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ABSTRACT 

This work aims to compare different nonlinear functions to describe the growth curve of 

European quails and to estimate growth curve parameters, (co)variance components and 

genetic and systematic effects that affected the curve using a hierarchical Bayesian model 

that allows joint estimation. Three different models were fitted in the first stage 

(Gompertz, Logístic and von Bertalanffy). The analyzed data set had 45,965 records of 

6,838 meat quails selected by higher body weight at 42 d of age for 15 successive 

generations, weighed at birth, 7, 14, 21, 28, 35 and 42 d of age. Comparisons of the overall 

goodness of fit were based on deviance information criterion (DIC) and mean square error 

(MSE). Gelfand's check function compared the models at different points of the growth 

curve. In the second stage, the systematic (sex and generation) and genetic effects were 

considered in an animal model. Random samples of the a posteriori distributions were 

obtained by Metropolis-Hastings and Gibbs sampling algorithms. The Gompertz function 

presented lower DIC and better adjustment at different ages and was defined as the best 

fit. The heritabilities of A, b and k parameters were moderate (0.32, 0.29 and 0.18 

respectively). The genetics correlations were: A and b (0.25), A and k (-0.50) and b and k 

(0.03). The samples of the posterior marginal distributions for the differences between 

the estimates of the parameters of the Gompertz model, for generation, A, b, k, age at 

inflexion point (APOI) and weight at inflexion point (WPOI) showed differences in 

relation to sex, the females are heavier, A, WPOI and APOI for females was also higher. 

Concluding that the selection by 15 generations altered the growth curve, leaving the 

quails heavier and with greater weight and age at the point of inflection of the curve, 

decreased precocity and increased the birth weight. The curve parameters could be used 

in a selection index, despite the difficulty in selecting quails with higher rate of growth 

and body weight. 
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INTRODUCTION 

 

The growth curves can describe the growth process in terms of few parameters 

with biological interpretation (Varona et al., 1999; Blasco et al., 2003), and the biological 

interpretability includes ability to rank correctly individuals or populations for important 

biological characteristics, which are required in selection programs mainly for growth 

rate, maturing rate or mature size (Fitzhugh, Jr., 1976).  

The nonlinear models have been developed in order to correlate the weight-age 

data (Garnero et al., 2005) and have been found to be adequate to describe growth curves 

of several animals (Garnero et al., 2005; Mazzini et al., 2005). In poultry, the most widely 

used growth funtions are Gompertz, Logistic, and von Bertalanffy models with three 

parameters (Braccini et al., 1996; Akbaz and Oguz, 1998; Narinç et al., 2017). The 

biological meaning of the parameters are: A is the adult weight or theoretical maximum 

weight, b is parameter of scale, degree of maturation at birth and k is growth measure, 

influences the rate of growth or the rate of gain.  

Specifically in quail, Du Preez and Sales (1997) used the Gompertz function to 

describe the growth of the European quail and to quantify differences between males and 

females in growth parameters and some indexes derived from them; Akbas and Oguz 

(1998) compared three nonlinear growth functions (Gompertz, von Bertalanffy and 

Logistic) in terms of goodness of fit to Japanese quail data and also estimated genetic and 

environmental effects on growth curve parameters, in this case the Gompertz function 

showed the best performance. Sezer and Tarhan (2005) compared the growth 

characteristics and growth curve parameters of three meat-type lines of Japanese quail 



using the Richards function. However, Drummod et al. (2013) comparing the Brody, von 

Bertalanffy, Gompertz, Logistic and Richards functions found that only Richards could 

be considered not adequate to model growth in meat quails.  

The traditional method for estimating genetic parameters of growth curves 

consists of two steps: in the first step, the parameters are estimate for each animal; in a 

second step, the genetic and environmental effects that act on these parameters are 

predicted and variance components estimated. Thus, the error of adjustment of the first 

step is not taken into account in the estimation of the (co)variance components and in the 

prediction of the genetic values. In addition, animals with few records cannot be included 

in the analysis because of problems of convergence of the iterative process to estimate 

the growth curve parameters (Forni et al., 2007). 

Varona et al. (1997) proposed an alternative method, where a Bayesian 

hierarchical model was implemented to jointly estimate the parameters of the growth 

curves and their (co)variance components.  The estimation procedure uses individual 

records and information from relatives and from animals that were under the same 

systematic effects. The parameters can be estimated with greater accuracy and adjustment 

errors are considered in the estimation of (co)variance components. The hierarchical 

model allows the prediction of differences between levels of systematic effects on curve 

parameters, thus making it possible to quantify differences between sexes or selected 

generations.  

The objective of this work was to use the bayesian hierarchical  methodology to 

compare different nonlinear functions, estimating jointly the posterior distribution of 

growth curve parameters, (co)variance components, and genetic and environmental 

effects in European quail. 

 



MATERIALS AND METHODS 

 

Animals and Data 

Data come from meat quails of both sexes selected for body weight at 42 d of age 

from year 2007 to 2014, distributed in 15 generations were used. Animals belonged to the 

breeding program of the Federal University of Pelotas, Department of Animal Science, 

Faculty of Agronomy Eliseu Maciel, located in Capão do Leão, Rio Grande do Sul state, 

Brazil.  

Animals were reared in the Laboratory of Zootechnical Teaching and 

Experimentation Professor Renato Peixoto (LEEZO). Quails were housed in rice husks 

bed until 42 d of age, receiving water and food "ad libitum".  The starter diet (1 to 21 d) 

contained 25% CP and 2,900 kcal/kg of ME and grower diet (22 to 35 d) the diet contained 

20% CP and 3,050 kcal/kg of ME. Daily lighting was 16 h during all period. At 21 d of 

age, they were sexed and, at 42 d, they were housed individually in cages. Quails were 

weighed once a week after hatching until they were 42 d old. After the beginning of the 

posture, the 120-130 heaviest females and the 60-70 heaviest males were mated in the 

proportion of one male to two females (except at first generation, where 160 females and 

110 males were selected), for a period of 13 d. The hatching eggs were identified by the 

female number and collected. The incubation period was 18 d, and at birth the quail was 

identified with a number in the leg. In preliminary analysis outliers were removed, 2% of 

data. For each age in weeks and generation, body weight records outside the interval 

defined by Q1-1.5 * (Q3-Q1) and Q3 + 1.5 * (Q3 -Q1), with Q1 being equal to the first 

quartile and Q3 being equal to the third quartile, were removed. The final data set 

contained 45,965 weights of 6,838 birds and the relationship matrix was constructed with 



information from 15 generations of selection plus the base population, i.e.  a total of 7,118 

birds (Table 1). 

 

Models 

A Bayesian analysis was performed by using the hierarchical model described by 

Varona et al. (1997), Blasco et al. (2003) and Forni et al. (2007). The individual growth 

trajectories were described by a nonlinear function and it was assumed that each 

parameter had genetic and environmental components described in a mixed linear model.  

In the first stage of the hierarchy, three different nonlinear models were tested to 

verify which was the one that best described the average growth curve of the birds. The 

evaluated growth functions were: Gompertz, 𝑌𝑖𝑗 = 𝐴𝑖𝑒−𝑏𝑖𝑒
−𝑘𝑖𝑡𝑖𝑗 

+ Ɛ𝑖𝑗 (Laird, 1965); 

Logístic, 𝑌𝑖𝑗 = 𝐴𝑖(1 − 𝑏𝑖𝑒
−𝑘𝑖𝑡𝑖𝑗)−1 + Ɛ𝑖𝑗 (Nelder, 1961); and von Bertalanffy, 𝑌𝑖𝑗 =

𝐴𝑖(1 − 𝑏𝑖𝑒
−𝑘𝑖𝑡𝑖𝑗)

3
+ Ɛ𝑖𝑗 (von Bertalanffy, 1957), where Yij is the body weight of animal 

ith at age jth; Ai, the asymptotic weight of animal ith when t tends to infinity, that is, this 

parameter is interpreted as body weight at adulthood; bi is an integration constant related 

to the initial weights of the bird ith, with no direct biological interpretation. The value of 

b is established by the initial values of Y and t; ki is interpreted as the maturation rate, 

which should be understood as the change of weight in relation to weight at maturity, that 

is, as an indicator of the speed with which the animal ith approaches its adult size; Ɛij is 

the associated random error of animal ith at each weighing time jth, considered to be 

independent between individuals and normally distributed. Residual standard deviation 

was considered to be constant throughout the growth trajectory. 

In the second stage of the hierarchical model the following three-trait animal 

model described the genetic and environmental effects on parameters of the growth 

functions: 



𝜽 = 𝑿𝜷 + 𝐙𝐮 + 𝐞, 

where, θ is a vector with the parameters A, b and k for all individuals; 𝜷 is the vector of 

systematic effects (sex and generation); u is the vector of additive genetic effects; 𝑿 and 

𝒁 are the corresponding incidence matrices linking growth function parameters to 

systematic and additive genetic effects, respectively. Thus, 

𝑓(𝑨, 𝒃, 𝒌 | 𝒖𝐴, 𝒖𝑏 , 𝒖𝑘, 𝜷𝐴, 𝜷𝑏 , 𝜷𝑘, 𝑹, 𝑮 ) = 𝑁 [

𝑿𝜷𝐴 + 𝐙𝐮𝐴

𝑿𝜷𝑏 + 𝐙𝐮𝑏

𝑿𝜷𝒌 + 𝐙𝐮𝑘

, 𝑹 ⊗ 𝑰𝑁] 

where, 𝒖𝐴, 𝒖𝑏 , 𝒖𝑘 are the vectors of breeding values for all the animals in the pedigree for 

parameters A, b and k, respectively. 𝜷𝐴, 𝜷𝑏 , 𝜷𝑘 are the vectors of systematic effects for 

parameters A, b and k, respectively.  𝑰 is an identity matrix and 𝑵 is the number of animals 

with data. R and G are the 3 x 3 matrices of systematic and genetic (co)variance 

components for the growth curve parameters. X and Z are the common to all parameters 

incidence matrices linking A, b and k with the systematic and genetic effects, respectively. 

The residual effects were considered independent between individuals and normally 

distributed. The residual covariance between parameters of the same individual was 

considered differ from zero. 

The prior distribution for additive genetic effects followed a multivariate normal 

distribution.  

𝑓(𝒖𝐴, 𝒖𝑏 , 𝒖𝑘|𝑮) = 𝑁(𝟎, 𝑨⨂𝑮), where A is the relationship matrix. 

Prior distributions of 𝜎𝜀
2, and elements of R and G were considered to be uniform. 

 

Statistical analysis 

The marginal posterior distributions of the variables of interest were approximated 

using the Gibbs sampler algorithm. Conditional distributions of the model parameters can 

be found in Blasco et al. (2003). In addition, marginal posterior distributions of age at 



inflexion point (APOI) and weight at inflexion point (WPOI) were computed from 

samples of the growth function parameters according to the expressions showed in Table 

2. 

Single chains of 100,000 iterations were run for all the analyses. The first 10,000 

iterations of each chain were discarded, and samples of the parameters of interest were 

saved every 10 iterations. The number of discarded samples was, in all cases, much larger 

than the required burn-in determined by Raftery and Lewis (1992) and Geweke (1992) 

procedures. The sampling variance of the chains was obtained by computing Monte Carlo 

standard errors (Geyer, 1992). The "boa" package of R was used to assess convergence 

and to estimate summary statistics of marginal posterior distributions. 

The samples from marginal posterior distributions for the differences between the 

parameters estimates A, b, k, APOI and WPOI for sex (male and female) and for 

generation (first and last) were obtained with the intention to verify statistical significance 

by HPD (high posterior density interval at a 95% probability). If the zero value is 

contained within this range, it is concluded that the parameters of the two populations 

involved in the contrast are statistically the same. 

 

Goodness of fit 

The overall goodness of fit was checked by computing the mean square error 

(MSE) and the deviance information criterion (DIC) proposed by Spiegelhalter et al. 

(2002). Models with a smaller DIC should be favored since indicate a better fit and a 

smaller degree of complexity. More details can be found in Forni et al. (2009). 

The goodness of fit at different points of the growth trajectory was evaluated as it 

is described by Blasco et al. (2003). A predictive density was estimated for each record. 

The observed values (yr) were compared with their prediction (Yr) obtained by using all 



other records. If the model is adequate, the yr is a sample from its predictive distribution. 

We applied the checking functions proposed by Gelman et al (1992) to assess the 

probability of a Yr being lower than the observed one. When the Yr is lower than that 

observed one (yr), a checking g function is equal to one unit, when the Yr is greater than 

or equal to the yr, g is zero. 

g = 1 if  Yr <yr; 

g = 0 if  Yr ≥ yr; 

The average of these expectations at each point of the longitudinal trajectory 

shows the goodness of fit in different parts of it. If the model fits the data correctly, 

E(g|y−r) should be close to 0.5, so an overall fit quality criterion is the average of these 

expectations for all individuals at each point of the growth curve. A graph with these 

averages computed at each time of the longitudinal trajectory shows whether the fit is 

good along the curve, or if there are parts of the curve that fit better than others. This 

technique has the advantage of being free of scale effect. The expectation of the checking 

function E(g|y−r) is calculated using Monte Carlo Markov Chain (MCMC) method (see 

Forni et al. 2009 for a detailed description of the algorithm). 

 

RESULTS AND DISCUSSION 

 

The Bayesian procedure applied here, based on a hierarchical mixed model, 

provide estimates of the growth curve parameters for each animal taking into account 

individual information and information from relatives and other animals affected by the 

same systematic effects. Thus, the chance of having incorrect parameters estimates due 

to a lack of individual information is minimized (Varona et al., 1997). In addition, growth 

parameters are estimated taking into account the uncertainty on variance components and 



systematic and random effects of the model, unlike the two-step procedure (Denise and 

Brinks, 1985).  

No lack of convergence was detected for any chain by visual inspection of sample 

trace plots, indicating that sampling processes were appropriate. As expected, 

heritabilities and genetic correlations showed the highest correlation between consecutive 

samples. However, the Monte Carlo standard error (MCse) was still low (lower than 12% 

of the posterior mean). The MCse is the error produced by the size of the sample and the 

lower its value, the better the algorithm performance to approximate the exact response, 

a larger sample size equals the lower MCse (Blasco, 2017). 

Overall goodness of fit was evaluated for comparing models using the deviance 

information criterion (DIC) proposed by Spiegelhalter et al. (2002). A smaller DIC value 

indicates a better fit and a smaller degree of complexity. The Gompertz growth function 

was the one that lead to a smaller DIC value followed by Logistic and von Bertalanffy 

models, respectively (Table 3). On the other hand, the smallest MSE value was obtained 

with the von Bertalanffy function and the biggest with the Gompertz function. The MSE 

can strongly depend on the fitting at the last part of the trajectory due to scale effects. 

However, looking at the goodness of fit at different points of the longitudinal trajectory 

using the check function proposed by Gelfand et al. (1992), we observed that the 

probability of a predicted value being bigger or smaller than the observed values was 

smaller for the Gompertz and the von Bertalanffy growth functions than for the Logistic 

model.  

The mean of the expected check function proposed by Gelfand et al. (1992) was 

computed at each point of the longitudinal trajectory (i.e. at each time point). The closer 

the mean in each point is to 0.5 the better the fit. Values over 0.5 indicate a greater 

probability of having predictions smaller than the observed values whereas values under 



0.5 indicate a greater probability of obtaining predictions bigger than the true record. 

According to our results (Figure 1), none of the models overestimated the initial weights. 

The Logistic model underestimated the initial weight and also at seven and 28 d of age, 

overestimating at 14, 21 and 42 d of age. The von Bertalanffy model underestimated or 

overestimated to a lesser extent at all ages when it was compared to the Logistic model, 

but did not generally achieve better fit than Gompertz function, which showed the best fit 

at any time of the trajectory.  

The results of analysis indicated que Gompertz model is the most appropriate to 

describe growth pattern in this population of meat quails. This result is in agreement with 

those reported by other authors using different methodologies such as: Akbas and Oguz 

(1998) using the generalized least squares, Rossi and Santos (2014) adopting a Bayesian 

procedure with skew-normal errors for female and skew-t for males, Nari̇nç et al. (2010) 

with the NLIN procedure of SAS software and Firat et al. (2016) with a two-step Bayesian 

procedure. However, it disagrees with results obtained by Shoukry et al. (2015) and 

Kaplan and Gurcan (2016) with using NLIN procedure of SAS software. Therefore, 

results regarding mean values of growth function parameters, variance components and 

heritabilities refer only to the ones obtained with the Gompertz growth function.  

The Table 4 shows means, standard deviations and Monte Carlo standard error of 

the marginal posterior distributions of parameters of each growth function for all animals 

with records. The MCse values were around or lower than 1% of the posterior mean. They 

are larger values than those obtained by Firat et al. (2016). However, those authors used 

a two-step Bayesian procedure instead of a hierarchical Bayesian model, ignoring 

uncertainty on estimates of growth curve parameters when they estimate variance 

components and systematic and random effects of the model. Estimates of A, b and k were 

close to those reported by Drumond et al. (2013) in meat quail, which were estimated by 



Gauss Newton algorithm using the NLIN procedure of SAS. More work was done with 

nonlinear modeling of Japanese quails (Akbas and Oguz, 1998; Nari̇nç et al., 2010; Rossi 

and Santos, 2014; Shoukry et al., 2015). However, none of these studies had such a high 

number of individuals and records than here. 

When comparing the estimates of the growth function parameters with the ones 

reported in other studies carried out in quail, it can be observed that the values of A, b and 

k show the same trends. Despite the letter used to represent the parameters of the different 

growth functions are the same, they do not have the same biological meaning. The A 

parameter is the only parameter comparable across models. It represents the asymptotic 

body weight and presented highest value in von Bertalanffy followed by Gompertz and 

finally Logistic function. (Akbas and Oguz, 1998; Nari̇nç et al., 2010; Drumond et al., 

2013; Shoukry et al., 2015; Firat et al., 2016; Kaplan and Gurcan, 2016).  

Our line of quails has been selected for body weight at 42 d of age for 15 

generations. It is not possible to assess the correlated response to selection in the 

parameters of the growth function (i.e. the effect of selection on the growth pattern) 

because the systematic effect of batch is completely confounded with the genetic effects 

in each generation (there was just one batch per generation) and we do not have an 

unselected control population. Therefore, in Figure 2 we show the mean of the phenotypic 

values of males and females at each generation to show the evolution over time of growth 

curve parameters which is due to genetic and environmental effects. The estimated A, 

APOI and WPOI have increased mainly in the generations 13 and 14 of selection, whereas 

the k has decreased in both males and females (Figure 2). Blasco et al. (2003) and Piles 

et al. (2008) using the same methodology to estimate phenotypic and genetic parameters 

of the Gompertz function reported that, as a consequence the selection for growth rate at 



fattening, there was an increase in the asymptotic weight but no change in b and k 

parameters in their rabbit population.  

The results concerning the significance of the contrasts related to the comparison 

of the first and last generation for the parameters A, b, k, APOI and WPOI were showed 

at Table 5. These results were obtained by inference in the samples of the marginal 

distribution a posteriori of each parameter. All HPD for the differences between the 

parameters of the first and last generations did not contain zero, thus confirming that there 

were differences in the values for A, b, k, WPOI and APOI related to generation. The 

quails in the last generation were 17% heavier for A and WPOI, k was 15.9% lower, APOI 

was 12.6% higher and b was 7.8% lower than in first generation. 

In the case of quails, females are heavier than males (Akbas and Oguz, 1998). This 

result was also observed in our work (Figure 2). It can be observed that for the parameters 

that the females presented greater values than the males (A, APOI and WPOI), the results 

presented in Table 5 for the contrasts by sex effect were significant. Thus, the females are 

heavier adult and at inflexion point, and reach the age at the inflection point after males. 

For k and b the results not showed difference by sex. 

In Japanese quails for age at the inflexion point, Akbas and Oguz (1998) found 

18.74 and 21.22 d of age for males and females respectively, and Raji et al. (2014) 

reported age at the inflexion point of 17.36 d for males and 20.37 d for females, both 

authors using the Gompertz function. Aggrey (2009) applying the Logistic model with 

nonlinear mixed effects in Japanese quail showed age at the inflexion point for females 

of 22.26 d and for males of 17.5 d. For age at the inflexion point, the values were similar 

to the mean of the results found here, however for the weight at the inflexion point the 

results in this study were greater than of other researches cited, that ranged of 48.82 g to 



89.90 g. These results are expected due the difference between meat quails and Japanese 

quails and also differences selected populations by different criteria.  

The heritabilities of the growth function parameters were moderate (Table 6), 

indicating that one can expect to obtain some response to selection based on parameters 

A, b and k of the growth curve, even if slow and limited. The highest heritability was for 

the A (0.32) and the lowest for the k parameter (0.18). Our estimates are similar from the 

ones reported by Akbas and Oguz (1998) also in quails, but the standard errors of the 

heritabilities estimates in that study were quite high.  

Using the same methodology of our study, Mignon-Grasteau et al. (2000) obtained 

higher values of heritability in chickens than those found here (0.54, 0.43 and 0.60 for 

adult weight, degree of maturation at birth and maturity rate, respectively) for meat quails. 

In a previous analysis of the same data set, Mignon-Grasteau et al. (1999) obtained 

slightly lower heritability values using REML methodology. Authors attributed those 

differences in heritabilities to differences between models (including or not maternal 

effects) and methodology (using or not information from relatives). 

Genetic correlation between A and b parameters was low and positive (0.25), it 

was null between b and k parameters (0.03), and moderate to high and negative between 

A and k parameters (-0.50) (Table 7). Mignon-Grasteau et al. (2000) also obtained a 

moderate and negative genetic correlation between A and k parameters of the Gompertz 

function in chickens. They explain that a high and negative correlation can be expected 

between A and k parameters due to a rapid decrease in growth rate after inflection point, 

resulting in a lower asymptotic body weight. Santoro et al. (2005) indicated that the 

expected genetic correlation between asymptotic weight and maturity rate would be 

negative, since heavier animals would tend to have a lower maturation rate than lighter 

animals. Mignon-Grasteau et al. (2000) also found a positive genetic correlation between 



A and b parameters but it was much higher than the one observed in our study (0.75). In 

addition, unlike our results, they found a moderate and negative genetic correlation 

between b and k parameters (-0.40).  

Phenotypic correlations were low and positive between A and b parameters and 

between b and k parameters but high and negative between A and k parameters (Table 7). 

Those results differ from the ones obtained by Akbas and Oguz (1998) in Japanese quails 

who found a very high and positive correlation between b and k parameters (0.99), and 

low and negative correlation between A and b (-0.16). However, the phenotypic 

correlation between b and k was high and negative (-0.63) as in our study. The phenotypic 

correlations between Gompertz function parameters estimated by Drumond et al. (2013) 

in meat quails were high and negative between A and b (-0.60) and between A and k (-

0.95), whereas it was high and positive between b and k (0.78).  

In conclusion, Gompetz growth function is adequate to establish mean growth 

patterns in our population of meat quails. The parameter A, and consequently APOI and 

WPOI have increased over time from the first generation of selection, whereas k has 

decreased. The heritability of growth curve parameters is moderate, therefore selection 

for one or more of them in an index could be feasible. However, because of the negative 

and moderate to high genetic correlation between A and k it could be difficult or not 

possible to obtain animals with high (k) growth rate without decreasing (A) adult weight. 
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Table 1. Summary of weights data of European quail per generation 

Generation No. of records No. of animals No. of sires No. of dams 

1 3,628 535 109 151 

2 4,000 587 57 94 

3 5,832 870 70 129 

4 2,439 367 58 86 

5 3,941 586 38 63 

6 1,686 251 47 61 

7 3,621 535 44 70 

8 1,952 293 61 92 

9 2,310 337 52 82 

10 2,052 311 54 86 

11 3,417 500 67 96 

12 2,463 374 52 79 

13 2,868 428 51 83 

14 3,256 494 61 94 

15 2,500 370 51 79 

Totals 45,965 6,838 872 1,345 

 

  



Table 2. Age (APOI) and weight (WPOI) at inflexion point in Gompertz, Logistic and 

von Bertalanffy functions 

Growth functions APOI WPOI 

Gompertz ln(b)/k A/e 

Logistic -ln(1/b)/k A/2 

von Bertalanfy ln(3b)/k 8A/27 

 

  



Table 3. Goodness of fit of growth function of European quails 

  

Growth functions DIC MSE E(g|y_r) 

Gompertz 342496.00 1.99 0.495 

Logistic 356754.10 1.74 0.457 

von Bertalanffy 386464.70 0.53 0.494 



Table 4. Estimating growth curve parameters for meat quails 

Growth function Trait Mean SD1 MCse2 

Gompertz A 361.29 61.12 5.41 

 
b 3.86 0.22 0.02 

 
k 0.073 0.011 0.001 

     

Logistic A 309.89 41.29 3.39 

 
b 17.34 1.83 0.22 

 
k 0.130 0.013 0.001 

     

von Bertalanffy A 450.48 88.12 10.6 

 
b 0.76 0.021 0.002 

 
k 0.044 0.008 0.001 

1SD = posterior standard deviation. 

2MCse = Monte Carlo SE. 

 

  



Table 5. Mean of the systemic effects of parameters A, b, k, APOI and WPOI, high 

posterior density interval at a 95% probability (HPD) and Monte Carlo SE 

(MCse) 

1A = asymptotic weight of animal; b = degree of maturation at birth; k = maturation rate; APOI = age at 

inflexion point; WPOI = weight at inflexion point. 

2Sex effect = mean of male (A, b, k, APOI and WPOI) - mean of female (A, b, k, APOI and WPOI). 

3Generation effect = mean of first (A, b, k, APOI and WPOI) - mean of last (A, b, k, APOI and WPOI). 

 

  

Trait1 

Sex effect2 

Trait 

Generation effect3 

Mean HPD MCse Mean HPD MCse 

A -15,73 -18.55; -12.91 0.01 A 

50.30 29.33; 

70.64 

0.60 

b -0.019 -0.041; 0.0024 0.00008 b 

-0.32 -0.42; -

0.20 

0.002 

k 0.00061 -0.00006; 0.0013 0.000003 k 

-

0.013 

-0.017; -

0.009 

0.0001 

APOI -0.24 -0.39; -0.09 0.004 WPOI 

18.50 10.79; 

25.99 

0.22 

WPOI -5.78 -6.82; -4.74 0.0006 APOI 2.18 1.22; 3.17 0.03 



Table 6. Marginal posterior distributions of variance components of Gompertz growth 

curve parameters for meat quails 

 Genetic variance  Phenotypic variance 

Trait

1 

Mean HPD2 MCse3 

Trai

t 

Mean HPD MCse 

A 875.5 663.8; 1100.1 4.8 A 2685.1 2529.8; 2838.6 1.9 

b 0.011 0.007; 0.016 0.00006 b 0.038 0.039; 0.042 0.00004 

k 

0.0000

2 

0.00001; 

0.00003 

0.0000001 k 

0.0001

1 

0.00010; 

0.00012 

0.0000000

4 

 Residual variance  Heritability 

Trait Mean HPD MCse 

Trai

t 

Mean HPD MCse 

A 1809.7 1640.8; 1981.7 3.0 A 0.32 0.26; 0.40 0.002 

b 0.027 0.023; 0.031 0.00003 b 0.29 0.20; 0.39 0.001 

k 

0.0000

9 

0.00008; 

0.00010 

0.0000000

9 

k 0.18 0.12; 0.24 0.001 

1A = asymptotic weight of animal; b = degree of maturation at birth; k = maturation rate. 

2HPD = High posterior density interval at a 95% probability. 

3MCse = Monte Carlo SE.



Table 7. Marginal posterior distributions of correlation between Gompertz growth curve 

parameters of meat quails 

 Genetic correlation  Phenotypic correlation 

Trait1 Mean HPD2 MCse3 Trait Mean HPD MCse 

A, b 0.25 0.05; 0.45 0.003 A, b 0.10 0.03; 0.17 0.0006 

A, k -0.50 -0.63; -0.35 0.002 A, k -0.72 -0.74; -0.69 0.0002 

b, k 0.03 -0.24; 0.27 0.004 b, k 0.26 0.20; 0.32 0.0004 

 Residual correlation      

Trait Mean HPD MCse      

A, b 0.04 -0.05; 0.13 0.0007      

A, k -0.80 -0.82; -0.77 0.0002      

b, k 0.34 0.26; 0.42 0.0006      

1A = asymptotic weight of animal; b = degree of maturation at birth; k = maturation rate. 

2HPD = High posterior density interval at a 95% probability. 

3MCse = Monte Carlo SE.  



 

(a)      (b)      (c) 

Figure 1. Mean expectations of the Gelfand’s check function E(g|y−r) for Gompertz (a), 

Logistic (b) and von Bertalanffy (c) growth curve for European quails 

  



 

(a)                                                                         (b) 

 

(c)                                                                           (d) 



 

(e) 

Figure 2. Posterior means and standard deviation (shadow) for A (a), b (b) and k (c), APOI 

(d) and WPOI (e) parameters of the Gompertz curve by sex and generation 

 




