (ET0) and rainfall, and (b) 767 

relative extractable soil water (REW) in the 2012 and 2013 growing seasons. I: drip-768 

irrigated trees, NI: non-irrigated trees. Daily cumulative values are shown for ET0 and 769 

rainfall, while 30-min means are given for REW.  REW values higher than 1 are equalled 770 

to 1 to make the comparison between the I and NI trees easier 771 

Figure 3. Time series of relative canopy cover (means and standard deviations, %) and 772 

transpiration (means of daily cumulative values, litres·day-1; standard deviations are not 773 

shown for clarity) for the I and NI trees during the 2012 growing season  774 

Figure 4. Daily courses of canopy conductance (gc, mm·s-1) in four sample days from the 775 

2012 growing period 776 

Figure 5. Modelled versus observed values of canopy conductance in the validation 777 

dataset (uneven days of the 2012 growing season) for the I and NI trees. A certain level 778 

of colour transparency is applied in order to highlight point density. The 1:1 lines and the 779 

equations for the linear regression fits are also shown 780 



Figure 6. Wood volume increment (dm3), cumulative transpired water (l) and water 781 

productivity (dm3·l-1) for the 2012 and 2013 growing years. Different letters indicate 782 

significant differences between years within each treatment in the Student’s t-tests (p-783 

value<0.05) 784 

Figure 7. Time series (means and standard deviations) of tree diameters (cm) in the I and 785 

NI trees for the 2012 and 2013 growing seasons. The arrow indicates the moment of 786 

branch pruning 787 



Annex 1. Calibrated parameters, Akaike information criterion values (AIC) and the changes in the AIC values (ΔAIC) with respect to the optimum 788 

model for all the models tested considering the three datasets. – means no convergence in the model tested. Rn: net radiation; VPD: vapour pressure 789 

deficit; T: air temperature; REW: relative extractable water. Units for the environmental variables are detailed in the Materials and methods section 790 

Data Model a0 a1 a2 a3 a4 a5 a6 AIC ΔAIC 

 go+gmax*f(Rn) 0.0010742       -1223.6 4164.3 

 go+gmax *f(VPD)  1.747 0.20     -4125.1 1262.8 

 go+gmax *f(T)    0.0012 0.042   -3772.4 1615.5 

 go+gmax *f(REW)      0.365 2.88 -4279.0 1108.9 

 go+gmax *f(Rn)*f(VPD) 0.0000302 2.409 0.28     -4940.2 447.7 

 go+gmax *f(Rn)*f(T) -0.0000005   -0.0012 0.042   -3878.1 1509.8 

 go+gmax *f(Rn)*f(REW) 0.0000048     0.378 3.01 -4382.4 1005.5 

 go+gmax *f(VPD)*f(T)  - - - -   - - 

 go+gmax *f(VPD)*f(REW)  2.040 0.23   1.110 4.00 -5387.9 0.0 

 go+gmax *f(T)*f(REW)    -0.0001 0.001 0.100 1.00 2111.1 7498.9 

 go+gmax *f(Rn)*f(VPD)*f(T) 0.0000302   -0.0023 0.098   -4940.6 447.3 

 go+gmax *f(Rn)*f(VPD)*f(REW) 0.0000302 2.409 0.28   1.082 1.09 -2177.5 3210.3 

 go+gmax *f(VPD)*f(T)*f(REW) - - - - - -  - 

All dataset go+gmax *f(Rn)*f(VPD)*f(T)*f(REW) - - - - - - - - - 

 go+gmax*f(Rn) 0.0006884       -421.8 3566.5 

 go+gmax *f(VPD)  2.058 0.23     -2870.4 1117.9 

 go+gmax *f(T)    -0.0013 0.050   -2417.4 1570.9 

 go+gmax *f(REW)      - - - - 

 go+gmax *f(Rn)*f(VPD) 0.0000232 2.750 0.32     -3951.6 36.6 

 go+gmax *f(Rn)*f(T) -0.0000005   -0.0014 0.051   -2530.9 1457.4 

 go+gmax *f(Rn)*f(REW) -     - - - - 



 go+gmax *f(VPD)*f(T)  - - - -   - - 

 go+gmax *f(VPD)*f(REW)  0.900 0.11   9.100 7.00 43.0 4031.3 

 go+gmax *f(T)*f(REW)    -0.0001 0.001 0.100 1.00 1748.4 5736.7 

 go+gmax *f(Rn)*f(VPD)*f(T) 0.0000232 2.750 0.32 -0.0018 0.087   -3988.3 0.0 

 go+gmax *f(Rn)*f(VPD)*f(REW) - - -  - -  - - 

 go+gmax *f(VPD)*f(T)*f(REW) - - - - - - - - 

I dataset go+gmax *f(Rn)*f(VPD)*f(T)*f(REW) - - - - - - - - - 

 go+gmax*f(Rn) 0.0017720       -1566.1 3068.4 

 go+gmax *f(VPD)  1.437 0.17     -2964.4 1670.2 

 go+gmax *f(T)    -0.0010 0.033   -2872.6 1762.0 

 go+gmax *f(REW)      0.360 2.10 -3605.5 1029.1 

 go+gmax *f(Rn)*f(VPD) 0.0000540 2.171 0.26     -3439.9 1194.7 

 go+gmax *f(Rn)*f(T) -0.0000019   -0.0005 0.021   -2144.0 2490.6 

 go+gmax *f(Rn)*f(REW) 0.0000033     0.369 2.15 -3640.9 993.7 

 go+gmax *f(VPD)*f(T)  - - - -   - - 

 go+gmax *f(VPD)*f(REW)  0.200 0.01   9.100 7.00 -1399.1 3235.5 

 go+gmax *f(T)*f(REW)    -0.0001 0.001 0.100 1.00 -72.0 4562.6 

 go+gmax *f(Rn)*f(VPD)*f(T) 0.0000540 2.171 0.26 -0.0032 0.120   -3558.214 1076.4 

 go+gmax *f(Rn)*f(VPD)*f(REW) 0.0000540 2.171 0.25   1.082 13.49 -4634.594 0.0 

 go+gmax *f(VPD)*f(T)*f(REW) - - - - - - - - 

NI dataset go+gmax *f(Rn)*f(VPD)*f(T)*f(REW) - - - - - - - - - 

           

 
 

          

791 



Annex 2. Relationship between canopy cover reduction (%) and total dry weight of 792 

biomass removed (kg) by the branch pruning carried out between of 14th and 15th of June 793 

2013. Canopy cover reduction was estimated between the 3rd and the 20th of June 794 
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Annex 3. Plots and the fitted equations for obtaining a) total biomass fresh weight (kg) 806 

and b) length branch (cm) as a function of branch diameter (cm). Mean ± SD specific leaf 807 

area (SLA) was 15.06±4.02 m2·kg-1 808 
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Table 1. Tree biometric characteristics (maximum values in growing seasons) of the NI 1 

and I trees selected for sap flow measurements. DBH: diameter at breast height, H: height 2 

and SW: sapwood area. 3 

    2012   2013  

Measurement 
period 

Irrigation 
treatment 

Sample 
tree 

DBH 
(cm) 

H (m) SW 
(cm2) 

DBH 
(cm) 

H (m) SW 
(cm2) 

2012-2013 I 1 9.5 7.1 67.4 11.3 7.6 93.8 

2012-2013 I 2 9.6 6.6 68.8 11.1 7.2 90.7 

2012-2013 I 3 10.2 6.7 77.2 11.7 7.4 100.2 

2012-2013 I 4 8.8 5.8 58.3 10.4 6.6 80.1 

2012-2013 NI 5 7.8 6.4 46.3 8.8 7.1 58.3 

2012-2013 NI 6 9.3 6.9 64.8 10.5 7.1 81.6 

2012-2013 NI 7 9 5.9 60.8 9.9 6.3 72.9 

2013 I 8 8.6 7.1 55.8 11.7 7.7 100.2 

2013 I 9 8.2 6.3 51.0 10.1 7.1 75.8 

2013 NI 10 8.1 6.4 49.8 9.9 7.1 72.9 

2013 NI 11 8 6.7 48.6 10.2 7.3 77.2 

 4 



Table 2. Statistics for the 7-days sub-periods before and after the pruning for reference 1 

evapotranspiration (Eto), air temperature (T) and relative extractable water for the I (REW 2 

I) and NI trees (REW NI) 3 

Sub-period Value Eto  
(mm) 

T  
(ºC) 

REW I REW NI 

 Mean 4.10 17.58 0.93 0.52 

 SD 0.87 1.29 0.10 0.03 

 Maximum 4.91 19.45 1.00 0.57 

Pre-pruning Minimum 2.68 15.60 0.77 0.49 

 Mean 3.56 20.19 0.92 0.43 

 SD 0.97 1.14 0.11 0.02 

 Maximum 4.89 21.79 1.00 0.45 

Post-pruning Minimum 2.06 18.80 0.74 0.40 

 4 



Table 3. Statistics for some variables describing the environmental conditions during the 1 

growing periods. Values for net radiation are calculated taking into account light 2 

conditions. SD is standard deviation. 3 

Year Variable Units Mean Maximum Minimum SD 

 Net radiation MJ·m-2·h-1 0.0002 0.0008 0.0000 0.0002 

 Wind velocity m·s-1 0.57 4.73 0.00 0.64 

 Air temperature ºC 20.26 39.69 -1.19 6.85 

 Vapor pressure deficit Pa 923.79 5377.16 21.67 907.79 

 Soil water content_I cm3· cm-3 0.16 0.24 0.11 0.03 

 Soil water content_NI cm3· cm-3 0.11 0.21 0.07 0.03 

 REW_I  0.93 2.52 0.36 0.50 

2012 REW_NI  0.36 1.56 0.17 0.39 

 Net radiation MJ·m-2·h-1 0.0001 0.0008 0.0000 0.0002 

 Wind velocity m·s-1 0.37 5.63 0.00 0.49 

 Air temperature ºC 19.27 36.41 2.65 6.60 

 Vapor pressure deficit Pa 776.94 4798.11 29.03 817.45 

 Soil water content_I cm3· cm-3 0.20 0.28 0.16 0.02 

 Soil water content_NI cm3· cm-3 0.17 0.26 0.13 0.03 

 REW_I  0.91 1.84 0.56 0.12 

2013 REW_NI  0.71 1.55 0.31 0.24 

 4 



Table 4. Calibrated parameters and statistics for the evaluation of model goodness-of-fit when considering one, two or three response functions. 1 

The values for the parameters go and gmax, estimated for every tested model, are not shown for clarity. NRSMD stands for normalized root-mean-2 

square deviation (%). 3 

Data Model a0 a1 a2 a3 a4 a5 a6 Intercept  Slope Adj. R2 NRMSD (%) 

 go+gmax*f(REW)      0.365 2.88 0.00330 0.378 0.395 12.66 

 go+gmax *f(VPD)*f(REW) 2.040 0.23   0.365 4.00 0.00220 0.586 0.586 10.44 

General Model go+gmax *f(Rn)*f(VPD)*f(REW) 0.0000302 2.409 0.28   1.082 1.09 0.00250 0.528 0.528 11.16 

 go+gmax *f(T)    -0.0013 0.050   0.00440 0.365 0.365 11.75 

 go+gmax *f(Rn)*f(VPD) 0.0000232 2.750 0.32     0.00200 0.714 0.714 7.84 

Model I go+gmax *f(Rn)*f(VPD)*f(T) 0.0000232 2.750 0.32 -0.0018 0.087   0.00190 0.732 0.732 7.59 

 go+gmax *f(REW)      0.360 2.10 0.00150 0.591 0.592 9.13 

 go+gmax *f(Rn)*f(REW) 0.0000033     0.369 2.15 0.00150 0.596 0.598 9.06 

Model NI go+gmax *f(Rn)*f(VPD)*f(REW) 0.0000540 2.171 0.25   1.082 13.49 0.00070 0.812 0.810 6.21 
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