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Abstract  17 

Reports of enteric bacteria in Antarctic wildlife have suggested its spread from people to seabirds 18 

and seals, but evidence is scarce and fragmentary. We investigated the occurrence of zoonotic enteric 19 

bacteria in seabirds across the Antarctic and subantarctic region; for comparison purposes, in addition 20 

to seabirds, poultry in a subantarctic island was also sampled. Three findings suggest reverse zoonosis 21 

from humans to seabirds: the detection of a zoonotic Salmonella serovar (ser. Enteritidis) and 22 

Campylobacter species (e.g. C. jejuni), typical of human infections; the resistance of C. lari isolates to 23 

ciprofloxacin and enrofloxacin, antibiotics commonly used in human and veterinary medicine; and most 24 

importantly, the presence of C. jejuni genotypes mostly found in humans and domestic animals but 25 

rarely or never found in wild birds so far. We also show further spread of zoonotic agents among 26 

Antarctic wildlife is facilitated by substantial connectivity among populations of opportunistic seabirds, 27 

notably skuas (Stercorarius). Our results highlight the need for even stricter biosecurity measures to 28 

limit human impacts in Antarctica. 29 

 30 
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1. Introduction 34 

The global spread of pathogens is a growing conservation concern because their introduction into 35 

novel environments can have dramatic effects on wildlife (Paxton et al., 2016; Van Riper et al., 1986). 36 

Pathogens have been dispersed by migratory birds, fish, mammals and other taxa for millions of years, 37 

but in recent centuries humans have also contributed to their dispersal (Altizer et al., 2011; Fuller et al., 38 

2012). Antarctica is the only continent where reverse zoonosis transmission has not been documented 39 

(Messenger et al., 2014). Despite ongoing concern about human impacts in the region, diseases have 40 

not been identified as significant threats (Chown et al., 2012b, 2012a). 41 

To date, the presence of pathogens in Antarctic wildlife has received limited attention (Barbosa and 42 

Palacios, 2009; Kerry and Riddle, 2009). It has been assumed that the region’s isolation and relatively 43 

recent exploration by humans have protected Antarctic wildlife from novel pathogens, although there 44 

have been several outbreaks of infectious diseases at Southern Ocean islands (Cooper et al., 2009; Kane 45 

et al., 2012; Weimerskirch, 2004). The few surveys of pathogens in Antarctica have been opportunistic, 46 

and investigations of occasional mass mortality events to date have not established clear evidence of 47 

human-to-animal transmission (Frenot et al., 2005; Gardner et al., 1997; Hernandez et al., 2012; Iveson 48 

et al., 2009; Kerry and Riddle, 2009; Vigo et al., 2011). 49 

The mechanisms by which pathogens invaded the Southern Ocean wildlife remain uncertain. Some 50 

infectious agents may have invaded the Antarctic and subantarctic region well before the arrival of 51 

humans, through migratory birds and their parasites. This is likely to be the case for some pathogens 52 

vectored by seabird ticks, such as Borrelia spp., as suggested by some authors (McCoy et al 2012; Olsen 53 

et al., 1995). However, for other pathogens this may not be the case and humans may be increasing the 54 

income of pathogenic agents into that region. Whilst human-mediated transport may be a legacy of 55 

exposure in the last few centuries to sealers and whalers or to their domestic animals (Gardner et al., 56 

1997; Griekspoor et al., 2010), several studies indicate that the main risk of pathogen invasion is the 57 
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increase in tourism and research activities, which currently account for tens of thousands of visitors 58 

each year (Curry et al., 2002; Hughes and Convey, 2010). In this regard, the Protocol on Environmental 59 

Protection to the Antarctic Treaty (1991), which came into force in 1996, included a number of 60 

measures to prevent the introduction of novel pathogens (Committee for Environmental Protection, 61 

2011). However, it may be of limited value if Antarctic wildlife migrates to areas outside the Antarctic 62 

region, where they can be exposed to a wide range of pathogens during their broad scale movements. 63 

Many Antarctic seabirds disperse across the Southern Ocean, coming into contact with domestic species 64 

in populated areas, and some species that visit the region during the Antarctic summer spend the winter 65 

in the northern hemisphere (e.g. Arctic Terns Sterna paradisaea and South Polar Skuas Stercorarius 66 

maccormicki). Such large-scale movements may introduce pathogens to Antarctica, and disperse them 67 

within the region. Climate change also may alter the migratory habits of animals, increasing the spread 68 

and contact between Antarctic, subantarctic and temperate wildlife (Altizer et al., 2013).  69 

The zoonotic bacteria Salmonella spp. and thermotolerant Campylobacter spp. are amongst the 70 

most important foodborne diarrheal pathogens worldwide (Havelaar et al., 2015). Both agents can 71 

spread rapidly in the environment through faecal contamination and can persist in soil or water for long 72 

enough to infect wild fauna. We explore the transfer of these zoonotic bacteria from humans and 73 

poultry to the subantarctic and Antarctic region by sampling 24 seabird species over a broad 74 

geographical range, identifying bacterial species and comparing serovars and genotypes in seabirds with 75 

those commonly found in humans and domestic animals, and by testing their resistance to antibiotics 76 

commonly used in human and veterinary medicine. We also evaluate whether these pathogens are 77 

spreading across wildlife of the Southern Ocean. 78 

 79 

2. Materials and methods 80 

2.1. Sampling 81 
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From 2008 to 2011 we collected faecal samples from adult seabirds at four Southern Ocean 82 

localities: Livingston (Antarctica), Marion, Gough and the Falkland Islands (Figure 1A, Table 1). 83 

Additionally, we also sampled backyard poultry at the Falklands, which support a permanent human 84 

settlement with a number of farms in close contact with subantarctic and Antarctic wildlife. Birds were 85 

caught by hand and faecal samples were collected in duplicate using sterile swabs inserted into the 86 

cloaca. Samples were stored refrigerated in Amies transport medium with charcoal (Deltalab, Barcelona, 87 

Spain), transported to Spain within two to five weeks after the day of collection and cultured 88 

immediately upon arrival to the laboratory. 89 

 90 

2.2. Bacterial isolation and identification  91 

We performed Salmonella and Campylobacter isolation and identification by standard culture 92 

methods (Antilles et al., 2015). Salmonella serotyping was performed according to the Kauffmann-White 93 

scheme (Grimont and Weill, 2007) and carried out at the Laboratori Agroalimentari (Cabrils, Spain) of 94 

the Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural. We identified 95 

Campylobacter isolates to species level by PCR using primers based on the lpxA gene (Klena et al., 2004). 96 

A multiplex PCR for C. jejuni and C. coli identification was performed using forward primers lpxA-Cjejuni 97 

(5’-ACA ACT TGG TGA CGA TGT TGTA-3’) and lpxA-Ccoli (5’-AGA CAA ATA AGA GAG AGA ATC AG-3’) and 98 

a common reverse primer (lpxARKK2m: 5’-CAA TCA TGD GCD ATA TGA SAA TAH GCC AT-3’). C. lari 99 

identification was performed with a monoplex PCR using primers lpxA-Clari (5’-TRC CAA ATG TTA AAA 100 

TAG GCG A-3’) and lpxARKK2m. The type strains of C. jejuni, C. coli and C. lari were used as positive 101 

controls in the corresponding species-specific PCRs, and as negative control DNA was replaced by PCR-102 

grade water. 103 

 104 

2.3. Antimicrobial susceptibility testing 105 
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We performed antimicrobial susceptibility testing for both Salmonella and Campylobacter isolates 106 

following the Clinical Laboratory and Standard Institute disc diffusion method (M100-S18) (CLSI, 2016) 107 

using Neo-Sensitabs™ (Rosco Diagnostica, Denmark) with CLSI potencies according to the 108 

manufacturer’s instructions. For Salmonella isolates, we used Mueller-Hinton agar (Difco, Madrid, Spain) 109 

and plates were incubated at 37°C for 24 h. For Campylobacter isolates, we used Mueller-Hinton II agar 110 

supplemented with 5% defibrinated sheep blood (BioMérieux, Marcy l'Etoile, France) and plates were 111 

incubated at 37°C for 48 h under microaerobic conditions. E. coli ATCC 25922 and C. jejuni ATCC 33560 112 

were used as a quality control for Salmonella and Campylobacter susceptibility assays, respectively. 113 

Salmonella isolates were tested against 18 antimicrobials: ampicillin (33 µg), amoxicillin (30 µg), 114 

amoxicillin clavulanic (30+15 µg), ceftiofur (30 µg), apramycin (40 µg), streptomycin (100 µg), gentamicin 115 

(40 µg), neomycin (120 µg), ciprofloxacin (10 µg), enrofloxacin (10 µg), nalidixic acid (130 µg), 116 

norfloxacin (10 µg), colistin (150 µg), chloramphenicol (60 µg), lincomycin + spectinomycin (15 + 200 µg), 117 

nitrofurantoin (260 µg), tetracycline (80 µg) and trimethoprim + sulfonamide (5.2 + 240 µg). 118 

Campylobacter isolates were tested against seven antimicrobials: nalidixic acid (30 µg), ciprofloxacin (5 119 

µg), enrofloxacin (10 µg), tetracycline (80 µg), chloramphenicol (60 µg), erythromycin (15 µg) and 120 

gentamicin (10 µg). 121 

 122 

2.4. Salmonella and Campylobacter genotyping 123 

We typed representative bacterial isolates with pulsed-field gel electrophoresis (PFGE) and 124 

multilocus sequence typing (MLST). PFGE was carried out according to the standard operating procedure 125 

of PulseNet (www.pulsenetinternational.org). We performed restriction enzyme digests for PFGE with 126 

XbaI and BlnI enzymes for Salmonella, and with SmaI and KpnI enzymes for Campylobacter (Roche 127 

Applied Science, Indianapolis, IN, USA). Salmonella Braenderup H9812 restricted with XbaI was used as 128 

molecular size standard for both Campylobacter and Salmonella. We analysed the resulting PFGE 129 
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patterns using Fingerprinting II v3.0 software (Bio-Rad, Hercules, CA, USA). Banding patterns were 130 

compared with the UPGMA (Unweighted Pair Group Method with Arithmetic averages) clustering 131 

method using the Dice correlation coefficient with a band position tolerance of 1%. 132 

We further characterized S. enterica and thermotolerant Campylobacter using MLST, which is based 133 

on sequencing of seven housekeeping genes (Achtman et al., 2012; Dingle et al., 2001; Miller et al., 134 

2005). Primers used for Salmonella were those described in the MLST public database 135 

(http://mlst.warwick.ac.uk/mlst) and those used for Campylobacter species are indicated in the 136 

corresponding MLST database (www.pubmlst.org/campylobacter) and in Miller et al. (2005). The 137 

sequence types were determined according to the scheme provided on these sites. 138 

To explore potential spill-over from domestic to wild birds, we compared C. jejuni and C. lari 139 

isolates found in the present study with others from ducks and hens from Falkland Is., using PFGE and 140 

MLST. 141 

 142 

3. Results 143 

3.1. Salmonella and Campylobacter spp. in seabirds 144 

We sampled 666 seabirds from 24 species at Livingston (n= 139), Gough (n= 138), Marion (n= 125) 145 

and the Falkland Islands (n= 264) (Figure 1A; Table 1), and isolated three Salmonella ser. Enteritidis, 10 146 

C. jejuni and 35 C. lari. The only other Salmonella serovar detected was one Oakey; no other 147 

thermotolerant Campylobacter species were found. 148 

We isolated Salmonella Enteritidis from two kelp gulls (Larus dominicanus) and one southern giant 149 

petrel (Macronectes giganteus) from Livingston Is.; C. jejuni from one macaroni penguin (Eudyptes 150 

chrysolophus), one king penguin (Aptenodytes patagonicus), and six brown skuas (Catharacta antarctica) 151 

at Marion Is. and from single brown skuas at Gough and the Falkland Is (Figure 1B); and C. lari from one 152 

gentoo penguin (Pygoscelis papua), one southern giant petrel and 10 brown skuas at Livingston Is.; from 153 
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one macaroni penguin, two southern giant petrels and seven brown skuas at Marion Is.; from 10 brown 154 

skuas at Gough Is.; and from three brown skuas at the Falkland Is. Marion Is. showed the highest 155 

diversity of positive seabird species to Campylobacter and was the only locality where co-infections 156 

occurred of both C. jejuni and C. lari (n=3 skuas). 157 

 158 

3.2. Antimicrobial resistance 159 

We did not detect any antimicrobial resistance in isolates of Salmonella or C. jejuni. Among C. lari 160 

isolates, besides nalidixic acid resistance, which is characteristic of this species and was found in all 161 

tested isolates, we found ciprofloxacin resistance in isolates from one macaroni penguin and two skuas 162 

from Marion Is., and from three skuas from Gough Is. Ciprofloxacin and enrofloxacin resistance was 163 

detected in two C. lari from skuas at Livingston Is. 164 

 165 

3.3. Genetic diversity 166 

All three Salmonella Enteritidis isolates exhibited identical PFGE patterns and MLST sequence type 167 

(ST11). Among C. jejuni isolates, PFGE analysis clustered together three isolates: two from brown skuas 168 

from the Falklands and Marion Is. and one from a domestic duck from the Falklands. MLST showed 169 

these isolates to belong to the widespread ST45. Four other C. jejuni ST (ST137, ST227, ST696 and ST883) 170 

were isolated from skuas and penguins at Gough and Marion Is. (Figure 2). These ST have been reported 171 

in several hosts in developed countries of the northern hemisphere and Australia (Figure 1C). 172 

Among C. lari isolates, PFGE genotyping showed highly similar isolates (> 80% similarity) from 173 

several skuas at Livingston, Marion and Gough Is. and from a giant petrel at Marion Is. One cluster was 174 

formed by three (GH128-C1, GH131-C1 and MAR5-C1) nearly identical isolates (≥ 95% similarity) found 175 

in skuas from Gough and Marion Is. belonging to the same novel ST (Figure 3). In addition, the same 176 

genotype was found in two different seabird species, a brown skua and a gentoo penguin from 177 



9 
 

Livingston Is. (isolates AN138-C7 and AN32-C1), which were closely related (81% similarity) to an isolate 178 

from a duck (FK72-C1) from the Falklands. One cluster grouped isolates from distant localities, i.e. one 179 

isolate from a skua at the Falklands and one from a penguin at Marion Is. (FK54-C1 and MAR18-C1), with 180 

an 88% similarity.  181 

 182 

4. Discussion 183 

Three lines of evidence suggest a reverse zoonosis in Antarctica, whereby zoonotic enteric bacteria 184 

have been introduced by humans to Southern Ocean ecosystems: the detection in seabirds of 185 

Salmonella serovars (e.g. Enteritidis) or Campylobacter species (e.g. C. jejuni) typically associated with 186 

humans (Figure 1B), the antibiotic resistance of some strains, and most importantly, the occurrence of 187 

several Campylobacter genotypes (ST45, ST137, ST227, ST696 and ST883) previously reported almost 188 

exclusively in humans and domestic animals from developed countries. Salmonella was only isolated 189 

from a few seabirds at Livingston Is. (Antarctic Peninsula), suggesting Salmonella is not indigenous to 190 

seabirds in the region. Salmonella Enteritidis serovar is, together with Typhimurium, the most common 191 

serovar causing salmonellosis in humans worldwide (Hendriksen et al., 2011). Our results agree with the 192 

scarcity of Salmonella isolates previously reported in seabirds and mammals of the Southern Ocean, 193 

which mainly belong to serovars commonly found in humans (Figure 1B) (Dougnac et al., 2015; Iveson et 194 

al., 2009; Olsen et al., 1996; Palmgren et al., 2000; Retamal et al., 2017; Vigo et al., 2011). The 195 

Salmonella serovar we found typically occurs in scavenging birds associated with urban areas, such as 196 

gulls and raptors, and is relatively uncommon in wildlife from less transformed areas (Ĉíẑek et al., 1994; 197 

Jurado-Tarifa et al., 2016; Ramos et al., 2010). All our Salmonella isolates had the same PFGE 198 

macrorestriction profile and the same MLST type (ST11), which has also been reported from seabirds 199 

and seals in the Antarctic Peninsula (Vigo et al., 2011), and it is the most abundant and widespread ST of 200 
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ser. Enteritidis worldwide, further suggesting the clonal spread of this serovar from other continents to 201 

Antarctica.  202 

We found thermophilic Campylobacter species in all sampled localities, mainly C. lari, but also C. 203 

jejuni, which is a major cause of foodborne diarrhoeal illness in humans worldwide (Havelaar et al., 204 

2015). C. jejuni has been isolated only once in penguins from the same colony (3/100; 3/446 of all 205 

sampled birds) in the broader Antarctic region, at South Georgia (Broman et al., 2000). In non-remote 206 

areas, prevalence of this Campylobacter species from scavenging seabirds has been reported at much 207 

higher rates (authors, unpublished data) (Kapperud and Rosef, 1983; Keller et al., 2011). We found C. 208 

jejuni mainly in brown skuas, one of the main opportunistic seabird species of the Southern Ocean. 209 

When given the chance, skuas often scavenge on human waste, providing a plausible mechanism for the 210 

transfer of C. jejuni to this species. 211 

Antimicrobial resistance was generally low, but the presence of at least certain resistance is 212 

worrying given that they were found in some of the most remote areas on Earth. A few C. jejuni and C. 213 

lari isolates from poultry at the Falklands (authors, unpublished data) and some C. lari isolates from a 214 

macaroni penguin and skuas from three islands were resistant to fluoroquinolones (ciprofloxacin, 215 

enrofloxacin). These agents belong to the so-called critically important antimicrobials and are therefore 216 

seldom used in human or veterinary medicine (WHO AGISAR, 2012). As a result, the development of 217 

resistance in backyard poultry or wild seabird populations is very unlikely, strongly suggesting 218 

contamination by a resistant strain of anthropogenic origin. Interestingly, the domestic duck which 219 

carried a C. lari resistant isolate was free ranging most of the day, a practice that may facilitate 220 

transmission between the domestic and the wildlife compartments. Resistance also may have 221 

developed through spontaneous mutation, acquired by horizontal gene transfer from other 222 

microorganisms that constitute natural sources of drug-resistant genes, or may have been imported into 223 

the Southern Ocean through bird migration. However, the detection in skuas of several C. jejuni 224 
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genotypes almost exclusively found in humans and livestock supports the likelihood of reverse zoonosis. 225 

MLST analysis showed some strains from skuas from Marion Is. to belong to new STs. They could 226 

represent host specific strains or strains endemic of the Southern Ocean. However, several other 227 

genotypes belonged to STs almost exclusively associated with human disease and asymptomatic 228 

infection in livestock (ST45, ST137, ST227, ST696 and ST883) from northern developed countries, 229 

strongly supporting their human origin. That is, 70%-85% of the isolates belonging to those STs have 230 

been isolated previously from human gastroenteritis cases, and some of them also from chicken or 231 

chicken products, but rarely (1-9% of the isolates) or never from wild birds 232 

(https://pubmlst.org/campylobacter/). At Gough and Marion Is., introduction likely occurred through 233 

personnel based at the South African scientific stations, despite strict biosecurity controls for more than 234 

two decades. The introduction of these human-associated strains to these remote islands by migrating 235 

birds infected during migrating movements cannot be ruled out, but seems less plausible. 236 

The case of the Falkland Is. is particularly relevant, since ST45 was isolated from a skua and a 237 

domestic duck. This ST is very common in humans and livestock but has only been reported once in a 238 

single bird in the Southern Ocean in a remote site of the Subantarctic region (Griekspoor et al., 2010; 239 

Olsen et al., 1996), suggesting movement from the domestic to the wildlife compartment. Inhabited 240 

areas close to the Antarctic region with free-ranging livestock, such as Patagonia, the Falklands and 241 

Tristan da Cunha, are of particular concern, since in these localities domestic animals come in close 242 

contact with Antarctic wildlife, potentially facilitating the spread of infectious diseases. Many Antarctic 243 

birds and mammals regularly visit these areas or mix with the local fauna in common wintering grounds 244 

(Shirihai, 2007).  245 

It is also plausible that zoonotic enteric bacteria and other pathogens can spread and circulate 246 

through wildlife across the Southern Ocean. C. lari, the most abundant Campylobacter species recovered 247 

at all four sites, has been reported previously in Southern Ocean penguins, gulls, skuas and seals 248 
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(Bonnedahl et al., 2005; García-Peña et al., 2017, 2010; Leotta et al., 2006). The widespread distribution 249 

of C. lari among host species and localities and its high genetic diversity suggest that it has long been 250 

circulating in the region. The genetic similarities among isolates from skuas, penguins and gulls in our 251 

study also suggest substantial connectivity across Southern Ocean localities and therefore potential for 252 

spreading new pathogens. 253 

Our results provide compelling evidence for reverse zoonosis of pathogens in Antarctica and 254 

suggest that zoonotic enteric bacteria can be spread by wildlife across the Southern Ocean. The 255 

increasing spread of pathogens, underpinned by globalization and climate change, now affects the most 256 

remote areas on Earth. Strict measures to limit human impacts in Antarctica (Chown et al., 2012b, 257 

2012a) should be expanded to zoonotic bacteria and to settled areas in the peri-Antarctic region. 258 
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