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Abstract 16 

The aim of this paper was to develop a broccoli soup enriched in Spirulina sp., Chlorella sp., 17 

or Tetraselmis sp., at concentrations ranging from 0.5 to 2.0% (w/v), and to assess the effect of 18 

microalgae incorporation on their quality and acceptance. Incorporation of freeze-dried 19 

microalgae biomass into the broccoli soup resulted in lower L* values, especially after 20 

incorporation of Spirulina sp. and Chlorella sp. Microalgae incorporation also led to an 21 

increased content of polyphenols and to a higher antioxidant capacity. Microalgae-containing 22 

soups showed a higher amount of bioaccessible polyphenols, calculated after a simulated 23 

gastrointestinal digestion (ranging between 32.9 ± 1.1 and 45.6 ± 0.5 mg/100 mL). The 24 

acceptability index of soups formulated using lower microalgae concentrations was over 70% 25 

suggesting that the soups would be well accepted. Indeed, the purchase intention of the soups 26 

containing microalgae at 0.5% (w/v) ranged between 3.4 and 4.1 (assessed using a 5-point 27 

hedonic scale). 28 

Keywords: Functional foods, Spirulina sp., Chlorella sp., Tetraselmis sp., novel ingredients  29 
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1. Introduction 30 

Microalgae biotechnology has increased exponentially over the last decade (Garrido-Cardenas, 31 

Manzano-Agugliaro, Acien-Fernandez, & Molina-Grima, 2018). This promising natural 32 

resource is being used (or studied) as animal or aquatic feed, in wastewater treatment or 33 

bioremediation applications, as a bio-fertiliser, and as a raw material for the generation of 34 

biofuels and high-value products such as pigments or bioactive compounds, among other 35 

applications (Rizwan, Mujtaba, Memon, Lee, & Rashid, 2018). Microalgae are, however, 36 

mainly used for human consumption as they contain a large number of valuable compounds 37 

that can supplement the nutritional energy needs of the currently expanding population (Vaz, 38 

Moreira, Morais, & Costa, 2016). However, despite the high content of macro- and micro-39 

nutrients found in microalgae, only a limited number of products containing microalgae have 40 

been launched into the market.  41 

Several scientific publications, recently reviewed by Caporgno and Mathys (2018), evaluated 42 

the potential of microalgae and microalgae-derived compounds for being used as novel 43 

ingredients with either functional or technofunctional properties into dairy products, pasta, or 44 

baked goods such as cookies or bread. The majority of these studies attempted (and achieved) 45 

to improve the nutritional properties of foods by incorporating microalgae biomass into their 46 

recipes (Gouveia et al., 2008; Rodríguez De Marco, Steffolani, Martínez, & León, 2014).  47 

However, only a limited number of studies evaluated the flavour and the acceptance of these 48 

products after a sensorial analysis. In most of the studies where a sensorial analysis was carried 49 

out, the authors reported relatively high acceptability scores and that higher microalgae 50 

concentrations resulted in reduced overall acceptance (Caporgno & Mathys, 2018). One reason 51 

could be that dairy products and baked goods are not naturally green, and the green colour of 52 

microalgae can adversely affect consumers’ perception about taste and quality (Becker, 2007). 53 

The acceptance of foods is also determined by health concerns and consumers’ familiarity with 54 
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the food ingredients, among other issues (Sandmann et al., 2015). Up the best of our 55 

knowledge, there are no studies evaluating the effect of microalgae incorporation into vegetable 56 

soups. Moreover, most of the studies carried out to date assessed the effect of incorporating 57 

Spirulina or Chlorella into foods. This makes sense, as these two strains are accepted for human 58 

consumption and are currently the most cultivated strains (Garrido-Cardenas, Manzano-59 

Agugliaro, Acien-Fernandez, & Molina-Grima, 2018). However, there are thousands of 60 

microalgae strains available in culture collections worldwide and some of these have finally 61 

achieved commercial-scale success. For example, Fitoplancton Marino S.L. (Cadiz, Spain) 62 

recently launched the product Plancton Marino Veta la Palma, which is a freeze-dried 63 

Tetraselmis chuii product that has been authorized by the European Food Safety Authority 64 

(EFSA) to be marketed as a novel food in accordance with Article 3(1) of Regulation (EC) No 65 

258/97 (AESAN, 2014).  66 

The consumption of these underutilised strains would not only open novel commercial 67 

opportunities to processors but also potentially promote health. Therefore, the aim of the 68 

current manuscript was to develop a novel food product enriched with Spirulina sp., Chlorella 69 

sp., and Tetraselmis sp. biomass, all of them authorised for human consumption in the EU 70 

(Acién Fernández, Fernández Sevilla, & Molina Grima, 2018). The food matrix in which the 71 

microalgae biomass was incorporated was broccoli soup, which is naturally green and generally 72 

associated with positive health outcomes. The current paper also aimed at evaluating the effect 73 

of microalgae incorporation on the overall quality and acceptance of the end product. 74 

Parameters evaluated included colour, texture, antioxidant activity, total phenolic content 75 

(TPC), and a visual and sensorial analysis that involved assessment of flavour, texture, overall 76 

acceptance, and purchase intention.  77 
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2. Materials and methods 78 

2.1 Preparation of the microalgae-containing broccoli soup 79 

Soups were made according to the formulations listed in Table 1 at the pilot plant facilities of 80 

IRTA Fruitcentre (Lleida, Spain). Briefly, broccoli florets were cut off from their stalks and 81 

boiled at a broccoli:boiling water ratio of 1:1.5 (w/v) for 7 min. Once cooked, the broccolis 82 

were sieved and the boiling water was collected. Boiled broccolis, the recovered boiling water, 83 

and olive oil at the concentrations listed in Table 1 were pulled together and homogenized 84 

using a TF410/450W industrial blender (Irimar, Valencia, Spain) operating at maximum speed 85 

for 4 min. Then, the salt and the microalgal biomass were incorporated, resuspended in water 86 

at a concentration calculated to keep the water content of the different soups constant. All the 87 

ingredients were further homogenised for 1 min and boiled for a further 2 min period. 88 

Microalgae concentrations were selected based on preliminary experiments carried out to 89 

establish the maximum microalgae inclusion level that did not negatively affect the 90 

organoleptic properties of the soups – Higher microalgae concentrations resulted in 91 

unacceptable overall acceptability scores (data not shown). Soups were immediately chilled to 92 

4 °C using an ABT 101L blast chiller (Infrico, Barcelona, Spain). Each soup was divided into 93 

two lots. The first one was used for visual, sensorial, and physicochemical analyses and was 94 

stored at 4 °C until further analysis (approximately 24 h). The second lot was used for 95 

determination of antioxidant capacity and total phenolic content (TPC) and was stored at -20 96 

°C. 97 

2.2 Viscosity and water- and oil-holding capacities 98 

WHC and OHC were determined following the methodology described by Lafarga, Álvarez, 99 

Bobo, and Aguiló-Aguayo (2018) and using a Sigma 3–18 KS centrifuge (Sigma 100 

Laborzentrifugen GmbH, Osterode am Harz, Germany). Determinations were carried out in 101 
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triplicate for each microalgae specie and results were expressed either as g of water or 102 

sunflower oil per g or freeze-dried microalgae. Viscosity was measured using a ST-2020 L 103 

rotary viscometer (JP Selecta, Barcelona, Spain) at 40 ± 1 ºC and in duplicate. Results were 104 

expressed as Pa·s.  105 

2.3 Colour 106 

Colour recordings of the soups were taken in triplicate using a Minolta CR-200 colorimeter 107 

(Minolta INC, Tokyo, Japan) as described by Lafarga et al. (2018). Chroma (Ch) and difference 108 

from the control (δE) values were calculated using the following equations: 109 

𝐶ℎ = √𝑎∗2 + 𝑏∗2    110 

𝛿𝐸 = √(𝐿𝐶𝐾
∗ − 𝐿𝑖

∗)2 + (𝑎𝐶𝐾
∗ − 𝑎𝑖

∗)2 + (𝑏𝐶𝐾
∗ − 𝑏𝑖

∗)2        111 

where 𝑳𝑪𝑲
∗ , 𝒂𝑪𝑲

∗ , and 𝒃𝑪𝑲
∗  are the colour parameters of the control soup and 𝑳𝒊

∗, 𝒂𝒊
∗, and 𝒃𝒊

∗the 112 

colour parameters of each broccoli-containing soup. 113 

2.4 Determination of total phenolic content 114 

The TPC was determined by the Folin-Ciocalteu method as described by Lafarga et al. (2019). 115 

Briefly, for the extraction of polyphenols, the soups were homogenised with methanol 70% 116 

(v/v) at a sample:methanol ratio of 1:4 (w/v) at room temperature. Samples were homogenised 117 

using a T-25 ULTRA-TURRAX® homogeniser (IKA, Staufen, Germany) operating at 14,000 118 

rpm for 30 s. Immediately after homogenisation, samples were placed on a stirrer at room 119 

temperature for 2 h and centrifuged using a Sigma-3-18 KS centrifuge (Sigma 120 

Laborzentrifugen GmbH, Osterode am Harz, Germany) operating at 12,000 rpm for 20 min. 121 

TPC was determined in triplicate using a GENESYSTM 10S-UV Vis spectrophotometer 122 
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(Thermo Fisher Scientific, MA, USA). Results were expressed as mg of gallic acid equivalents 123 

per 100 mL of soup. Standard curves were prepared daily.  124 

2.5 Assessment of antioxidant activity 125 

Antioxidant activity was determined using both the ferric ion reducing antioxidant power 126 

(FRAP) and the DPPH scavenging activity assays as described by Lafarga et al. (2019). 127 

Antioxidant activity was determined in triplicate using the same extracts used for determination 128 

of TPC and results were expressed as mg of ascorbic acid equivalents per 100 mL. Standard 129 

curves were prepared daily. 130 

2.6 Simulated gastrointestinal digestion 131 

A simulated gastrointestinal digestion of the control and microalgae-containing soups was done 132 

following the method of Minekus et al. (2014). A blank was prepared using only distilled water 133 

instead of the sample and following the same procedure. Determinations of TPC and 134 

antioxidant activity were performed after the intestinal phase as described in previous sections. 135 

2.7 Sensorial and visual analysis 136 

Both visual and sensorial analysis were undertaken approximately 24 h after the soups were 137 

made with 30 semi-trained consumers (17 women, 13 men, age 20-50 years) recruited from 138 

IRTA Fruitcentre (Lleida, Spain) who would be willing to buy the product. Consumers were 139 

considered as semi-trained as all of them were familiar with the quality attributes of vegetable 140 

soups and were capable of discriminating differences and communicating their reactions, 141 

though they were not formally trained. Sensory evaluation was conducted in a sensory 142 

laboratory with separate booths. Briefly, approximately 30 mL of the soups were place in white 143 

polystyrene glasses labelled with random codes and presented to the panellists in a randomised 144 

order. Each panellists assessed a maximum of five samples per day and all the panellists 145 
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assessed all of the samples. A 60-s time laps was employed between each sensory palate to 146 

reduce sensory fatigue. Panellists assessed the samples and were asked to indicate his or her 147 

opinion on the flavour and the overall acceptance of the soups using a nine-point hedonic scale 148 

(from 1: dislike extremely to 9: like extremely) as described by Amaral et al., 2018 and Souza 149 

et al., 2019. The acceptability index was calculated using the following equation: 150 

𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 (%) =
𝑋

9
∙ 100  151 

where X is the mean of the scores obtained for overall acceptance. 152 

To assess flavour and texture, soups were given to the panellists with the green lights of the 153 

sensory booths on to mask the soups colour. Purchase intention was assessed using a five-point 154 

hedonic scale which ranged from 1: certainly would not buy to 5: certainly would buy (Lucas, 155 

Morais, Santos, & Costa, 2018). Finally, for assessment of visual appearance, 300 mL of the 156 

soups were put into 300 mL glass bottles (commercially used for storing soups and sauces), 157 

simulating the final presentation of the product. Each panellist assessed all the samples and was 158 

asked to indicate his or her opinion on the overall visual appearance of the soups, focusing on 159 

their colour and texture and using a nine-point hedonic scale (from 1: dislike extremely to 9: 160 

like extremely).  161 

2.8 Statistical analysis 162 

Results are expressed as mean ± standard deviation (S.D.). Difference between samples were 163 

analysed using analysis of variance (ANOVA) with JMP 13 (SAS Institute Inc., Cary, USA). 164 

Where significant differences were present, a Tukey pairwise comparison of the means was 165 

conducted to identify where the sample differences occurred. The criterion for statistical 166 

significance was p<0.05. To identify relationships between parameters, bivariate Pearson’s 167 

correlation analysis was carried out.   168 
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3. Results and discussion 169 

3.1 Functional and antioxidant properties of the microalgal biomass 170 

Colour attributes of the dried microalgal biomass were measured. The L* value was 32.58 ± 171 

0.61, 35.06 ± 0.21, and 40.16 ± 0.12 for Spirulina sp., Chlorella sp., and Tetraselmis sp., 172 

respectively. In addition, a* values were measured as -1.66 ± 0.15, -3.38 ± 0.40, and -7.81 ± 173 

0.12 for Spirulina sp., Chlorella sp., and Tetraselmis sp., respectively. Overall, Tetraselmis 174 

showed the highest L* and the lowest a* values (p<0.05), suggesting a lighter and greener hue 175 

when compared to powdered Spirulina sp. and Chlorella sp. 176 

The WHC of the dried microalgal biomass was 1.96 ± 0.05, 1.48 ± 0.07, and 0.99 ± 0.20 g/g 177 

for Spirulina sp., Chlorella sp., and Tetraselmis sp., respectively. Tetraselmis sp. showed the 178 

lowest WHC values (p<0.05), probably caused by the higher salt content of the biomass which 179 

was dissolved in water during the assay. In addition, the OHC of Spirulina sp., Chlorella sp., 180 

and Tetraselmis sp. was 1.64 ± 0.10, 1.47 ± 0.23, and 1.23 ± 0.15, respectively. Similar WHC 181 

and OHC values were previously reported for proteins extracted from pulses (Lafarga, Álvarez, 182 

et al., 2018) or microalgae (Waghmare, Salve, LeBlanc, & Arya, 2016). Interactions of food 183 

ingredients with water and oil are of key importance in the food industry because these will 184 

affect flavour and texture of foods (Kumar, Ganesan, Selvaraj, & Rao, 2014). High WHC 185 

values are desirable in viscous foods such as vegetable soups, sauces, or custards to provide 186 

thickening and viscosity. Microalgal cells are grown in suspension, and are therefore not water 187 

soluble. Because of this, and based on their WHC and OHC values, microalgae can be used to 188 

provide not only colour and flavour to foods but also thickening and viscosity. 189 

The antioxidant capacity of the powdered microalgae was also determined. When assessed 190 

using the FRAP assay, the antioxidant capacity of Spirulina sp., Chlorella sp., and Tetraselmis 191 

sp. was 356.23 ± 16.88, 224.11 ± 9.65, and 308.67 ± 22.58 mg/100 g of dry weight, 192 

respectively. Moreover, when assessed using the DPPH assay, the antioxidant capacity of 193 
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selected microalgae was 304.66 ± 9.54, 195.23 ± 3.97, and 254.33 ± 11.97 mg/100 g of dry 194 

weight, respectively. Similar antioxidant capacity values were reported previously (Goiris et 195 

al., 2012; Li et al., 2007). 196 

3.2 Physicochemical attributes 197 

Colour attributes of the soups were significantly affected by microalgae concentration 198 

(p<0.001), specie (p<0.001), and the interaction of both factors (p<0.001). Incorporation of 199 

freeze-dried microalgae biomass into the broccoli soup resulted in lower L* values, which 200 

means that microalgae-containing soups presented a darker colour (Figure 1). As expected, 201 

higher microalgae concentration resulted in lower L* values. A negative correlation was 202 

observed between L* values and the concentration of Spirulina sp. (r2=0.9600; p<0.001), 203 

Chlorella sp. (r2=0.7847; p<0.05), and Tetraselmis sp. (r2=0.9872; p<0.001). The a* parameter 204 

was for all the studied samples negative, which denotes a greenish colour. Tetraselmis sp. 205 

incorporation into the broccoli soup resulted in lower a* values when compared to the control 206 

and to soups formulated using Chlorella sp. or Spirulina sp. (p<0.05). This is clear in Figure 207 

1, where T1-T4 show a more distinctive green colour. Indeed, positive correlations were 208 

observed between a* values and Spirulina sp. (r2=0.9875; p<0.001), Chlorella sp. (r2=0.8244; 209 

p<0.001), and Tetraselmis sp. (r2=0.9399; p<0.001) concentration. Both, microalgae 210 

concentration and specie had an effect on Ch (p<0.001), as well as the interaction of both 211 

factors (p<0.001). Higher microalgae concentration reduced Ch values, which suggest a loss 212 

of colour intensity after incorporation of microalgae into the soup. The observed loss in colour 213 

intensity was higher after incorporation of Spirulina sp. or Chlorella sp. when compared to 214 

Tetraselmis sp. Indeed, no differences were observed in the Ch values of samples CK and T1. 215 

Moreover, in the current study, δE was higher than three for all the formulated soups (data not 216 

shown), with those made using Spirulina sp. having significantly higher δE values (p<0.05). 217 

This suggests that the colour differences between the control and the microalgae-containing 218 
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soups were visible to the human eye, especially for soups prepared using Spirulina sp. (Figure 219 

1). Furthermore, microalgae incorporation into the broccoli soup led to increased viscosity. A 220 

positive correlation was observed between microalgae concentration and viscosity (r2=0.8760; 221 

p<0.05). 222 

3.3 Total phenolic content and antioxidant activity 223 

The effect of microalgae inclusion on the TPC and antioxidant activity of the soups is shown 224 

in Figure 2. Although cruciferous vegetables are specially known for their content in 225 

glucosinolates, these vegetables are also rich sources of polyphenols (Lafarga, Bobo, Viñas, 226 

Collazo, & Aguiló-Aguayo, 2018; Lafarga, Viñas, Bobo, Simó, & Aguiló-Aguayo, 2018). The 227 

TPC of the control soup was calculated as 30.02 ± mg/100 mL. Incorporation of microalgae 228 

into the broccoli soup resulted in increased TPC (p<0.05) – an increase was also observed after 229 

incorporation of Tetraselmis sp. at a concentration of 0.5% (w/v) but it was not statistically 230 

significant. In the current study, higher microalgae concentrations resulted in increased TPC 231 

(p<0.05). Several recent studies demonstrated that microalgae contain important amounts of 232 

polyphenols, which contribute significantly to their antioxidant capacity (Custódio et al., 2012; 233 

Goiris et al., 2012; Hajimahmoodi et al., 2010). No major differences were observed in the 234 

TPC of soups formulated using either Chlorella sp. or Tetraselmis sp. (Figure 2). This does not 235 

mean that Spirulina sp. contain higher concentrations of polyphenols, as their content depends 236 

largely on several factors including the cultivation conditions: nutrient limitation resulted in 237 

decreased TPC previously (Goiris et al., 2015). Results obtained for antioxidant activity 238 

correlate well with those obtained for TPC. Both DPPH and FRAP values were affected by 239 

microalgae incorporation (p<0.05). The observed increase in antioxidant activity after 240 

incorporation of microalgae into the soup recipe was more evident when assessed using the 241 

DPPH assay. C1 and T1 showed a lower antioxidant capacity when compared to the control 242 

soup and when assessed using the FRAP assay (p<0.05). Although these differences were 243 
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relatively small, they can be attributed to a dilution of the broccoli polyphenols of the control 244 

soup after incorporation of the microalgae and the broccoli boiling water. Also, the antioxidant 245 

capacity of Chlorella sp. and Tetraselmis sp. was lower than that of Spirulina sp. when assessed 246 

using both the FRAP and DPPH assays (p<0.05). 247 

The known “French paradox” ignited the interest of food processors and scientists on plant 248 

polyphenols. However, in order to exert a health effect in vivo, food polyphenols must first be 249 

bioavailable. Bioaccessibility is one of the main factors limiting bioavailability and has been 250 

defined as the release of compounds from their natural food matrix to be available for intestinal 251 

absorption (Stahl et al., 2002). Figure 2 shows the amount of bioaccessible polyphenols after a 252 

simulated gastrointestinal digestion and the antioxidant capacity of the enzymatic digestive 253 

extracts. Overall, the TPC after the intestinal phase of digestion was higher for all the studied 254 

samples when compared to the initial stage – after a methanol:water extraction (p<0.05). 255 

Similar results were previously reported for cereals (Pérez-Jiménez & Saura-Calixto, 2005), 256 

pulses (Lafarga, Villaró, Bobo, Simó, & Aguiló‐Aguayo, 2019), and fruit (Chen et al., 2014). 257 

Higher microalgae concentrations resulted in higher amounts of bioaccessible polyphenols 258 

(p<0.05). It is thought that free and some conjugated phenolic compounds are available for 259 

absorption in the human small and large intestines. However, those bound covalently to large 260 

polysaccharides may be absorbed after being released from cells by digestive enzymes or 261 

microorganisms in the intestinal lumen (Wang, He, & Chen, 2014). It is possible that the strong 262 

pH variations suffered during the in vitro digestion, together with the activity of α-amylase, 263 

pepsin, and pancreatin (the pancreatin utilized contained enzymatic components including 264 

trypsin, lipase, ribonuclease, and proteases which allowed hydrolysing proteins, carbohydrates, 265 

and fats) facilitated the release of polyphenols from the interior of the plant or microalgae cells. 266 

The longer extraction time could also partially explain these findings. One of the main 267 

problems associated with the utilisation of microalgae as raw material for the isolation of 268 
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healthy compounds is the limited (mild) technological options and the high costs associated 269 

with the cell wall disruption and extraction steps. Results obtained herein could also promote 270 

the consumption of the whole microalgal biomass as they suggest that healthy compounds such 271 

as polyphenols can be bioavailable without a cell wall disruption step as they can be released 272 

during cooking and digestion. However, further studies are needed in order to prove this 273 

hypothesis. As mentioned previously, the methanol:water extracts of the soups formulated 274 

using Spirulina sp. showed a higher TPC (p<0.05). That difference in TPC for soups containing 275 

Spirulina sp. was not observed in the enzymatic digestive extracts obtained after a simulated 276 

digestion. Indeed, the content of bioaccessible polyphenols was not affected by microalgae 277 

specie. Results obtained for antioxidant capacity after a simulated gastrointestinal digestion 278 

compare well with those observed for TPC. As expected, the antioxidant capacity of the 279 

enzymatic digestive extracts after the intestinal phase of digestion was higher for all the studied 280 

samples when compared to the initial stage (p<0.05). This is probably caused by a higher 281 

content of polyphenols when compared to the extracts obtained after an extraction using 282 

methanol:water. Another reason could be that microalgae are protein-rich foods, and these 283 

proteins could have been hydrolysed during the simulated gastrointestinal digestion leading to 284 

the release of bioactive peptides with antioxidant activity (Ejike et al., 2017). Results reported 285 

in the current paper are consistent with previous studies that suggested that extractions using 286 

methanol or other organic solvents could be underestimating the actual antioxidant capacity of 287 

foods (Lafarga et al., 2019; Pérez-Jiménez & Saura-Calixto, 2005).  288 

3.4 Visual and sensorial analysis 289 

The analysis of variance revealed that the visual acceptance of the soups was significantly 290 

affected by microalgae concentration (p<0.001), specie (p<0.001), and the interaction of both 291 

factors (p<0.001). Visual and sensorial acceptance scores are listed in Table 3. Higher 292 

microalgae concentration resulted in reduced overall visual acceptance of the soups. However, 293 
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no differences were observed between the overall visual acceptance scores of the control soup 294 

(CK) and formulations T1, T2, T3, C1, and C2. Visual scores also depended on the specie 295 

incorporated into the broccoli soup formulation (p<0.001). As mentioned previously, colour 296 

attributes were significantly affected after incorporation of microalgae into the soup 297 

formulations (Table 2; p<0.05). It is widely accepted that colour of foods has a striking effect 298 

on consumers’ expectations (Spence, 2018). A positive correlation was observed between the 299 

L* value of the soups and visual acceptance (r2=0.6304; p<0.05) suggesting that the panellists 300 

preferred soups with lighter colours. In addition, visual acceptance was negatively correlated 301 

with a* values (r2=0.7338; p<0.05) which means that the greener the colour of the soup, the 302 

higher the visual acceptance score. Soups formulated using Spirulina sp, obtained the lowest 303 

visual acceptability scores, which ranged from 4.6 ± 0.3 to 6.0 ± 0.3 for S4 and S1, respectively. 304 

In turn, incorporation of Tetraselmis sp, at concentrations ranging from 0.5 to 1.5% (w/v) into 305 

the broccoli soups did not significantly affect its visual appearance: no differences were 306 

observed between the visual appearance scores of T1, T2, or T3 and the control (CK). This 307 

could be caused by the greener and lighter hue of the soups formulated using Tetraselmis sp. 308 

when compared to Spirulina sp. (Figure 1). 309 

Colour of foods can affect consumers’ flavour perception (Spence, 2018). Previous studies 310 

even demonstrated that colour of soups can modulate satiety and thermal sensation! (Suzuki et 311 

al., 2017). Therefore, in the current study, the flavour of foods was assessed under green 312 

lighting. Flavour scores are listed in Table 3. Flavour scores were significantly affected by 313 

microalgae concentration (p<0.001), specie (p<0.001), and the interaction of both factors 314 

(p<0.001). No differences were observed between the flavour of the control soup and 315 

formulations S1, T1, and T2, which suggest that incorporation of Spirulina sp. and Tetraselmis 316 

sp. at low concentrations do not negatively affect flavour. However, higher microalgae 317 

concentrations resulted in decreased flavour scores. Incorporation of Chlorella sp. into broccoli 318 
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soup, even at the lowest concentration studied in the current study, which was 0.5% (w/v), 319 

resulted in a negative effect on flavour (p<0.05). Chacón-Lee and González-Mariño (2010) 320 

reviewed the opportunities and challenges of microalgae utilisation in the food industry and 321 

suggested that incorporation of exotic-flavoured ingredients, such as Asian or Indian spices, 322 

together with the microalgae biomass would facilitate their incorporation into foods, especially 323 

for Western consumers. Other studies utilised sugar and butter to mask the flavour of 324 

microalgae in biscuits and obtained high flavour scores (Singh, Singh, Jha, Rasane, & Gautam, 325 

2015). This is important as unlike Japanese consumers, who consider functional foods a distinct 326 

food where the importance of their health benefits exceeds the importance of their sensory 327 

attributes, Western consumers do not seem to be willing to compromise taste for health 328 

(Grasso, Brunton, Lyng, Lalor, & Monahan, 2014).  329 

Results listed in Table 3 suggest that incorporation of microalgae did not significantly affect 330 

the texture of the soups, expect for a significantly lower texture score for S4 (p<0.05). Finally, 331 

the acceptability index of the soups ranged between 56.7-80.0, 47.8-73.3, and 58.9-82.2% for 332 

soups containing Spirulina sp., Chlorella sp., and Tetraselimis sp., respectively. For all the 333 

studied soups, the acceptability index was lower than that of the broccoli-only soup, which was 334 

calculated as 91.1% (p<0.05). The acceptability of the soups containing microalgae at lower 335 

concentrations was comparable to that of other products formulated using microalgae 336 

previously. Indeed, Lucas, Morais, Santos, & Costa (2018), recently reported an acceptability 337 

index of 82.2% for extruded snacks enriched in Spirulina. For a product to be accepted in terms 338 

of sensorial characteristics, it is necessary to achieve an acceptability index greater than 70% 339 

(Lucas et al., 2018). We can therefore expect that the manufactured microalgae-containing 340 

soups would have a good acceptance if commercialised. Indeed, when calculated as a 341 

percentage, the purchase intention of S1, C1, and T1 was 72.0, 68.0, and 82.0%, respectively. 342 

The purchase intention was significantly lower for soups containing microalgae at higher 343 
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concentrations as S4, C4, and T4 had a purchase intention ranging between 1 (certainly would 344 

not buy) and 2 (probably would not buy).  345 
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4. Conclusions 346 

Results suggest that when incorporated at concentrations ranging from 0.5 to 1.0% (w/v), 347 

microalgae can be used as an innovative ingredient in the manufacture of microalgae-enriched 348 

broccoli soup. However, when microalgae biomass was incorporated into the broccoli soup at 349 

higher concentrations, flavour and overall acceptability scores were low, especially for soups 350 

formulated using Chlorella sp. Sensorial analysis also suggested that consumers preferred 351 

soups with a lighter and greener hue. Results suggested that when formulated correctly, 352 

microalgae-containing foods show good consumer acceptance and this would allow increasing 353 

the utilisation of this valuable and underused ingredient. Moreover, microalgae-containing 354 

soups had higher phenolic content and antioxidant activity when compared to the control 355 

broccoli soups. The amount of bioaccessible polyphenols as well as the antioxidant capacity of 356 

the digestive enzymatic extracts was also higher in the microalgae-containing soups when 357 

compared to the controls suggesting healthier products. Results reported herein would open 358 

novel commercial opportunities for the utilization of microalgae as an ingredient in vegetables 359 

soups allowing not only to differentiate by using a “trendy” ingredient but also to promote 360 

health. Further studies will assess which compounds were responsible for the observed increase 361 

in antioxidant activity as well as the effect of thermal processing and/or high pressure 362 

processing on the health-promoting compounds found in the soup.  363 
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Table 1. Composition of the broccoli soups containing microalgae  482 

 Boiled broccoli 

(g) 

Broccoli boiling 

water (g)* 

Olive oil (g) Salt (g)** Freeze-dried 

microalgae (g) 

CK: Control 47,8 44,7 7 0,50 0,0 

S1: Spirulina sp. 0.5% (w/w) 47,2 44,8 7 0,50 0,5 

S2: Spirulina sp. 1.0% (w/w) 46,6 44,9 7 0,50 1,0 

S3: Spirulina sp. 1.5% (w/w) 46,0 45,0 7 0,50 1,5 

S4: Spirulina sp. 2.0% (w/w) 45,4 45,1 7 0,50 2,0 

C1: Chlorella sp. 0.5% (w/w) 47,2 44,8 7 0,50 0,5 

C2: Chlorella sp. 1.0% (w/w) 46,6 44,9 7 0,50 1,0 

C3: Chlorella sp. 1.5% (w/w) 46,0 45,0 7 0,50 1,5 

C4: Chlorella sp. 2.0% (w/w) 45,4 45,1 7 0,50 2,0 

T1: Tetraselmis sp. 0.5% (w/w) 47,2 44,8 7 0,38 0,5 

T2: Tetraselmis sp. 1.0% (w/w) 46,6 44,9 7 0,35 1,0 

T3: Tetraselmis sp. 1.5% (w/w) 46,0 45,0 7 0,33 1,5 

T4: Tetraselmis sp. 2.0% (w/w) 45,4 45,1 7 0,30 2,0 

* The amount of water used in different formulations varied to achieve a comparable water content in each formulation: 87.7 ± 0.8% 483 

**Salt content of soups formulated using Tetraselmis sp. had to be re-adjusted because of the salty taste of the microalgal biomass. 484 

  485 
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Table 2. Physicochemical properties of the manufactured microalgae-containing soups 486 

Sample L* a* b* Ch pH Viscosity (Pa.s) 

CK 61,6 ± 0,6 A -12,7 ± 0,2 I 25,5 ± 0,4 A 28,5 ± 0,4 A 6.73 ± 0.04 E 2,93 ± 0,06 F 

S1 44,4 ± 0,5 C -10,7 ± 0,1 F 7,6 ± 0,1 G 13,1 ± 0,0 G 6.52 ± 0.01 G 3,07 ± 0,04 E 

S2 39,0 ± 0,1 F -8,0 ± 0,1 D 3,4 ± 0,1 H 8,7 ± 0,1 H 6.46 ± 0.01 H 3,15 ± 0,06 DE 

S3 36,5 ± 0,1 G  -6,4 ± 0,1 B 1,5 ± 0,2 I 6,6 ± 0,1 I 6.63 ± 0.01 F 3,24 ± 0,08 C 

S4 33,9 ± 0,2 H  -4,5 ± 0,2 A  0,5 ± 0,2 J 4,6 ± 0,3 J 6.37 ± 0.03 I 3,33 ± 0,16 AB 

C1 47,7 ± 0,2 B  -10,9 ± 0,1 F 18,4 ± 0,3 D 21,4 ± 0,3 D 6.73 ± 0.03 E 3,02 ± 0,05 EF 

C2 42,9 ± 0,1 D -9,7 ± 0,2 E 15,4 ± 0,4 E 18,2 ± 0,5 E 6.63 ± 0.04 F 3,24 ± 0,06 C 

C3 37,6 ± 0,3 G  -7,7 ± 0,1 C 12,0 ± 0,2 F 14,3 ± 0,2 F 6.63 ± 0.01 F 3,38 ± 0,03 B 

C4 39,2 ± 0,2 F -8,1 ± 0,2 D 12,6 ± 0,4 F 15,0 ± 0,4 F 6.56 ± 0.05 FG  3,56 ± 0,06 A 

T1 48,9 ± 0,9 B -15,8 ± 0,3 H 23,0 ± 0,4 B 27,8 ± 0,6 A 6.83 ± 0.04 D 3,03 ± 0,03 EF 

T2 43,7 ± 0,6 CD  -15,3 ± 0,1 H 20,4 ± 0,2 C 25,5 ± 0,2 B 7.07 ± 0.02 C 3,15 ± 0,01 D 

T3 40,6 ± 0,1 E -14,4 ± 0,3 G 18,1 ± 0,1 D 23,2 ± 0,2 C 7.13 ± 0.02 B 3,25 ± 0,07 C 

T4 37,0 ± 1,1 G  -12,7 ± 0,0 I 15,7 ± 0,1 E 20,1 ± 0,1 D 7.20 ± 0.03 A 3,29 ± 0,01 BC 

Composition of the soups is listed in Table 1. Values represent the mean of three independent measurements ± S.D. Different letters in the same 487 

column indicate significant differences. The criterion for statistical significance was p<0.05.  488 
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Table 3. Visual and sensorial analysis of the microalgae-enriched broccoli soups 489 

Sample Visual appearance 

score 

Flavour score* Texture score Overall acceptance 

score 

Acceptability index 

(%) 

Purchase intention** 

CK 7.8 ± 0.2 A 8.2 ± 0.1 D 7.9 ± 0.2 ABD 8.2 ± 0.1 B 91.1 4.6 ± 0.1 E 

S1 6.0 ± 0.3 BCDE 7.5 ± 0.3 BD  8.2 ± 0.1 A 7.2 ± 0.2 ABF 80.0 3.6 ± 0.1 AB 

S2 5.6 ± 0.3 CDE 6.6 ± 0.2 ABE 8.1 ± 0.2 AD 6.7 ± 0.2 ABEF 74.4 3.2 ± 0.2 ABF 

S3 5.0 ± 0.3 DE 5.9 ± 0.3 ACEF 7.8 ± 0.2 ABD 5.7 ± 0.3 ACDE 63.3 2.9 ± 0.2 ACF 

S4 4.6 ± 0.3 E 5.4 ± 0.2 ACF 6.6 ± 0.2 C 5.1 ± 0.3 CDE 56.7 1.7 ± 0.1 D 

C1 7.2 ± 0.3 AB 6.6 ± 0.3 ABE 8.2 ± 0.1 A  6.6 ± 0.3 ABEF 73.3 3.4 ± 0.2 ABF 

C2 6.6 ± 0.3 ABC 5.8 ± 0.2 ACEF 7.9 ± 0.1 ABD 6.1 ± 0.2 ACEF 67.8 2.8 ± 0.2 ACF 

C3 6.3 ± 0.2 BCD 5.0 ± 0.4 CF 7.3 ± 0.3 ABCD 4.9 ± 0.5 CD 54.4 2.1 ± 0.2 CD 

C4 6.0 ± 0.3 BCDE 4.6 ± 0.3 C 6.9 ± 0.2 BC 4.3 ± 0.4 D 47.8 1.5 ± 0.1 D 

T1 7.8 ± 0.2 A 7.3 ± 0.2 BD 8.1 ± 0.1 AD 7.4 ± 0.2 BF 82.2 4.1 ± 0.1 BE 

T2 7.2 ± 0.2 AB 6.9 ± 0.2 BDE 8.0 ± 0.1 ABD 7.0 ± 0.2 ABF 77.8 3.5 ± 0.2 AB 

T3 7.1 ± 0.2 AB 6.2 ± 0.2 ABEF 7.1 ± 0.2 BCD 6.1 ± 0.2 ACEF 67.8 2.4 ± 0.2 CDF 

T4 6.1 ± 0.2 BCD 6.1 ± 0.2 ABEF 6.9 ± 0.2 BC 5.3 ± 0.4 CDE 58.9 2.0 ± 0.2 CD 

Composition of the soups is listed in Table 1. * Flavour was assessed under green lighting conditions to mask the colour of the soups. ** 490 

Purchase intention was assessed using a 5-point hedonic scale. Values represent mean ± SEM (n=30). Different letters in the same column 491 

indicate significant differences between samples. The criterion for statistical significance was p<0.05. 492 
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Figure legends 493 

Figure 1. Visual appearance of the soups 494 

CK: Control broccoli soup. S1-S4: Broccoli soups enriched in Spirulina sp. at concentrations 495 

ranging from 0.5 to 2.0% (w/w). C1-C4: Broccoli soups enriched in Chlorella sp. at 496 

concentrations ranging from 0.5 to 2.0% (w/w). T1-T4: Broccoli soups enriched in Tetraselmis 497 

sp. at concentrations ranging from 0.5 to 2.0% (w/w). 498 

 499 

Figure 2. (A) Total phenolic content and antioxidant activity assessed using the (B) FRAP 500 

and (C) DPPH· assays of the control and microalgae-containing broccoli soups 501 

Values represent mean values ± S.D. of three independent determinations. Different capital 502 

letters indicate differences in either TPC or antioxidant activity of extracts obtained after a 503 

methanol:water extraction. Different lower case letters indicate significant differences between 504 

TPC or antioxidant activities of enzymatic digestive extracts obtained after a simulated 505 

gastrointestinal digestion. The criterion for statistical significance was p<0.05. (Legend: █ after 506 

methanol:water extraction and █ after in vitro gastrointestinal digestion).  507 
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