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ABSTRACT 7 

Determination of intramuscular fat (IMF) content in dry cured meats is critical because it 8 

affects the sensory quality and consumer’s acceptability. Recently, deep learning has 9 

become one of the most promising techniques in machine learning for image analysis. 10 

However, few applications in food products are found in the literature. This study presents 11 

the application of deep learning for the detection of intramuscular fat (IMF) in images of 12 

slices of dry cured ham. 8 convolutional neural networks (CNNs) have been studied and 13 

compared using segmented images (252 for training, 61 for validation and 62 for testing). 14 

The performance was compared to other simple CNNs. CNNs were able to segment IMF 15 

with an overall pixel accuracy of 0.99 and a recall and precision rates for fat near 0.82 16 

and 0.84, respectively, using a limited number of training images. However, performance 17 

is affected by the quality of the ground truth due to the difficulty of labelling correctly 18 

pixels. 19 

Keywords: Convolutional neural network, deep learning, intramuscular fat, image 20 

analysis, dry-cured ham 21 

1. INTRODUCTION 22 

The amount of visible fat in dry-cured ham and distribution of fat streaks, affects 23 

palatability and consumers acceptability. Marbling is used as a visual cue by consumers 24 

to judge dry-cured ham quality. Although high IMF content is closely related to positive 25 

emotional responses during consumption of dry-cured ham (Lorido, Pizarro, Estévez & 26 

Ventanas, 2019), consumers prefer to purchase ham with moderate amounts of IMF, 27 

linked to positive nutritional and flavour characteristics (Morales, Guerrero, Aguiar, 28 

Guàrdia & Gou, 2013). This is a challenge for the industry, since the amount of IMF, 29 

even within the same breed, can widely vary. For the industry, it is of interest to 30 
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characterize online the IMF of slices of dry cured ham. This will allow the companies to 31 

segment the market, and offer products tailored to the consumers’ needs.  32 

Computer image analysis (CIA) is a reliable alternative for fast and non-destructive 33 

assessment of food characteristics such as colour, freshness, textural properties and other 34 

quality aspects. Some applications include the determination of marbling scores in pork 35 

meat (Liu, Ngadi, Prasher & Gariépy, 2012), the assessment of fish quality and freshness 36 

(Dutta, Issac, Minhas & Sarkar, 2016) and the quality assessment of pizza (Sun & 37 

Brosnan, 2003), cheese (Caccamo et al., 2004) and bread (Srivastava, Vaddadi & 38 

Sadistap, 2015). CIA has also been applied to grading of fruits and vegetables (Blasco, 39 

Munera, Aleixos, Cubero & Molto, 2017).  40 

IMF detection using CIA is challenging because IMF cannot be easily characterized. For 41 

this reason, simple segmentation approaches are not useful and more sophisticated 42 

techniques are needed. For example, a segmentation-based approach was reported by 43 

Jackman, Sun and Allen (2009), which used K-means clustering to segment images of 44 

beef Longissimus dorsi muscle into background, lean muscle, and intramuscular fat areas. 45 

Results showed that IMF pixels were underestimated by 12.4% with respect to ground 46 

truth images. One of the most usual techniques for IMF detection is line detection 47 

algorithms. Faucitano, Huff, Teuscher, Gariepy and Wegner (2005) evaluated marbling 48 

by enhancing the colour contrast of pork meat samples using chemical pre-treatments and 49 

line detection algorithms. The authors did no check the accuracy of this approach. Liu, 50 

Milan, Shen and Reid (2012) and Huang, Liu, Ngadi and Gariépy (2013) used a line 51 

detection algorithm for determining a marbling score of pork loins and pork chops, 52 

respectively . Qiao,  Ngadi, Wang, Gariépy and Prasher (2007) studied the potential of 53 

hyperspectral imaging techniques to assess pork quality and marbling levels using a 54 

hyperspectral imaging system and artificial neural networks. Both authors focused on the 55 

ability of these algorithms to predict marbling scores.  56 

Recently, Lohumi et al. (2016) applied hyperspectral imaging for the characterization of 57 

intramuscular fat in beef. Several methods were evaluated and the accuracy ranged from 58 

91% to 96%. Velázquez, Cruz-Tirado, Siche and Quevedo (2017) segmented fat and 59 

classified the degree of marbling in beef from hyperspectral images using decision trees. 60 

Decision trees were able to reach an accuracy of 99.92% for the classification of lean and 61 

fat pixels during the construction of the tree (training). Liu, Ngadi, Prasher and Gariépy 62 
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(2018) segmented fat by automatically estimating the threshold between the lean and fat 63 

tissues. No information on accuracy was given. 64 

In dry-cured ham, segmentation of IMF is more complex. The variation of dryness and 65 

colour across the slice, the presence of phosphates and tyrosine crystals and, in some 66 

cases, of nitrification rings make image segmentation more difficult. Cernadas, Dur and 67 

Antequera (2002), by using a multi-scale line detection framework for the recognition of 68 

fat streaks in the image, correctly classified 90% of the fat streaks with an acceptable rate 69 

of false positives. Widiyanto et al. (2013) segmented correctly IMF and lean in slices of 70 

dry-cured ham using fuzzy c-means and bias field estimation, obtaining a dice similarity 71 

coefficient of 0.94 for lean and 0.88 for IMF. Muñoz, Rubio-Celorio, Garcia-Gil, Guardia 72 

and Fulladosa (2015) and Santos Garcés, Muñoz, Gou, Garcia-Gil and Fulladosa (2014) 73 

used gradient-based techniques, such as discrete Fourier transform (DFT), but not 74 

evaluated the accuracy of the IMF estimation. However, new approaches for image 75 

analyses have been developed in the previous decade, which allow researchers to develop 76 

powerful algorithms for complex tasks. One of these new tools is deep learning 77 

(Goodfellow, Bengio, Courville & Bengio, 2016), in particular, deep convolutional 78 

networks. A convolutional neural network (also known as CNN or ConvNet) is a type of 79 

neural network used for deep leaning in image applications. CNNs are used in a wide 80 

range of applications in image analysis. For example, object recognition (He, Zhang, Ren 81 

& Sun 2016), image classification (Krizhevsky, Sutskever & Hinton 2012) or image 82 

segmentation (Badrinarayanan, Kendall & Cipolla, 2017). The main advantage of this 83 

technique is that eliminates the need for hand-engineered filter design, as those are 84 

learned by the CNN itself. In the last few years, this technique has been applied to an 85 

increasing number of problems. In many cases, the performance of CNN has 86 

outperformed conventional CIA algorithms, becoming the state of the art solutions for 87 

many real applications. One of the applications is pixelwise classification, also known as 88 

semantic segmentation, which aims at assigning labels to pixels in an image (Long, 89 

Shelhamer & Darrell, 2015; Lin, Milan, Shen & Reid, 2017). This is one the approaches 90 

that can be used to segment IMF in images.  91 

Deep learning is a promising and very powerful tool to solve computer image problems. 92 

However, there are still very few applications of deep learning in the food sector. 93 

Recently, deep learning techniques have been applied to evaluate automatically the 94 

quality of fresh-cut lettuce (Cavallo, Cefola, Pace, Logrieco & Attolico, 2018), to assess 95 
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nutrient concentrations of commercially prepared pureed food (Pfisterer, Amelard, Chung 96 

& Wong, 2018), or to automate the segmentation of the skeleton of pigs using CT images 97 

(Kvam, Gangsei, Kongsro & Schistad-Solberg, 2018) or the detection of salmon muscle 98 

gaping (Xu & Sun, 2018).  Other applications in food include food localization and 99 

recognition in images (Bolaños & Radeva, 2016). 100 

This study aims at the segmentation of IMF in slices of dry-cured ham using deep 101 

learning. This problem has already been addressed using conventional image analysis 102 

techniques. 103 

2. MATERIAL AND METHODS 104 

2.1. Sampling 105 

Ham slices were sampled from 190 dry-cured hams as it was described in Muñoz, Rubio-106 

Celorio, Garcia-Gil, Guardia and Fulladosa (2015). 107 

2.2. Image acquisition 108 

Images were acquired with the photographic system depicted in Fig. 1. The exact 109 

methodology was described in Muñoz, Rubio-Celorio, Garcia-Gil, Guardia and Fulladosa 110 

(2015). 111 

2.3 Ground Truth 112 

Two regions of interest (ROIs) (both sides of a 1 cm thick slices) corresponding to the 113 

Biceps femoris (BF) muscles were manually selected from each image (Fig. 2). BF 114 

muscle was chosen because it is the biggest and the most representative muscle in dry 115 

cured ham slices. Besides, together with Semitendinosus (ST) muscle, it may have an 116 

considerable amount of intramuscular fat, which is also correlated to the ST muscle (the 117 

fattiest muscle).  375 ROIs were evaluated and 5 ROIs were discarded from the study due 118 

to defects on the surface (such as cuts and phosphate crystals) which made them 119 

unsuitable for the CIA. Patches of 64x64 pixels (one patch per image) were automatically 120 

extracted from the ROIs with three channels of information corresponding to R,G,B 121 

colour channels. All patches were treated as independent samples, as IMF distribution 122 

and colour of  IMF and lean showed big differences in patches obtained from both sides 123 

of the same ham slice.  124 

 Next, reference images of correctly segmented IMF (Ground Truth) were obtained from 125 

these patches similarly to the methodology described in Muñoz, Rubio-Celorio, Garcia-126 
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Gil, Guardia & Fulladosa, 2015) and (Santos Garcés, Muñoz, Gou, Garcia-Gil & 127 

Fulladosa, 2014). For each ROI, IMF was segmented using edge detection based on the 128 

discrete Fourier transform (DFT) (Rangayyan, 2004). DFT followed by a gaussian high 129 

pass filter with a cut-off frequency of 250 was applied to each image. After filtering, the 130 

images were transformed back using the Inverse Discrete Fourier Transform (IDFT). The 131 

real component of the transformed matrix was used for further processing. Pixels with 132 

values equal or below a threshold value were labelled as IMF. This threshold value was 133 

set manually. An expert in the field of food technology, trained for the sensory evaluation 134 

of foods and specially for dry-cured ham visual evaluation was responsible for adjusting 135 

the threshold values following the guidelines established for dry-cured ham by Claret, 136 

Guerrero, Guàrdia, Garcia-Gil and Arnau (2009). After this, most of the IMF was 137 

correctly segmented. However, several thresholding operations in combination with 138 

different logical operators (AND, OR, NOT) were applied to the image (combining the 139 

IDFT transform image and the RGB image) for the segmentation of still incorrectly 140 

segmented pixels. This work was also carried out by the trained food technologist and the 141 

threshold values adjusted accordingly. In some cases, even for a trained expert, it was 142 

difficult to decide whether a pixel should be labelled as fat or lean, in particular for small 143 

fat streaks and contour pixels due to the wide range of RGB values for fat and lean, 144 

structure of fat, etc 145 

Small size patches (3x64x64 pixels) were used in order to have same size samples for 146 

training (BF muscles are different in shape and in the number of pixels) and speed up 147 

learning.  148 

2.4 Convolutional neural network architecture 149 

The convolutional neural network (CNN) was trained to classify pixels into two different 150 

classes (class 0: lean, class 1: fat) using pixelwise classification (semantic segmentation). 151 

Ground Truths for images were determined as described in section 2.3 and were used as 152 

labelled images during training of the CNNs. In the CNN architecture used in this work, 153 

four of the most common types of operation in a CNN were used: convolution, non-linear, 154 

pooling and upsampling layers.  155 

In Convolution layers, a filter (also known as kernel) performs the convolution operation 156 

over a matrix (images). Convolution can be thought as a sliding window function applied 157 

to a matrix. The number of parameters to be learned in these filters is equal to the number 158 

of elements of these filters (depth x height x width) (Fig. 3a).  In this work (as in others 159 
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studies in the field), when referring to filters only the height and the width is given, 160 

whereas the depth can be obtained from the depth of the input matrix (image).  161 

Non-linear layers are usually placed right after convolution layers. Non-linear layers 162 

perform a non-linear operation on the matrices resulting from the convolution operation, 163 

similar to the sigmoid function. The most common function in CNN is the rectifier linear 164 

function (ReLU) (Fig. 3a).  165 

Pooling layer reduces the size of the image, also known as downsampling. Among the 166 

existing pooling layers, average and max pooling are the most common ones. Pooling 167 

layer consists of a sliding window function that moves over the matrix and takes the 168 

largest value in the window. The matrix is partitioned into several non-overlapping 169 

regions where the operation associated with pooling is applied. Pooling reduces the size 170 

of the matrix. In Fig. 3b, the max pooling is applied. 171 

Upsampling layers can be considered as a kind of reverse convolution (Fig. 3b), 172 

sometimes denoted as deconvolution. Upsampling resizes an input matrix to the desired 173 

size by upsampling and interpolation (e.g. bilinear interpolation). In CNN, it can be used 174 

to resize the output of a CNN to the original size after convolutional and pooling 175 

operations have reduced the size of the original image.  176 

Fig. 4 depicts the basic architecture used in this work, in the case of using 512 filters in 177 

the first layer. This architecture is based on the work by Long, Shelhamer and Darrell 178 

(2015), in which information from different layers of the CNN are combined to make 179 

predictions, and the VGG net (Simonyan & Zisserman, 2015), in which the number of 180 

filters increases with the depth of the network. Prior to the final selection of the CNN 181 

architecture used in this study, several parameters were evaluated, namely number of  182 

convolutional layers (1-4), kernel size (3x3,5x5,7x7) and number of filters.  183 

In this architecture, a RGB patch (3x64x64 pixels) is convolved by 512 3x3 convolution 184 

filters (and depth 3, as the image has three channels: R, G and B) and zero padding is 185 

applied to ensure that after convolution the height and width of the image remains the 186 

same. Zero padding consists in adding “0” around the border of the matrix of data. For 187 

3x3 convolution filters, a zero padding of size 1 must be applied to ensure that the size 188 

does not change after convolving. Therefore, convolution, including padding, transforms 189 

the input image into 512 64x64 matrices. After convolution, the rectifier function (ReLU) 190 

is applied to each element of the obtained matrices and next, the 2x2 max pooling is 191 
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applied. A 2x2 pooling reduces the size of the matrix by a factor of 2 (i.e. from 64x64 to 192 

32x32), but it does not change the number of matrices (512). The whole structure 193 

(network layer) (Conv-ReLU-pool) is repeated 3 more times. At the end of the process, 194 

there are 4096 8x8 matrices. After each max pooling the number of matrices is increased 195 

by a factor 2 at the next convolution operation in order to keep the complexity of the 196 

network (Simonyan & Zisserman, 2015). After each pooling operation, an upsampling 197 

operation is applied, using bilinear interpolation, to obtain two matrices (two classes) with 198 

the original size (64x64 pixels). Additionally, an upsampling operation is applied to the 199 

matrices obtained at ReLU1. All 64x64 pixels obtained by upsampling at different layers 200 

are finally added together (2x64x64 pixels). According to Long, Shelhamer & Darrell 201 

(2015) the combination of information from different layers is equivalent to combine 202 

coarse, high level information with fine low layer information. This integration of 203 

information allows the network to predict finer details. Next, the output of the network 204 

(2x64x64 matrices) is passed through a softmax classifier. The output after the softmax 205 

classifier is a probability map having  the same size as the input image (64x64) with each 206 

pixel having two values, the probability of belonging to class 0 (lean) and class 1 (fat). 207 

The class with the highest probability value is selected as the segmented class. The 208 

performance of this CNNs architecture is compared to other more simple CNNs 209 

architectures in which all upsampling operations are removed from the architecture with 210 

the exception of the last upsampling operation  previous to the softmax classifier 211 

(Upsample 5 in Fig. 4). 212 

In this study, different parameters of this architecture were studied, namely, the depth of 213 

the network (from 1 to 4 Conv-ReLU-pool layers) and the number of filters at Conv1 214 

(128 and 512). In the results and discussion section, network architectures will be denoted 215 

as 2_128, first figure indicates the number of Conv-ReLU-pool structures (network 216 

layers) and the second figure indicates the number of filters at the first convolutional layer 217 

(Table 1). In total, 8 different combinations of depth of the network (1-4) and number of 218 

filters were studied (128, 256). According to this notation, Fig. 4 depicts a 4_512 219 

architecture (4 Conv-ReLU-pool layers and 512 filters in layer 1). The same notation is 220 

used for the simple networks with the difference that only the last upsampling is included 221 

in the network (Upsample5 in Fig. 4). In this case, the number of filters at Conv 1 is 128 222 

and 512 and the depth of the network from 1 to 3. A subscript (s) has been added to denote 223 

a simple network (Table 1). 224 
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2.5 Software and Hardware 225 

Matlab 2008b and its image processing toolbox (The MathWorks, Inc., United States) 226 

were used to select the ROI and segment IMF in images using the procedure described in 227 

the previous section.  228 

Caffe was used to create, train, validate and test the CNN architecture. Caffe is a deep 229 

learnig framework and stands for Convolutional Architecture for Fast Feature Embedding 230 

(Jia et al., 2014). Results were processed using Python 2.7.13. The following parameters 231 

were used in this study in Caffe: Batch size 32, the base learning rate 1e-4, the momentum 232 

0.9, the weight decay 0.05. The learning rate policy was “inv” (learning rate decay over 233 

time) and the parameters for this policy were gamma 0.01 and power 0.5.  234 

Caffe tries to minimize the multinominal logistic loss (also known as cross-entropy 235 

classification loss) and it was used to compute the error classification during training and 236 

optimization. Stochastic gradient descent was used for the optimization of the network. 237 

Each network was trained for 50,000 iterations. In Caffe the term iteration is used instead 238 

of epoch, for this reason the term iteration is used across the text. The equivalency 239 

between epoch and iteration is as follows: 240 

 Epoch_index=floor(iteration_index x batch_size)/(number of training data samples) 241 

Convolution layers: Weights were initialized using “xavier” method. Bias were of type 242 

“constant” which initialises biases to zero. A learning rate multiplier of 1 was selected for 243 

the weights and a multiplier of 2 for the biases. Kernel sizes of 3x3 were used in this study 244 

and zero padding was of size 1. The stride was 1. 245 

Upsampling layers: Upsampling layers used the “bilinear” method. For upsampling from 246 

64x64, 32x32, 16x16 and 8x8 to 64x64 a kernel size of 1,4,8,16, a stride of 1,4,8,16 and 247 

a zero padding of size 0,1,2,4 were used, respectively. 248 

Prior to the tests several parameters of the network were tested and adjusted: base learning 249 

rate, batch number, momentum, weight decay, gamma and power. Once, these parameters 250 

were determined, all networks structures were trained using the same values 251 

Training, validation and testing of CNNs was performed on a Z820 workstation with 512 252 

GB of RAM and 16 cores Intel Xeon ES-2687W at 3.10 GHz 253 

2.6 Testing 254 



 

9 
 

2/3 of patches were randomly selected for training (252), 1/6 for validation (61) and 1/6 255 

for testing (62) by assigning a random number to each image patch. Patches were assigned 256 

to each group based on the value of the random number. This means that for the training 257 

set a total of 1,032,192 pixels (252 images x 64 rows x 64 columns) were available for 258 

training.  259 

 The following metrics were used to evaluate the performance on the test set: 260 

tp, tn, fp, fn denote true positive, true negative, false positive and false negative 261 

respectively. Positive class denotes fat, negative class denotes lean. 262 

1) Overall pixel accuracy: percentage of pixels correctly predicted (fat and lean 263 

pixels) 264 

퐴푐푐푢푟푎푐푦 =
푡 + 푡

푡 + 푡 + 푓 + 푓  265 

2) Fat recall rate: rate of pixels correctly predicted as fat into the total number of 266 

pixels labelled as fat. 267 

퐹푎푡	푟푒푐푎푙푙	푟푎푡푒 =
푡

푡 + 푓  268 

3) Fat precision rate: rate of pixels correctly predicted as fat into the total number of 269 

pixels predicted as fat.  270 

퐹푎푡	푝푟푒푐푖푠푖표푛	푟푎푡푒 =
푡

푡 + 푓  271 

4) Rate of false negatives near the areas predicted as fat (FnPFc rate): rate  of false 272 

negatives that are correctly predicted as fat (푡 )  after applying a 3x3 dilation 273 

operation on the pixels predicted as fat by the CNN.  274 

퐹푛푃퐹푐	푟푎푡푒 =
푡
푓  275 

5) Rate of false positives near the areaslabelled as fat (FpLFc rate): rate of false 276 

positives that are correctly predicted as non-fat (푡 ) after applying a 3x3 dilation 277 

operation on the pixels labelled as fat (ground truth). 278 

퐹푝퐿퐹푐	푟푎푡푒 =
푡
푓  279 

At evaluation, special attention was given to segmentation of fat in the images. FnPFc 280 

and FpLFc rates attempt to incorporate the uncertainty of manual classification 281 

(classification of contour pixels) during the preparation of the ground truth images. 282 
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Dilation operations are used in computer vision for expanding the shapes contained in an 283 

image. The size of the expansion depends on the size of the operation (3x3 in this case) 284 

or the number of times the operation is applied (1 in this case).The application of a dilate 285 

operation on the pixels predicted or labelled as fat may incorporate this uncertainty into 286 

the evaluation of performance. The results presented for the different network 287 

architectures correspond to the iteration with the best overall pixel accuracy of the test set 288 

for the last 5.000 training iterations. Then, the learned parameters of the network were 289 

used to evaluate the test set. Training data was recorded every 500 iterations. 290 

Moreover, the average time needed for the segmentation of images of the test set was also 291 

recorded.  292 

After training, validation and testing, four representative images from the test set were 293 

segmented and analysed using the worst and the best performing (overall pixel accuracy) 294 

architectures and the segmentation was compared for the two architectures.   295 

Results presented in the result and discussion section lack any statistical significance as 296 

the training, validation and testing was done only once, because of the long training times 297 

of the architectures studied in this investigation (4 months). This is quite common in many 298 

works in the field of CNN (i.e. Long, Shelhamer & Darrell, 2015; Ronneberger, Fischer 299 

& Brox, 2016;  Lin, Milan, Shen & Reid, 2017 ) and many times comparisons are based 300 

on one single training (on training, validation and test sets) due to this limitation.    301 

3. RESULTS AND DISCUSSION 302 

Fig. 5 shows the change in the multinomial logistic loss with the number of iterations for 303 

the training and test sets of the CNNs 3_128 and 3_512. These two CNNs were chosen 304 

as an example to study the learning of the network. Logistic Loss decreased more rapidly 305 

for CNN 3_128 than for CNN 3_512 due to the lower number of learnable parameters 306 

(1,478,914 vs. 23,610,368) of the network. After approximately 4000 and 6000 iterations 307 

for CNNs 3_128 and 3_512 respectively, the loss for the training and test set tended to 308 

decrease very slowly, even though the loss for the training set decreased more rapidly 309 

than for the test set. After around 25.000 iterations, the logistic losses barely changed. 310 

One of the reasons for this result is the learning rate decay and the convergence of the 311 

learning of the network. Overfitting was not observed, as the logistic loss for the test set 312 

did not increase with the number of iterations. However, training the networks for a larger 313 

number of iterations might have increased the logistic loss for the test set (not tested). 314 
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Logistic loss of the test set was lower for CNN 3_512 than for CNN 3_128. The larger 315 

number of learnable parameters of CNN 3_512 may have captured better the complexity 316 

of the segmentation for this task. However, a 16 fold increase in the number of learnable 317 

parameters only brought about a small improvement in the performance of the network. 318 

For CNN 3_128 logistic loss for the test set was only slightly lower than that of the 319 

training set. This result can be surprising, but it is not uncommon for small size sets of 320 

test data (62 images) as chance during random selection of training, validation and test 321 

sets may produce this result. The difference between the loss for the training and test set 322 

decreased with the number of iterations.  323 

Table 2 shows the results for the simple CNNs and the CNN architectures developed for 324 

this work. Simple CNN architectures performed worse (performance, lower recall and 325 

precision rates for fat segmentation) than those architectures specifically conceived for 326 

this work with the same number of filters in the first layer. Results also showed that 327 

performance in simple CNN increased with the number of filters in the first layer, but 328 

decreased with the number of layers. This latter result is not clearly observed for the 329 

complex CNNs presented in Table 2. However, it seems that 1_128 and 1_512, performed 330 

worse than other architectures with more layers. This result can be specially observed for 331 

1_512 vs 3_512 and 4_512, even though it cannot be considered conclusive due to the 332 

lack of statistical significance. As expected processing time was much lower for the 333 

simple architectures. 334 

 For the architectures conceived for this study, as the number of filters and/or the number 335 

of layers increase, the number of parameters to be adjusted increases (Table 2) and thus, 336 

the CNN is expected to fit more accurately the training set, improving overall pixel 337 

accuracy of the training set. However, in our study, the overall pixel accuracy was very 338 

high (0.988) in the most simple CNN architecture (1_128) and increased to 0.991 in the 339 

most complex CNN architectures (3_512 and 4_512). These values are similar to those 340 

obtained in other works. During training, Velázquez, Cruz-Tirado, Siche & Quevedo 341 

(2017) obtained an accuracy of 0.9992 using decision trees for the segmentation of IMF 342 

in beef. 343 

In general, increasing the number of filters and layers allows capturing better the 344 

complexity of the problem, but the overall pixel accuracy of the test set can decrease due 345 

to the well-known problem of overfitting (Hawkins, 2004), which is originated in models 346 

with more terms or more complicated approaches than necessary. In our study, the overall 347 
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pixel accuracy of the test set hardly increased with the number of filters, from 0.988 for 348 

CNNs with 1_128 filters to 0.989 for CNNs with 3_512 filters and 4_512 and it did not 349 

change with the number of layers. The CNN with the highest overall pixel accuracy was 350 

3_512. The overall accuracy tended to increase slightly with the number of learnable 351 

parameter. No drop in performance was observed with the increase of learnable 352 

parameters. Therefore, overfitting was not observed for this data and the studied 353 

architectures. 354 

The overall pixel accuracy was highly influenced by the lean tissue segmentation of the 355 

CNNs, due to the large ratio of pixels corresponding to lean tissue in the images. The 356 

precision and recall rates of fat were also studied, as they give more accurate information 357 

than overall pixel accuracy on the performance of the CNNs for the segmentation of fat. 358 

For a similar overall pixel accuracy and for a given CNN, the fat recall and precision rates 359 

are related to each other, as an increase in one of them usually results in a decrease in the 360 

other one.  In general, the fat recall rates were higher for CNN x_512 than for CNN x_128, 361 

whereas the precision rate was similar in both cases (around 0.84). These results were 362 

similar to other works found in the literature, even though metrics were not fully 363 

comparable. Jackman, Sun and Allen (2009) underestimated the number of marbling 364 

pixels (12.4% not classified as IMF) for beef. No information was given on misclassified 365 

lean pixels. For dry-cured ham, Cernadas, Dur and Antequera (2002) classified correctly 366 

90% of the fat streaks with an acceptable rate of false positives, whereas Widiyanto et al. 367 

(2013) using a slightly different metric for accuracy (dice similarity coefficient) obtained 368 

0.94 and 0.88 for the ham and IMF regions, respectively. For CNN 3_512 the dice 369 

similarity coefficient was calculated and similar values were obtained, 0.99 and 0.83 for 370 

lean and IMF regions, respectively. 371 

FnPFc and FpLFc rates showed that for x_128 and x_512, around 35-40% of the 372 

misclassified pixels were found near the contours of the fat patches in the images. Similar 373 

rates were observed for the simple CNNs 1_128_s and 1_512_s. One of the reasons for 374 

these results are the difficulties faced by the trained expert during the preparation of the 375 

ground truth images.  This amounts to using noisy data during training. Another possible 376 

reason was the lack of enough samples for training, due to the wide range of possible 377 

RGB values for the fat and lean, structures of the fat, etc. For 2_128_s, 3_128_s, 2_512_s 378 

and 3_512_s, the FpLFc rate was much higher than the FnPFc rate. This may indicate that 379 

these CNNs was overestimating the contours of the fat patches. 380 
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Processing time increased with the number of filters in the first layer and the depth of the 381 

CNN. In general, an increase in performance resulted in an increase in the processing 382 

time. High processing times (i.e 410 ms for CNN 4_512) might be a problem for the 383 

segmentation of images in real-time applications. As expected, processing time  increased 384 

with the number of filters and the depth of the network. For example, for CNN 2_128 385 

average processing time was 20 ms, whereas for CNN 2_512 was 58 ms. This represents 386 

an increase of the processing time by a factor of almost 3, for an increase by a factor of 2 387 

in the number of filters in the first layer. CNN 1_512_s  and CNN 1_128 had a similar 388 

performance (fat precision and recall rates) on the test set. However, processing time was 389 

lower for CNN 1_128 (19 ms vs. 9 ms). This fact should be further investigated. 390 

The CNN 3_512 and CNN 1_128 was selected (the best and worst performing 391 

architectures) to evaluate the segmentation of images from the test set. In general, the best 392 

performing CNN (3_512) was able to segment correctly raw images (Fig. 6a). Some small 393 

divergences can be observed in the contours of the fat regions between the segmented 394 

image using the CNN and the ground truth. In some particular images, some areas were 395 

not correctly segmented (Figs. 6b, 6c and 7). The reason for these divergences have 396 

already been discussed above. In some other cases, the convolutional network segmented 397 

fat patches that were not correctly selected during the preparation of the ground truth 398 

images (Fig. 6c).  399 

Results for CNN 3_512 and CNN 1_128 showed that in 49 images out of 62 images of 400 

the evaluation set, the CNN 3_512 had equal or higher overall pixel accuracy than CNN 401 

1_128. In those images where CNN 1_128 performed better, the differences in pixel 402 

accuracy were very small. However, in some cases CNN 3_512 was able to segment fat 403 

much better than CNN 1_128. For example, in Fig. 7, both cases did not segment correctly 404 

some of the fat pixels. However, CNN 3_512 was able to segment IMF better than CNN 405 

1_128. Probably, due to the larger number of filters and layers, the CNN 3_512 was able 406 

to store more information on fat detection from the training samples. However, the small 407 

number of samples in the training set would rather explain the poor performance of the 408 

CNN in this case for both architectures.    409 

This study was applied to 3x64x64 patches obtained from images. However, using 410 

different strategies, the algorithm could be applied to segment larger images. For 411 

example, using an overlap-tile strategy (Ronneberger, Fischer & Brox, 2015).  412 
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The good results obtained for the detection of intramuscular fat in sliced dry-cured ham 413 

suggests that this methodology can be of interest for the dry-cured ham industry and might 414 

be used to develop systems for food quality analysis in other food products. One of the 415 

advantages of this machine learning technique is that no specialized knowledge and skills 416 

in computer vision are required. However, some challenges must be addressed. Image 417 

processing with CNNs might be too slow for real-time image segmentation in industrial 418 

processes, especially for CNNs with many filters and layers. Moreover, training samples 419 

must be collected and labelled before training the CNN. Although, in food elaboration 420 

processes (i.e dry cured ham), training examples are available in large quantities, 421 

preparation of ground truth images can be time consuming and may require the expertise 422 

of food technologists. Although CNNs provides state-of-the-art performance in many 423 

computer vision applications, other algorithms should be also evaluated (Support Vector 424 

Machines, Decision Trees, etc) as long image processing times might be a problem for 425 

real-time applications in industry. 426 

Detection of intramuscular fat is the first step to efficiently quantify intramuscular fat 427 

content. Deep learning algorithms in combination with information obtained using other 428 

non-destructive technologies (Fulladosa, Gou & Muñoz, 2016; Fulladosa, Rubio-Celorio, 429 

Skytte, Muñoz & Picouet 2017; Fulladosa et al., 2018; Garrido-Novell, Garrido-Varo, 430 

Perez-Marin, Guerrero-Ginel & Kim, 2015; Gou et al., 2013) might help to find a 431 

nutritional label specific for each sliced ham pack and thus encourage consumers to adopt 432 

healthier eating habits and/or buy products according to their needs and/or preferences. 433 

Detection of colour defects, for example, due to oxidation, could be performed (i.e. using 434 

deep learning) simultaneously with the IMF segmentation. With these systems, 435 

companies could  discard and/or redirect to other process the defective products. Besides, 436 

a good detection of IMF in images may also provide a tool to improve prediction precision 437 

in other technologies. Prediction error of salt and water contents using computed 438 

tomography can be reduced with a good detection and quantification of fat content 439 

(Santos Garcés, Muñoz, Gou, Garcia-Gil & Fulladosa, 2014), leading to models that 440 

improve the optimization of the dry-cured ham elaboration process. 441 

CONCLUSIONS 442 

Results show that deep learning is able to segment correctly IMF in dry cured ham by just 443 

using training samples in combination with CNN. CNN attained a similar performance to 444 
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that of conventional image analysis algorithms, reducing development time, at the cost of 445 

requiring greater computing resources. 446 

The increase in the complexity of the network helps to improve the performance, but up 447 

to a certain level, as the network may end up overfitting and processing time of images 448 

may increase considerably. One of the challenges is the need to obtain good training data 449 

for training the CNN, due to the difficulty in classifying pixels correctly and objectively 450 

even by trained experts. CNN opens new possibilities to solve complex detection 451 

problems in the food industry without the need of developing complex algorithms, 452 

facilitating the deployment of these technologies in the food industry.    453 
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Figure 1. Overview of the image acquisition system. 587 
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 595 

Figure 2. Overview of the learning scheme for fat segmentation using a convolutional 596 
neural network (CNN) 597 
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 620 

 621 

Figure 3. Main types of layers in CNNs: a) a convolution operation with a filter of  2x2 622 
pixels and depth 1 followed by a Rectifier Linear Unit (ReLU) activation function; b) A 623 
2x2 pixels max pooling layer followed by a nearest neighbour upsampling layer from a 624 
2x2 to a 4x4 pixels matrix. 625 
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 627 

Figure 4. Architecture of the convolutional neural network architecture used in this work 628 
with 512 filters in the first layer and four layers. Convx, ReLUx, Poolx, Upsamplex 629 
indicate convolutional, rectified linear unit, pooling and upsampling operations 630 
respectively.  631 
  632 
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 633 

Figure 5. Multinomial Logistic Loss vs number of iterations (from 1000 to 50000 634 
iterations) for the training and test sets of  CNN 3_128 and CNN 3_512. 635 
  636 
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 637 

a) 638 

 639 
b) 640 

  641 
c) 642 

  643 
      I    II   III 644 

Figure 6. Images of slices of dry cured ham segmented with CNN 3_512. Raw image (I), 645 
segmented image with CNN 3_512 (II) and ground truth image (III). Red circle denotes 646 
areas with poor segmentation (b) and possible misclassified ground truth pixels (c) 647 
 648 
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 650 

 651 
(a)                             (b)                               (c)                             (d) 652 

 653 

Figure 7. Segmentation of an image of a slice of dry cured ham. Raw image (a), 654 
segmented image by CNN 1_128 (b), segmented image by CNN 3_512 (c) and ground 655 
truth image (d). Red circles denotes areas with poor segmentation. 656 
  657 
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 658 

Architecture 
name 

Kernel 
size 

Number 
of layers 

Number of filters in 
layers 1/2/3/4 

Upsampling 
included 

Number of learnable 
parameters 

1_128_s 3x3 1 128 2 3,586 

2_128_s 3x3 2 128 3 298,754 

3_128_s 3x3 3 128 4 1,478,914 

1_512_s 3x3 1 512 2 7,170 

2_512_s 3x3 2 512 3 4,733,954 

3_512_s 3x3 3 512 4 23,610,368 

1_128 3x3 1 128 1,2 3,586 

2_128 3x3 2 128/256 1,2,3 298,754 

3_128 3x3 3 128/256/512 1,2,3,4 1,478,914 

4_128 3x3 4 128/256/512/1024 1,2,3,4,5 6,198,530 

1_512 3x3 1 512 1,2 7,170 

2_512 3x3 2 512/1024 1,2,3 4,733,954 

3_512 3x3 3 512/1024/2048 1,2,3,4 23,610,368 

4_512 3x3 4 512/1024/2048/4096 1,2,3,4,5 99,111,938 

Table 1. Description of the parameters of several CNN architectures. 659 
  660 
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Architecture Overall 
pixel 
accuracy 
(training 
set) 

Overall 
pixel 
accuracy 
(test set) 

Fat recall 
rate (test 
set) 

Fat 
precision 
rate (test 
set)  

Rate of 
false 
negatives 
in the 
predicted 
fat 
contour 
(test set ) 

Rate of 
false 
positives 
in the 
labelled 
fat 
contour 
(test set) 

Processing 
time per 
image (ms) 

1_128_s 0.986 0.987 0.741 0.834 0.360 0.409 10 

2_128_s 0.981 0.982 0.562 0.807 0.234 0.613 15 

3_128_s 0.97 0.971 0.180 0.683 0.066 0.572 20 

1_512_s 0.988 0.988 0.770 0.834 0.388 0.455 19 

2_512_s 0.985 0.985 0.668 0.820 0.305 0.551 55 

3_512_s 0.975 0.975 0.312 0.742 0.127 0.623 101 

1_128 0.988 0.988 0.778 0.840 0.376 0.347 9 

2_128 0.988 0.988 0.776 0.846 0.393 0.360 16 

3_128 0.989 0.989 0.785 0.842 0.377 0.395 22 

4_128 0.989 0.989 0.790 0.843 0.405 0.371 42 

1_512 0.989 0.989 0.793 0.847 0.396 0.377 22 

2_512 0.99 0.989 0.81 0.841 0.415 0.391 58 

3_512 0.991 0.989 0.816 0.84 0.412 0.399 114 

4_512 0.991 0.989 0.803 0.846 0.395 0.394 410 

Table 2. Performance results of the studied CNN architectures 661 
 662 




