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Abstract 

Middle East respiratory syndrome (MERS) represents an important respiratory disease 

accompanied by lethal outcome in one third of human patients. In recent years, several 

investigators developed protective antibodies which could be used to prevent prospective human 

epidemics. In the current study, eight human monoclonal antibodies (mAbs) with neutralizing and 

non-neutralizing capabilities, directed against different epitopes of the MERS-coronavirus (MERS-

CoV) spike (MERS-S) protein, were investigated with regard to their ability to 

immunohistochemically detect respective epitopes on formalin-fixed paraffin-embedded (FFPE) 

nasal tissue sections of MERS-CoV experimentally infected alpacas. The most intense 

immunoreaction was detected using a neutralizing antibody directed against the receptor binding 

domain S1B of the MERS-S protein, which produced an immunosignal in the cytoplasm of ciliated 

respiratory epithelium and along the apical membranous region. A similar staining was obtained 

by two other mAbs which recognize the sialic acid-binding domain and the ectodomain of the 

membrane fusion subunit S2, respectively. Five mAbs lacked immunoreactivity for MERS-CoV 

antigen on FFPE tissue, even though they belong, at least in part, to the same epitope group. In 

summary, three tested human mAbs demonstrated capacity for detection of MERS-CoV antigen 

on FFPE samples and may be implemented in double or triple immunohistochemical methods. 
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1. Introduction 

Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel lineage C betacoronavirus, 

which was first identified in a patient from the Kingdom of Saudi Arabia in June 2012 (Zaki et al., 

2012). As of May 2019, MERS-CoV has been detected in 27 countries and infected more than 

2,300 patients (World Health Organization (2019) Middle East respiratory syndrome coronavirus, 

available at https://www.who.int/csr/don/24-April-2019-mers-saudi-arabia/en/). Although the 

disease vanished almost completely from headlines and newspapers, it is still a potential threat 

to human health since approximately one third of all affected patients succumb to acute 

respiratory distress syndrome and renal dysfunction (Zumla et al., 2015). 

Even though MERS-CoV is most likely derived from an ancestral reservoir in bats (Corman et al., 

2014; Cui et al., 2013; de Wit and Munster, 2013; Memish et al., 2013; Munster et al., 2016; van 

Boheemen et al., 2012), transmission to humans occurs mainly via dromedaries, which represent 

a major reservoir for the virus in large parts of the Middle East, the Canary Islands, Africa, and 

Southern Asia (Falzarano et al., 2017; Haagmans et al., 2014; Hemida et al., 2017; Saqib et al., 

2017). Infection has also been demonstrated in farmed alpacas from a region of Qatar where 

MERS-CoV is endemic (Reusken et al., 2016), but not in any other livestock species (Reusken et 

al., 2013). Recently, experimental inoculation of pigs and llamas with MERS-CoV resulted in a low 

to moderate/high levels of viral replication and shedding, respectively (de Wit et al., 2017; 

Vergara-Alert et al., 2017). Similarly, minimal virus shedding was detected in goats, sheep, and 

horses after experimental infection, but only goats developed neutralizing antibodies (Adney et 

al., 2016). Due to the close interactions of humans with potentially susceptible and contagious 

livestock species in certain parts of the world, the development of an effective vaccination 

strategy against MERS-CoV was proposed early after its initial discovery and was recently followed 
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up by the development of protective antibodies by different protocols (Agrawal et al., 2016; Corti 

et al., 2015; Houser et al., 2016; Jiang et al., 2014; Johnson et al., 2016; Li et al., 2015; Pascal et 

al., 2015; Qiu et al., 2016; Tang et al., 2014; Widjaja et al., 2019). Widjaja and colleagues (2019) 

developed a set of protective neutralizing and non-neutralizing human monoclonal antibodies 

(mAbs) which target different epitopes of the MERS-CoV spike (MERS-S) protein. 

In the present study, these mAbs were tested for immunohistochemsitry to detect respective 

epitopes on formalin-fixed paraffin-embedded (FFPE) nasal tissue sections of MERS-CoV infected 

alpacas. Immunohistochemistry is a well-established and powerful method which is frequently 

used for diagnostic purposes and evaluation of animal experiments. Simple protocols allow 

precise correlation between the presence and severity of lesions and the amount of viral antigen 

in the respective localization (Duraiyan et al., 2012). Even though there are several mAbs and 

polyclonal antibodies available for the detection of the MERS-CoV nucleocapsid and spike protein 

on FFPE tissue (Haverkamp et al., 2018), these antibodies are all derived from rabbits and mice, 

respectively (https://www.biocompare.com, accessed March 11, 2019). However, for double or 

triple immunohistochemistry and -fluoresence labeling, it can be useful to have access to epitope-

specific antibodies from different species, which can be used to visualize viral antigen in tissue 

sections. It was therefore the aim of the present study to evaluate the suitability of different 

human anti-MERS-S mAbs for detection of the respective antigen on FFPE material. 
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2. Materials and methods 

2.1. Human monoclonal antibodies 

The development of the eight diverse human mAbs directed against different epitopes of MERS-

S protein has been published previously (Widjaja et al., 2019). Shortly, generation of anti-MERS-

S H2L2 mAbs was achieved by recurrent immunization of transgenic H2L2 mice, which encode the 

human immunoglobulin variable regions, with the respective antigens and adjuvants (for 

preparation of antigens see original publications (Li et al., 2017; Mou et al., 2013; Walls et al., 

2016; Widjaja et al., 2019). At day 74, four days after the last application, spleen and lymph nodes 

were harvested and hybridoma cell lines were generated using the SP2/0 myeloma cell line. For 

production of recombinant mAbs, cDNA’s encoding the variable heavy and light chain regions of 

anti-MERS-S H2L2 mAbs were cloned into expression plasmids containing the human IgG1 heavy 

chain and Ig kappa light chain constant regions, respectively. Recombinant human anti-MERS-S 

mAbs were produced in HEK-293T cells following transfection. Antibodies were purified from 

supernatants and were screened for MERS-S reactivity and neutralizing capacity. Eight different 

mAbs (Table 1) were selected based on epitope distribution and neutralizing capacity.  

2.2. Tissue 

Formalin-fixed tissue of nasal turbinates from two experimentally infected alpacas was obtained 

from an animal trial recently implemented at the Research Center for Animal Health (Centre de 

Recerca en Sanitat Animal, CReSA, Barcelona, Spain). The mucosa was carefully removed from 

underlying bone and embedded in paraffin according to a routinely used protocol. Serial sections 

of 4 µm thick were mounted on coated glass slides (Superfrost Plus®, Menzel Co.) and the first 

section was stained with HE for evaluation by light microscopy and subsequent sections were 
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processed for immunohistochemistry. For negative control, nasal turbinate of a non-infected 

alpaca (collected during routine necropsy at the Department of Pathology, University of 

Veterinary Medicine Hannover, Germany) was used. The animal died due to cachexia related to 

non-respiratory disease. 

2.3. Immunohistochemistry 

Sections were dewaxed in Roticlear® (Roth C. GmbH & Co. KG) and subsequently rehydrated in 

isopropanol and 96% ethanol (Roth C. GmbH & Co. KG). Endogenous peroxidase activity was 

blocked by incubation of sections in 85% ethanol with 0.5% H2O2 (VWRTM International GmbH) 

for 30 min at room temperature and antigen retrieval was performed by incubation in citrate 

buffer (2.1 g citric acid monohydrate in 1 l distilled water, adjusted with NaOH to pH = 6.0) for 20 

min in a microwave (800 W). In a preliminary experiment two of the eight antibodies (1.10f3 and 

1.2g5) were additionally tested without pretreatment and with enzymatic digestion by Proteinase 

K antigen retrieval solution (Merck KGaA) according to the manufacturer’s protocol. All sections 

were transferred to Shandon CoverplatesTM (Thermo Electron GmbH) and nonspecific binding was 

blocked by inactivated 20% goat serum diluted in phosphate buffered saline (PBS) including 1% 

bovine serum albumin (BSA; PBS/BSA) for 30 minutes. Afterwards sections were incubated with 

the primary antibody (1.2g5, 1.6c7, 1.10f3, 1.6f9, 4.6e10, 7.7g6, 3.5g6 and 1.8e5) in their 

respective dilution (Table 1) for 90 min at room temperature and the secondary biotinylated 

antibody diluted in PBS (1:200) was added. Incubation for 60 min at room temperature was 

followed by treatment with the avidin-biotin-peroxidase complex (Vectastain ABC Kit Standard, 

VectorLaboratories) according to the manufacturer’s protocol. Visualization of the reaction was 

achieved by addition of chromogen 3,3-diaminobenzidine tetrahydrochloride (DAB, 0.05%, Sigma 
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Aldrich Chemie GmbH) and 0.03% H2O2. Sections were finally slightly counterstained with Mayer’s 

hematoxylin (Roth C. GmbH & Co KG). For positive control and elucidation of virus distribution, 

additional sections were stained with two different commercially available, previously published 

monoclonal mouse and polyclonal rabbit anti-MERS-CoV nucleocapsid antibodies (Sino Biological 

Inc.; Haagmans et al., 2016; Haverkamp et al., 2018), respectively. For negative controls, the 

primary antibody was replaced by ascites fluid from Balb/c mice (1:1,000) and normal rabbit 

serum (1:3,000), respectively. Moreover, all antibodies were applied to tissue of a non-infected 

alpaca (section 2.2). 

 

3. Results and Discussion 

Evaluation of HE stained slides by light microscopy revealed a mild to moderate, multifocal, 

lymphoplasmahistiocytic and suppurative rhinitis characterized by low numbers of intraepithelial 

neutrophils and lymphocytes and infiltration of the lamina propria and submucosa by low to 

moderate numbers of lymphocytes, single plasma cells, and macrophages (Fig. 1A, B). These 

findings are reminiscent of previous observations in other large animal species though lesions in 

alpacas are relatively mild and lack the necrotizing component that has been described for 

dromedaries, llamas, and pigs (Adney et al., 2014; Haagmans et al., 2016; Vergara-Alert et al., 

2017). The commercially available monoclonal and polyclonal anti-MERS-CoV nucleocapsid 

antibodies, which were used as positive controls, revealed a strong intracytoplasmic and cilia-

associated staining pattern in numerous cells (Fig. 1C, D) according to formerly published results 

(Haagmans et al., 2016; Haverkamp et al., 2018). A specific staining was absent in all negative 

controls as expected. 
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For evaluation of human mAbs by immunohistochemistry, two of the tested antibodies (1.2g5 

and 1.10f3) were applied in three different dilutions and three different pretreatments in a 

preliminary experiment to identify the best method for the use of human mAbs on FFPE tissue 

(Table 1). As a result, heat-induced antigen retrieval and application of the antibody to the lowest 

dilution revealed the best staining effects. According to these results, all other antibodies (1.6c7, 

1.6f9, 4.6e10, 7.7g6, 3.5g6, 1.8e5) were tested with heat-induced antigen retrieval and in the 

lowest dilution.  

The use of the 1.2g5 antibody in a 1:5 dilution with heat-induced antigen retrieval showed the 

strongest signal of all tested non-commercially available antibodies. Detected antigen was 

present multifocally in the cytoplasm of ciliated respiratory epithelium and segmentally along the 

apical membranous region of few infected cells (Fig. 2A). The observed staining pattern was 

comparable to descriptions by others investigating the distribution of MERS-CoV in tissue sections 

of different infected animal species (Adney et al., 2014; Haagmans et al., 2016; Haverkamp et al., 

2018; Vergara-Alert et al., 2017) but the number of labeled cells was considerably lower. Staining 

with the same antibody without pretreatment revealed a similar distribution of viral antigen in a 

comparable number of cells but a less prominent expression pattern (Fig. 2B), which is most likely 

linked to the lack of antigen unmasking which takes place during antigen retrieval (Shi et al., 

2011). Detection of MERS-CoV antigen by the 1.2g5 antibody was almost completely absent with 

pretreatment by enzymatic digestion in all three dilutions, resulting only in a pale brownish signal 

interpreted as non-specific background staining (data not shown). The antibody 1.10f3 showed a 

strong non-specific background staining in all dilutions and pretreatments. A moderately intense 
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antigen-specific signal was detected multifocally in cilia of few cells using the lowest dilution and 

citrate pretreatment (Fig. 2C). 

Of these six remaining antibodies (1.6c7, 1.6f9, 4.6e10, 7.7g6, 3.5g6, 1.8e5), only antibody 1.6c7 

showed a mild multifocal staining of cilia accompanied by a strong background reactivity (Fig. 2D). 

The other five antibodies did not reveal any recognizable specific staining of MERS-CoV antigen 

on FFPE tissue along with no to very mild (1.6f9, 4.6e10, Fig. 3A, B), mild (7.7g6, 1.8e5, Fig. 3C, D) 

and strong (3.5g6, Fig. 3E) non-specific background staining. By contrast, all antibodies displayed 

a distinct signal by immunofluorescence staining of MERS-CoV-infected Huh-7 cells in culture 

(Widjaja et al., 2019). Possible explanations for the lack of immunoreactivity on FFPE tissue 

include effacement of conformational epitopes by formalin fixation and/or antigen retrieval 

protocols (Smedley et al., 2007). 

All tested antibodies in the present study were directed against MERS-S and belong to six distinct 

epitope groups that interfere with three critical entry functions in vivo. In particular, 1.2g5, 7.7g6, 

1.6f9, 1.8e5, and 4.6e10 are neutralizing antibodies directed against the receptor binding domain 

S1B of the MERS-S protein (Widjaja et al., 2019), which facilitates virus binding to the DPP4 

receptor on the host cell surface (Mou et al., 2013; Raj et al., 2013). The neutralizing antibodies 

1.6c7 and 3.5g6 bind to the ectodomain of the membrane fusion subunit S2 which mediates 

fusion of the viral and cellular membranes (Li et al., 2017; Widjaja et al., 2019). By contrast, 

antibody 1.10f3 is a non-neutralizing antibody that recognizes the sialic acid-binding domain 

(Widjaja et al., 2019). Since one antibody of each functional group was able to detect viral antigen 

on FFPE tissue, the suitability for use in immunohistochemistry cannot be predicted from its 

function in vivo. 
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4. Conclusion 

The present study shows that three tested human mAbs, designated 1.2g5, 1.10f3 and 1.6c7, are 

suitable to detect MERS-CoV antigen on FFPE tissue sections of experimentally infected alpacas, 

though to a limited extend. The best immunolabelling results for all three antibodies were 

achieved at the lowest dilution (1:5) with heat-induced antigen retrieval. However, results 

demonstrate that the suitability of the antibodies was unrelated to the function of their target 

epitopes in vivo and that commercially available monoclonal and polyclonal anti-nucleocapsid 

antibodies generally appear more suitable to detect MERS-CoV antigen on FFPE sections in 

routine diagnostics. However, for certain purposes such as double or triple 

immunohistochemistry, human mAbs might represent a promising alternative.  
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Figure 1. Representative HE findings in respiratory epithelium of the nasal turbinates of MERS-

CoV-infected alpacas and immunohistochemical reactions of the commercially available 

positive controls for comparison. (A) Multifocal infiltration of lamina propria and submucosa by 

moderate numbers of lymphocytes, macrophages and single neutrophilic granulocytes (asterisk). 

(B) Exocytosis of single neutrophilic granulocytes (grey arrow). (C and D) Abundant viral antigen 

was detected multifocally in the cytoplasm and along the apical membranous region of epithelial 

cells using a monoclonal mouse (C, Sino Biological Inc.) and polyclonal rabbit anti-MERS-CoV 

nucleocapsid antibody (D, Sino Biological Inc.) with citrate pretreatment, in a dilution of 1:70 and 

1:2,000, respectively. Both antibodies exhibited a similar staining intensity. (A, B) HE staining; 

400x, (C, D) Avidin-biotin-peroxidase complex method with 3,3′-diaminobenzidine as chromogen; 

400x.  
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Figure 2. Representative positive immunohistochemical reactions for human monoclonal 

antibodies. (A) Antibody 1.2g5 with citrate pretreatment exhibited a strong multifocal MERS-CoV 

antigen specific signal in the cytoplasm of ciliated respiratory epithelial cells (arrow) and 

segmentally along the apical membranous region (arrow heads). (B) The same protocol without 

pretreatment revealed a much fainter but similarly distributed staining of cytoplasm (arrow) and 

ciliary base (arrow heads). (C) Antibody 1.10f3 with citrate pretreatment displayed a strong 

diffuse background staining and only few positively stained cilia (arrowhead). Single 

intraepithelial plasma cells displayed a strong false positive intracytoplasmic staining (white 

arrow). (D) Antibody 1.6c7 with citrate pretreatment exhibited also a strong diffuse background 

staining and only few positive staining cilia (arrow heads). (A-D) Avidin-biotin-peroxidase complex 

method with 3,3′-diaminobenzidine as chromogen; 400x. 
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Figure 3. Representative negative immunohistochemical reactions for human monoclonal 

antibodies. Specific staining for MERS-CoV antigen was absent for the antibodies 1.6f9 (A), 4.6e10 

(B), 7.7g6 (C), 1.8e5 (D) and 3.5g6 (E), respectively. Reactions were accompanied by mild to severe 

non-specific, intracytoplasmic background staining. (A-E) Avidin-biotin-peroxidase complex 

method with 3,3′-diaminobenzidine as chromogen; 400x. 
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Table 1. Antibodies, clonality, species, antigen retrieval, dilution, secondary antibodies and 

results  

Antibody 
Clonality, host 

species 
(lot number) 

Protein 
content 
[µg/ml] 

Antigen 
retrieval 

Dilution 
Secondary 
antibody 

Result 

1.2g5 

mc, human 

0.23 # 1:5, 1:10, 

1:20 

GaH-b 

+ 

1.10f3 0.27 # 1:5, 1:10, 

1:20 

(+) 

1.6c7 0.27 

citrate 

1:5 (+) 

1.6f9 0.23 1:5 - 

4.6e10 0.43 1:5 - 

7.7g6 0.77 1:5 - 

1.8e5 0.25 1:5 - 

3.5g6 0.91 1:5 - 

MERS-CoV 
nucleocapsid 

(Sino 
Biological) 

mc, mouse 
(HB10AP1804-B) 

1.0 1:70 GaM-b +++ 

MERS-CoV 
nucleocapsid 

(Sino 
Biological) 

pc, rabbit 
(HB07AP1208) 

1.0 1:2000 GaR-b +++ 

mc, monoclonal; MERS-CoV, Middle East respiratory syndrome coronavirus; GaM-b, goat anti-
mouse IgG biotinylated; GaH-b, goat anti-human IgG biotinylated; GaR-b, goat anti-rabbit IgG 
biotinylated; pc, polyclonal; #, antigen retrieval was performed with boiling citrate buffer, 
proteinase K and omission of pretreatment 
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