

This article has been accepted for publication in Veterinary Record, 2019 following peer review, and the Version of Record can be accessed online at <u>http://dx.doi.org/10.1136/vr.105219</u>.

© Authors Klaumann, Francini, Florencia Correa-Fiz, Marina Sibila, José Ignacio Núñez, and Joaquim Segalés. 2019. Reuse of this manuscript version (excluding any databases, tables, diagrams, photographs and other images or illustrative material included where a another copyright owner is identified) is permitted strictly pursuant to the terms of the Creative Commons Attribution-Non Commercial 4.0 International (CC-BY-NC 4.0) <u>http://creativecommons.org</u>

Document downloaded from:

Infection dynamics of Porcine circovirus 3 (PCV-3) in longitudinally sampled pigs from four Spanish farms

Journal:	Veterinary Record
Manuscript ID	vetrec-2018-105219.R2
Article Type:	Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Klaumann, Francini; Institut de Recerca i Tecnologia Agroalimentaries Correa-Fiz, Florencia Sibila, Marina; Institut de Recerca i Tecnologia Agroalimentaries Núñez, José Ignacio; Institut de Recerca i Tecnologia Agroalimentaries Segales, J.; UAB, Sanitat i Anatomia Animals
Abstract:	Porcine circovirus 3 (PCV-3) is a recently discovered virus in domestic pigs and wild boar. The virus has been described in pigs with different clinical/pathological presentations and healthy animals, but the dynamics of infection is currently unknown. The aim of this study was to longitudinally monitor PCV-3 infection in 152 pigs from 4 different healthy farms (A, B, C and D) by means of PCR in serum. The selected animals were sampled five (farm A) or six (farms B-D) times from weaning until the end of the fattening period. PCV-3 genome was found in pigs from all tested ages and farms; few animals had an apparent long-term infection (4 to 23 weeks). PCV-3 frequency of detection remained fairly uniform along tested ages within farms A and C, but was more variable among sampling times in farms B and D. Eight partial genome sequences were obtained from six different animals. Phylogenetic tree and pairwise distance analysis showed high similarity among sequences and with available genomes from different countries. This is the first study on PCV-3 infection dynamics in longitudinally sampled pigs. Most pigs got infection during their life, although PCV-3 did not appear to be linked with any specific age.

SCHOLARONE[™] Manuscripts

1		
2 3		
4	1	Infection dynamics of <i>Porcine circovirus 3</i> (PCV-3) in longitudinally sampled pigs
5	2	from four Spanish farms
6	Z	from four spanish farms
7 8		
8 9	3	
10		
11	4	Running title: Infection dynamics of PCV-3
12 13		
13 14	_	
15	5	
16		
17 18	6	Francini Klaumann ^{1,2} Florencia Correa-Fiz ² Marina Sibila ² José Ignácio Núñez ²
10		
20	7	Joaquim Segalés ^{3,4}
21		
22 23	8	¹ CAPES Foundation, Ministry of Education of Brazil, Caixa Postal 250, Brasília – DF
23 24		
25	9	70040-020, Brazil
26		
27 28	10	² IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la
29	10	ikink, centre de Recerca en Samar Annaa (CRESR, ikink Orb), campus de la
30	11	Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
31		
32 33	10	311AP Contro do Rogardo on Sanitat Animal (CROSA IRTA LIAP) Compus do la
34	12	³ UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la
35	13	Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
36 37	10	Chityerblau Platonoma de Barcelona, 00195 Benarella, Barcelona, Spani
38		
39	14	⁴ Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193
40	15	Bellaterra, Barcelona, Spain
41 42	15	benaterra, barcelona, span
43		
44	16	
45 46		Bellaterra, Barcelona, Spain Correspondence E-mail address: joaquim.segales@uab.cat
46 47	17	Correspondence
48		
49	18	E-mail address: joaquim.segales@uab.cat
50 51	10	E-mail address. Joaquini.segates@dab.eat
52		
53	19	
54		
55 56	20	
50 57		
58	71	
59	21	
60		

Summary

Porcine circovirus 3 (PCV-3) is a recently discovered virus in domestic pigs and wild boar. The virus has been described in pigs with different clinical/pathological presentations and healthy animals, but the dynamics of infection is currently unknown. The aim of this study was to longitudinally monitor PCV-3 infection in 152 pigs from 4 different healthy farms (A, B, C and D) by means of PCR in serum. The selected animals were sampled five (farm A) or six (farms B-D) times from weaning until the end of the fattening period. PCV-3 genome was found in pigs from all tested ages and farms; few animals had an apparent long-term infection (4 to 23 weeks). PCV-3 frequency of detection remained fairly uniform along tested ages within farms A and C, but was more variable among sampling times in farms B and D. Eight partial genome sequences were obtained from six different animals. Phylogenetic tree and pairwise distance analysis showed high similarity among sequences and with available genomes from different countries. This is the first study on PCV-3 infection dynamics in longitudinally sampled pigs. Most pigs got infection during their life, although PCV-3 did not appear to be linked hen with any specific age.

Keywords

Porcine circovirus 3 (PCV-3); dynamics; longitudinal; PCR; domestic pigs

Veterinary Record

45	1 INTRODUCTION
----	----------------

46	Recently, an emerging circovirus species was discovered and named Porcine
47	circovirus 3 (PCV-3) ^{1,2} . The newly described virus belongs to the family Circoviridae,
48	genus Circovirus ³ . Circovirus virions have a non-enveloped, icosahedral structure
49	containing a circular single-stranded DNA (ssDNA) molecule. Viral DNA includes two
50	major opening reading frames (ORFs), which encode for capsid and replicase proteins ^{4,5} .
51	PCV-3 is the third member of this genus able to infect swine. PCV-1 was the first
52	described member of this family and is considered non-pathogenic for pigs ^{6–8} . In contrast,
53	PCV-2 is associated with several clinical/pathological conditions and considered one of
54	the most important pathogen of the pig industry causing important economic losses 9.
55	Since the first description in North America ^{1,2} , many reports have identified PCV-
56	3 in Europe ^{10–12} , Asia ^{13–16} and South America ^{17,18} , suggesting a worldwide circulation.
57	Moreover, retrospective studies have shown PCV-3 circulation at least since the 1990s
58	^{19–21} and, according to phylogenetic analyses, the common ancestor was dated around 50
59	vears ago 18,22 . The virus has also been detected recently in wild boar with fairly high

years ago ^{18,22}. The virus has also been detected recently in wild boar with fairly high
prevalence, suggesting a potential role as reservoir for the domestic swine ^{23,24}.

The first metagenomics analyses revealed PCV-3 genome in sows with porcine dermatitis and nephropathy disease (PDNS) and chronic reproductive failure¹. Subsequently, PCV-3 was found in tissue homogenates in pigs with a causally unexplained myocarditis ². Thereafter, reports identified PCV-3 genome in nursery and fattening pigs with different clinical/pathological presentations as respiratory disorders ^{20,25} and in neonatal piglets with congenital tremors ²⁶. In addition, the genome was detected in apparently healthy sows and fattening pigs as well as in stillborns ^{11,25,27}. Based on current published data, it is not demonstrated whether PCV-3 infection is linked
to a particular pathological condition or any specific age ¹⁹.

Based on available literature, it looks evident that PCV-3 is present in almost all pig ages (from fetuses to adults). However, a comprehensive study of the infection dynamics of this virus in a healthy pig population has not been described so far. Therefore, the aim of the present study was to longitudinally assess the dynamics of PCV-3 infection in a set of pigs from four clinically healthy conventional farms from Spain.

76 2| MATERIAL AND METHODS

77 2.1| Study design

Serum samples corresponding to 152 pigs from four selected clinically healthy conventional farms from Spain were chosen for this study (Table 1). Samples were collected longitudinally (sampling the same individual repeatedly) during years 2012 and 2016 for different study purposes ^{28–30}. In the first farm (Farm A), 34 piglets were sampled at 2, 8, 13, 18 and 24 weeks of age. In farm B, 44 piglets were sampled at 2, 7, 12, 18, 22 and 25 weeks of age. From farm C, 28 animals were followed up at 2, 6, 10, 14, 18 and 25 weeks. Finally, 46 piglets were sampled at 4, 8, 12, 16, 21 and 25 weeks of age from farm D. The weeks were grouped according to the production phase (lactation, from 1 to 4 weeks of age; nursery, from 5 to 9 weeks of age; and growing/fattening; >10 weeks of age) (Figure 1).

89 2.2 DNA extraction and specific polymerase chain reaction (PCR) for PCV-3
90 detection and sequencing

Page 5 of 21

1

Veterinary Record

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13 14	
15	
16	
17	
18 19	
20	
21	
22	
23	
24	
25 26	
27	
28	
29	
30 21	
31 32	
33	
34	
35	
36	
37 38	
39	
40	
41	
42	
43 44	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

DNA was extracted from 200 µL of serum using MagMAX[™] Pathogen
RNA/DNA Kit (Applied Biosystems®) according to the manufacturer's protocol. Double
distilled water and a plasmid containing the full-length PCV-3 genome included into a
PCV-3 negative serum ³¹ were used as negative and positive controls, respectively.

To detect the presence of PCV-3 DNA in tested samples, a conventional PCR 95 assay was performed based on a previous protocol described by Franzo and colleagues 31 . 96 97 with slight modifications. Three μ L of extracted DNA were added to a PCR mix and amplified using the below described thermal protocol. The reaction was carried out in a 98 final volume of 50 µL mixture containing 1x PCR Buffer, 400 µM of dNTPs, 0.2 µM of 99 100 forward primer located in genomic positions 233-255 (5'-AAAGCCCGAAACACAGGTGGTGT-3'), 0.2 µM of reverse primer placed between 101 nucleotide positions 742 and 718 (5'- TTTTCCCGACATCCTGGAGGACCAAT- 3'), 102 103 one Unit of DNA polymerase Platinum[™] SuperFi[™] (Invitrogen[™]) and double distilled water. The PCR thermic protocol was 98°C for 5 min followed by 40 cycles of 94°C for 104 105 30 s, 58°C for 15 s, and 72°C for 1 min, and a final elongation at 68°C for 7 min.

106 For sequencing purposes, the extracted DNA from PCV-3 PCR positive samples 107 amplified as described above, using as forward primer 5'was 108 CACCGTGTGAGTGGATATAC-3' and reverse primer 5'-CACCCCAACGCAATAATTGTA- 3' (located in the genomic positions 74-94 and 109 1,144-1,123, respectively) under the thermal conditions described by Fux and 110 collaborator³². In order to increase the amount of amplicon to be sequenced the PCR 111 products were re-amplified with the same protocol. All PCR products were 112 electrophoretically separated on 1.2% TAE agarose gel. The PCV-3 PCR-positive 113 samples were purified using NucleoSpin® Gel and PCR Clean-up (Macherey-Nagel) 114

according to the manufacturer's protocols and the quality and quantity of genomic DNAwas analysed with BioDrop DUO (BioDrop Ltd).

118 2.3 |Sequence analyses

PCV-3 positive samples were selected and submitted to Sanger-sequencing,
which was performed with BigDye® Terminator v3.1 Cycle Sequencing Kit, following
the manufacturer's protocol at the Genomic and Bioinformatics Service of the *Universitat Autònoma de Barcelona* (Barcelona, Spain). The sequencing reactions were analysed
using an ABI PRISM 3130xl Genetic Analyzer (Applied Biosystem®).

Sequences and chromatograms were manually explored to trim bad-quality bases with BioEdit 7.2³³. The assembly of the consensus sequences extracted from different fragments was attempted using DNASTAR Lasergene software ³⁴. The partial genomes obtained were aligned using Clustal Omega³⁵ with 74 complete genome sequences available at the GenBank (Supplementary Table 1) and trimmed accordingly for comparison purposes. A phylogenetic tree was constructed with the Maximum-Likelihood (ML) method based on the best predicted-substitution model (lowest BIC score) by means of the Tamura-Nei plus Gamma substitution model ³⁶ using MEGA software version 7³⁷. The robustness of the clade was evaluated with 1,000 bootstrap replicates. The obtained sequences were deposited at the GenBank (references MH780665-MH780672).

- - 137 2.4 Statistical analyses

1		
2 3 4	138	Statistical analyses were performed using XLSTAT 365 Microsoft Excel 2016.
5 6	139	To test for significant differences between weeks of age in each tested farm, the Fisher's
7 8	140	exact test was performed. The significance level was set as 0.05.
9 10 11	141	
12 13 14	142	3 RESULTS
15 16 17	143	3.1 PCV-3 detection by PCR
18 19 20	144	PCV-3 genome was detected in all tested farms and sampling points during the
20 21 22 23	145	study period.
24 25	146	Overall, PCV-3 PCR positivity was found in 28 out of 34 (82.35%), 32 out of 44
26 27	147	(72.72%), 22 out of 28 (78.57%) and 34 out of 46 (71.74%) pigs in farms A, B, C and D,
28 29	148	respectively. Results of the PCV-3 frequency of detection obtained by PCR in each age-
30 31 32	149	group are summarised in Figure 1. Individual PCR results for each pig from each farm
33 34 35	150	are displayed in Supplementary Table 2.
36 37	151	Globally, the PCV-3 positive percentage was fairly uniform within each tested
38 39	152	farm (Figure 1). In farm A, PCV-3 DNA detection frequency ranged from 23.53% (8 out
40 41 42	153	of 34 pigs) at the second sampling to 32.35% (11 out of 34 animals) at the last one. In
42 43 44	154	farm B, PCV-3 genome presence varied from 9.09% (4 out of 44, first sampling) to
45 46	155	36.37% (15 out of 44, fifth sampling). Such frequency ranged from 10.71% (3 out of 28,
47 48	156	fifth sampling) to 34.71% (10 out of 28, fourth sampling) in farm C, and from 6.52% (3
49 50 51	157	out of 46, third sampling) to 34.78% (16 out of 46, second sampling) in farm D. No
52 53	158	statistically significant differences were found across the tested weeks of age (p>0.05) in
54 55	159	farms A and C; however, differences in PCV-3 frequency were detected among tested
56 57 58 59 60	160	ages in farms B and D (Figure 1).

2	
3	
4	
5	
6	
7 8	
0	
9	
10	
11	
12	
12 13 14 15 16	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20 27	
2/	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

In most of the cases, the detection of PCV-3 was either intermittent or found once 161 in life (Supplementary Table 1). In farm A, 3 out of 28 (10.7%) animals showed infection 162 intermittently and 10 animals (35.71%) had a continuous PCR-positive result during a 163 period ranging from 5 to 22 weeks; only one pig was positive at all sampling times. In 164 farm B, intermittent detection of PCV-3 was observed in 10 out of 44 animals (22.7%); 8 165 166 more pigs (18.18%) showed continuous PCR positivity during a period of 4 to 23 weeks; 167 again, one of them was PCV-3 PCR positive at all sampling points. In farm C, 8 out of 28 (28.6%) animals had PCV-3 DNA in serum intermittently and only two more animals 168 (7.14%) were positive during two consecutive samplings. Finally, in farm D, most pigs 169 170 were PCV-3 PCR positive once during the study period (26 out of 46; 56.52%), 5 out of 46 (10.87%) had an intermittent detection of PCV-3 during a period from 5 to 17 weeks, 171 and, finally, 3 more had continuous PCR PCV-3 detection ranging from 4 to 9 weeks. 172 173 The numbers of animals PCV-3 PCR positive in more than one sampling are depicted in Table 2. 174

175

176 3.2| Sequence alignment and phylogenetic analysis

In total, 8 PCV-3 partial sequences were finally obtained across three tested farms 177 (Farms B and C) corresponding to six different animals; from two of them, sequences at 178 two sampling points were obtained. Sequences were retrieved from four farm B pigs at 179 12, 18, 22 and 18 plus 22 weeks of age, respectively, one farm C animal at 10 and 18 180 weeks and another at 25 weeks of age. The obtained sequences comprised part of the rep 181 protein gene (954 nucleotides). The phylogenetic tree and pairwise distance demonstrated 182 high similarity among obtained PCV-3 partial sequences and also with the corresponding 183 sequence fragment of the complete Spanish genome from a domestic pig available at 184 GenBank (>99%) (Figure 2). In fact, most sequences obtained from farm B (4 out of 5) 185

Veterinary Record

were identical to the one obtained from a 25 week-old pig from farm C, and clustered close to USA and China sequences. The two sequences from the same pig (10 and 18 weeks of age) of farm C were identical, and very close (99.9%) to the existing Spanish complete genome sequence from the GenBank from a domestic pig. One sequence from farm B clustered together with a German sequence, although nucleotide identity was >99% as well.

193 4 DISCUSSION

Several epidemiological reports have detected PCV-3 genome in pigs from all production phases, associated or not with pathological disorders ^{1,2,25–27}. However, the lack of an existing comprehensive approach on the dynamics of infection justified to carry out specific research on longitudinally sampled animals and assess how the virus is circulating in conventional healthy farms. Moreover, already published studies testing PCV-3 frequency in different age-groups are fragmented and comparisons are not possible since information came from different sources, farms and countries. Therefore, the present study represents the first approach to investigate the PCV-3 infection dynamics in the same subset of animals.

Obtained results confirmed that this virus is apparently widespread (at least in the four selected farms), able to infect pigs at all tested ages and to cause long-term infection in few animals. In fact, there was not a particular PCV-3 infection dynamics pattern that could be inferred from the frequency of detection in the four studied farms. The higher frequency of PCV-3 genome detection occurred at different time-points in the studied herds, which might be linked with the potential existence of maternally derived immunity or its duration.

However, while this might be the case for farms B, C and D (lower frequency of PCV-3 infection at early ages), a different situation was found in farm A, where a moderate percentage of infected piglets was already detected at 2 weeks of age (around 26%). It is possible that such amount of PCV-3 PCR positive pigs at early ages is related with intrauterine infections, but the fact that a low-moderate percentage of pigs were found PCV-3 infected at all tested ages poses certain discussion elements on how the pig immune system reacts against this virus. Definitively, further studies are needed to assess the circulation patterns of PCV-3 as well as to develop techniques to monitor the immune response against the virus, still lacking at present.

The most obvious comparison of PCV-3 infection dynamics is with that of PCV-2, another member of the *Circoviridae* family. In the specific case of this latter infectious agent, the virus is considered of ubiquitous nature ³⁸ and can be found in different age groups. However, a distinct pattern of dynamics of infection is seen for PCV-2 in non-vaccinated farms, with usual low or very low prevalence during the lactating period, loss of maternally derived immunity between 6-10 weeks of age and subsequent peak of infection during the late nursery or early fattening period ^{39–41}. In general, the prevalence at the peak of infection can be rather high, being close to 90-100% of infected pigs in some cases ^{40,41}, which is fairly different from current observations for PCV-3. An interesting point would have been the study of the infection status of sows, since at least for PCV-2 is known that infection at early ages is correlated with the percentage of infection in sows ⁴¹. Sow sera were not available for the present study, but PCV-3 has already been detected in 29% of the tested serum from sows in farms located in Poland and 47.37% in Thailand ^{12,42}.

In the present study a quantitative PCR described by Franzo and colleagues ³¹ was
 attempted in some of the PCV-3 positive samples (data not shown). High Ct values were

Veterinary Record

obtained in most of the cases, and the viral load was below the quantification limit of the PCR (10 copies of DNA/ μ L). These results are in agreement with studies that detected low amount of PCV-3 DNA in serum samples ^{12,25,32}, which would suggest a subclinical infection. Moreover, this was probably the main reason why only a few number of PCV-3 sequences were obtained.

Phylogenetic analyses and pairwise distance estimation with the eight PCV-3 partial sequences obtained throughout this study demonstrated high similarity with the corresponding sequences available at GenBank. Moreover, the sequences from the same animal (farm C) at 10 and 18 weeks of age were identical, as well as the sequences from the animal (farm B) analyzed at 18 and 22 weeks. These results would suggest possible long-lasting or persistent infections of PCV-3 in some animals with the same viral variant. Taking into account the low number of sequences obtained, it was not possible to assess if more than one PCV-3 strain was circulating in the same animal over time. However, at least two different strains were detected in both farms B and C taking into account the phylogenetic distribution of obtained sequences, indicating that the potential circulation of more than one strain in the same farm and, eventually in the same animal, is feasible. In any case, all sequences obtained were very closely phylogenetically related, indicating the low variability found so far with PCV-3 in comparison with PCV-2, and further suggesting a much lower mutation rate of the novel virus compared with other circoviruses ¹⁹. Importantly, the potential long-lasting or persistent infections seem to be relatively frequent based on obtained results; a variable percentage ranging from 6.5% (farm D) to 25% (farm B) of analyzed pigs were PCR positive during 3 or more samplings. Long duration of infection is rather typical of ssDNA viruses infecting swine such as PCV-2^{39,40} and Torque teno sus viruses^{43,44}.

> Obtained partial sequences were very close each other although a broad mixing among sequences from Spain and different countries were found. However, in all cases the nucleotide identity among them was very high (>99%), suggesting that minimal variation does currently exist among PCV-3 strains. Of course, the complete genome would have been more accurate in order to distinguish potential different variants infecting the studied farms.

> In summary, this is the first longitudinal study to assess the infection dynamics of PCV-3 in commercial healthy farms. Although a particular general infection dynamics pattern was not able to be ascertained, the obtained data confirmed that PCV-3 circulated in the chosen clinically healthy farms at all tested ages and most pigs got infection during their lifetime.

271 ACKNOWLEDGEMENTS

Authors would like to acknowledge the funding of the E-RTA2017-00007-00-00
project, from the *Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria*(Spanish Government). The funding from CERCA Programme / *Generalitat de Catalunya* to IRTA is also acknowledged.

277 CONFLICT OF INTEREST STATEMENT

All authors have declared no conflict of interest.

REFERENCES

281 1. PALINSKI R, PIÑEYRO P, SHANG P *et al*. A Novel Porcine Circovirus
 282 Distantly Related to Known Circoviruses Is Associated with Porcine Dermatitis

1			
2 3 4 5	283 284		and Nephropathy Syndrome and Reproductive Failure. McFadden G, ed. <i>J Virol</i> 2017;91(1):e01879-16; doi:10.1128/JVI.01879-16
6 7 8 9	285 286 287	2.	PHAN TG, GIANNITTI F, ROSSOW S <i>et al.</i> Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic inflammation. <i>Virol J</i> 2016:13;184; doi:10.1186/s12985-016-0642-z
10 11 12	288 289	3.	International Committee for the Taxonomy of Viruses, ICTV 2017. www.ncbi.nlm.nih.gov/ICTVdb/ (acessed 5 August 2018)
13 14 15 16 17	290 291 292 293	4.	RITCHIE BW, NIAGRO FD, LATIMER KS <i>et al.</i> Ultrastructural, protein composition, and antigenic comparison of psittacine beak and feather disease virus purified from four genera of psittacine birdS. <i>J Wildl Dis</i> 1990;26(2):196-203; doi:10.7589/0090-3558-26.2.196
18 19 20 21	294 295 296	5.	ROSARIO K, BREITBART M, HARRACH B <i>et al.</i> Revisiting the taxonomy of the family Circoviridae: establishment of the genus Cyclovirus and removal of the genus Gyrovirus. <i>Arch Virol</i> 2017;162; doi:10.1007/s00705-017-3247-y
22 23 24 25	297 298 299	6.	TISCHER I, GELDERBLOM H, VETTERMANN W <i>et al.</i> A very small porcine virus with circular single-stranded DNA. <i>Nature</i> 1982;295(5844):64-66; doi:10.1038/295064a0.
26 27 28 29	300 301 302	7.	TISCHER I, RASCH R, TOCHTERMANN G. Characterization of papovavirus- and picornavirus-like particles in permanent pig kidney cell lines. <i>Zentralbl</i> <i>Bakteriol Orig A</i> 1974;226(2):153—167
30 31 32 33 34 35	303 304 305 306	8.	ALLAN GM, MCNEILLY F, CASSIDY JP <i>et al.</i> Pathogenesis of porcine circovirus; experimental infections of colostrum deprived piglets and examination of pig foetal material. <i>Vet Microbiol</i> 1995;44(1):49-64; doi:10.1016/0378-1135(94)00136-K
36 37 38 39	307 308 309	9.	SEGALÉS J. Porcine circovirus type 2 (PCV2) infections: Clinical signs, pathology and laboratory diagnosis. <i>Virus Res</i> 2012;164(1):10-19; doi: 10.1016/j.virusres.2011.10.007
40 41 42 43	310 311 312	10.	FACCINI S, BARBIERI I, GILIOLI A <i>et al.</i> Detection and genetic characterization of Porcine circovirus type 3 in Italy. <i>Transbound Emerg Dis</i> 2017;64(6):1661-1664; doi:10.1111/tbed.12714
44 45 46 47 48	313 314 315 316	11.	FRANZO G, LEGNARDI M, HJULSAGER CK <i>et al.</i> Full-genome sequencing of porcine circovirus 3 field strains from Denmark, Italy and Spain demonstrates a high within-Europe genetic heterogeneity. <i>Transbound Emerg Dis</i> 2018;65(3):602-606; doi:10.1111/tbed.12836
49 50 51 52	317 318 319	12.	STADEJEK T, WOŹNIAK A, MIŁEK D <i>et al.</i> First detection of porcine circovirus type 3 on commercial pig farms in Poland. <i>Transbound Emerg Dis</i> 2017;64(5):1350-1353; doi:10.1111/tbed.12672
53 54 55 56	320 321 322	13.	KU X, CHEN F, LI P, <i>et al.</i> Identification and genetic characterization of porcine circovirus type 3 in China. <i>Transbound Emerg Dis</i> 2017;64(3):703-708; doi:10.1111/tbed.12638
57 58 59 60	323 324 325	14.	KWON T, YOO SJ, PARK CK <i>et al.</i> Prevalence of novel porcine circovirus 3 in Korean pig populations. <i>Vet Microbiol</i> 2017;207:178-180; doi:10.1016/j.vetmic.2017.06.013

1 2		
3 326 4 327 5 328	7	SHEN H, LIU X, ZHANG P, <i>et al.</i> Genome characterization of a porcine circovirus type 3 in South China. <i>Transbound Emerg Dis</i> 2017; doi:10.1111/tbed.12639
7 329 8 330 9 331)	HAYASHI S, OHSHIMA Y, FURUYA Y <i>et al.</i> First detection of porcine circovirus type 3 in Japan. <i>J Vet Med Sci</i> 2018;80(9):1468-1472; doi:10.1292/jvms.18-0079
11 332 12 333 13 333 14 334	3	TOCHETTO C, LIMA DA, VARELA APM <i>et al.</i> Full-Genome Sequence of Porcine Circovirus type 3 recovered from serum of sows with stillbirths in Brazil. <i>Transbound Emerg Dis</i> 2017; doi:10.1111/tbed.12735
15 16 335 17 336 18 337 19 338	5 7	SARAIVA GL, VIDIGAL PMP, FIETTO JLR <i>et al</i> . Evolutionary analysis of Porcine circovirus 3 (PCV3) indicates an ancient origin for its current strains and a worldwide dispersion. <i>Virus Genes</i> 2018;54(3):376-384; doi:10.1007/s11262-018-1545-4
20 21 339 22 340 23 341 24)	KLAUMANN F, FRANZO G, SOHRMANN M <i>et al.</i> Retrospective detection of Porcine circovirus 3 (PCV-3) in pig serum samples from Spain. <i>Transbound Emerg Dis</i> 2018;0(0); doi:10.1111/tbed.12876
25 342 26 343 27		SUN J, WEI L, LU Z <i>et al.</i> Retrospective study of porcine circovirus 3 infection in China. <i>Transbound Emerg Dis</i> 2018;65(3):607-613; doi:10.1111/tbed.12853
28 344 29 345 30 346 31	5	YE X, BERG M, FOSSUM C <i>et al.</i> Detection and genetic characterisation of porcine circovirus 3 from pigs in Sweden. <i>Virus Genes</i> 2018;54(3):466-469; doi:10.1007/s11262-018-1553-4
32 347 33 348 34 349 35	3	FU X, FANG B, MA J <i>et al.</i> Insights into the epidemic characteristics and evolutionary history of the novel porcine circovirus type 3 in southern China. <i>Transbound Emerg Dis</i> 2017; doi:10.1111/tbed.12752
36 350 37 351 38 352 39 353 40 353	L 2	FRANZO G, TUCCIARONE CM, DRIGO M <i>et al.</i> First report of wild boar susceptibility to Porcine circovirus type 3: High prevalence in the Colli Euganei Regional Park (Italy) in the absence of clinical signs. <i>Transbound Emerg Dis</i> 2018;0(0); doi:10.1111/tbed.12905
41 354 42 355 43 356	5	KLAUMANN F, DIAS-ALVES A, CABEZÓN O <i>et al.</i> Porcine circovirus 3 is highly prevalent in serum and tissues and may persistently infect wild boar (Sus scrofa scrofa). <i>Transbound Emerg Dis</i> 2018;0(0); doi:10.1111/tbed.12988
45 46 357 47 358 48 359	3	ZHAI S-L, ZHOU X, ZHANG H <i>et al.</i> Comparative epidemiology of porcine circovirus type 3 in pigs with different clinical presentations. <i>Virol J</i> 2017;14(1):222; doi:10.1186/s12985-017-0892-4
49 50 360 51 361 52 362	L	CHEN GH, MAI KJ, ZHOU L <i>et al.</i> Detection and genome sequencing of porcine circovirus 3 in neonatal pigs with congenital tremors in South China. <i>Transbound Emerg Dis</i> 2017;64(6):1650-1654; doi:10.1111/tbed.12702
53 54 363 55 364 56 365	1	ZHENG S, WU X, ZHANG L <i>et al</i> . The occurrence of porcine circovirus 3 without clinical infection signs in Shandong Province. <i>Transbound Emerg Dis</i> 2017;64(5):1337-1341; doi:10.1111/tbed.12667
57 58 366 59 367 60 368	7	FRAILE L, SIBILA M, NOFRARÍAS M <i>et al.</i> Effect of sow and piglet porcine circovirus type 2 (PCV2) vaccination on piglet mortality, viraemia, antibody titre and production parameters. <i>Vet Microbiol</i> 2012;161(1):229-234; doi:

1 2			
3	369		10.1016/j.vetmic.2012.07.021
4 5 6 7 8 9	370 371 372 373	29.	OLIVER-FERRANDO S, SEGALÉS J, LÓPEZ-SORIA S <i>et al.</i> Evaluation of natural porcine circovirus type 2 (PCV2) subclinical infection and seroconversion dynamics in piglets vaccinated at different ages. <i>Vet Res</i> 2016;47:121; doi:10.1186/s13567-016-0405-2
10 11 12 13 14	374 375 376 377	30.	FENG H, SEGALÉS J, FRAILE L <i>et al</i> . Effect of high and low levels of maternally derived antibodies on porcine circovirus type 2 (PCV2) infection dynamics and production parameters in PCV2 vaccinated pigs under field conditions. <i>Vaccine</i> 2016;34(27):3044-3050; doi: 10.1016/j.vaccine.2016.04.088
15 16 17 18 19	378 379 380 381	31.	FRANZO G, LEGNARDI M, CENTELLEGHE C <i>et al.</i> Development and validation of direct PCR and quantitative PCR assays for the rapid, sensitive, and economical detection of porcine circovirus 3. <i>J Vet Diagnostic Investig</i> 2018:1040638718770495; doi:10.1177/1040638718770495
20 21 22 23 24	382 383 384	32.	FUX R, SÖCKLER C, LINK EK <i>et al.</i> Full genome characterization of porcine circovirus type 3 isolates reveals the existence of two distinct groups of virus strains. <i>Virol J.</i> 2018;15:25; doi:10.1186/s12985-018-0929-3
24 25 26 27 28	385 386 387	33.	HALL TA. Bioedit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. <i>Nucleic Acids Symp Ser</i> 1999;41:95-98.
29 30 31 32	388 389 390	34.	BURLAND TG. DNASTAR's Lasergene Sequence Analysis Software BT - Bioinformatics Methods and Protocols. In: Misener S, Krawetz SA, eds. Totowa, NJ: Humana Press; 1999:71-91; doi:10.1385/1-59259-192-2:71
33 34 35 36	391 392 393	35.	THOMPSON JD, GIBSON TJ, PLEWNIAK F <i>et al</i> . The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. <i>Nucleic Acids Res</i> 1997;25(24):4876-4882.
37 38 39 40	394 395 396	36.	TAMURA K, NEI M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. <i>Mol Biol Evol</i> 1993;10(3):512-526; doi: 10.1093/oxfordjournals.molbev.a040023.
41 42 43 44	397 398 399	37.	KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. <i>Mol Biol Evol</i> 2016;33(7):1870-1874; doi:10.1093/molbev/msw054.
45 46 47	400 401	38.	SEGALÉS J, ALLAN GM, DOMINGO M. Porcine circovirus diseases. Anim Heal Res Rev 2005;6. doi:10.1079/AHR2005106
48 49 50 51	402 403 404	39.	LAROCHELLE R, MAGAR R, D'ALLAIRE S. Comparative serologic and virologic study of commercial swine herds with and without postweaning multisystemic wasting syndrome. <i>Can J Vet Res</i> 2003;67
52 53 54 55 56	405 406 407 408	40.	SIBILA M, CALSAMIGLIA M, SEGALES J <i>et al.</i> Use of a polymerase chain reaction assay and an ELISA to monitor porcine circovirus type 2 infection in pigs from farms with and without postweaning multisystemic wasting syndrome. <i>Am J Vet Res</i> 2004;65; doi:10.2460/ajvr.2004.65.88
57 58 59 60	409 410 411	41.	GRAU-ROMA L, HJULSAGER CK, SIBILA M <i>et al.</i> Infection, excretion and seroconversion dynamics of porcine circovirus type 2 (PCV2) in pigs from post-weaning multisystemic wasting syndrome (PMWS) affected farms in Spain and

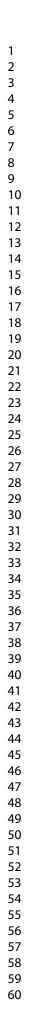
2			
3 4	412		Denmark. Vet Microbiol 2009;135; doi:10.1016/j.vetmic.2008.10.007
5 6 7 8	413 414 415	42.	KEDKOVID R, WOONWONG Y, ARUNORAT J <i>et al.</i> Porcine circovirus type 3 (PCV3) shedding in sow colostrum. <i>Vet Microbiol</i> 2018;220:12-17; doi: 10.1016/j.vetmic.2018.04.032
9 10 11 12	416 417 418	43.	SIBILA M, MARTÍNEZ-GUINÓ L, HUERTA E <i>et al.</i> Torque teno virus (TTV) infection in sows and suckling piglets. <i>Vet Microbiol</i> 2009;137(3):354-358; doi: 10.1016/j.vetmic.2009.01.008
13 14 15 16 17 18 9 20 21 22 32 42 52 67 28 29 30 122 23 24 52 67 28 29 30 122 23 24 52 67 28 29 30 122 33 45 36 37 89 40 41 42 43 44 56 57 55 57 58 960	419 420 421 422	44.	NIETO D, ARAMOUNI M, SIBILA M <i>et al.</i> Lack of effect of piglet vaccination against Porcine circovirus type 2 (PCV2) on serum viral loads of Torque teno sus virus 2 (TTSuV2). <i>Vet Microbiol</i> 2012;157(1):8-12; doi: 10.1016/j.vetmic.2011.11.028

FIGURE LEGENDS

FIGURE 1 Percentage of PCV-3 frequency on tested farms distributed according to the analysed weeks of age and production periods for farms A, B, C and D.

<text><text><text><text> FIGURE 2 Phylogenetic tree of PCV-3 based on the partial genomes obtained from pigs longitudinally sampled and the corresponding sequences from PCV-3 full genomes available at GenBank. The phylogenetic tree was constructed using the maximum-likelihood algorithm of MEGA 7 Software with 1,000 bootstraps replicates. The obtained sequences of the present study have been coloured in red.

TABLE 1 Production system, farm size and vaccination programs applied in piglets and sows in the farms under study.


Farm ID	Production system	Herd size	Sow vaccination program*	Piglet vaccination program*
Farm A	Two-site, AI-AO	1,800 sows	ADV, PPV, Ery, EC, CP, PRRSV	PCV-2, Mhyo
Farm B	Multi-site, AI-AO	3,300 sows	ADV, PPV, Ery, EC, CP	PCV-2, Mhyo
Farm C	Two-site, AI-AO	800 sows	ADV, PPV, Ery, EC, CP, PRRSV, SIV	Mhyo
Farm D	Two-site, AI-AO	1,500 sows	ADV, PPV, Ery, EC, CP, PRRSV	Mhyo
		121		

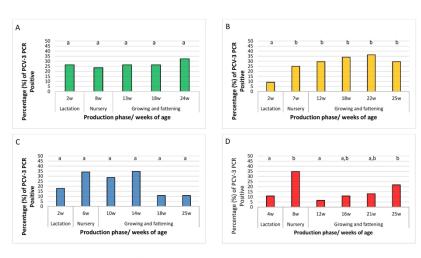

*ADV: Aujeszky's disease virus; PRRSV: Porcine reproductive and respiratory syndrome virus; PPV: Porcine parvovirus; PCV-2: Porcine circovirus 2; SIV: Swine influenza virus; Ery: Erysipelothrix rhusiopathiae; Mhyo: Mycoplasma hyopneumoniae; EC: Escherichia coli; CP: Clostridium perfringens

TABLE 2 Number and percentage of PCV-3 PCR positive and negative pigs during all the study period and number of PCV-3 PCR positive pigs
 during 1, 2, 3 and 4 or more sampling times.

, 8 445

	PCV-3 PCR positive	PCV-3 PCR	PCV-3 PCR	PCV-3 PCR	PCV-3 PCR	Pigs PCV-3
	pigs along the study	positive pigs at 1	positive pigs at 2	positive pigs at 3	positive pigs at	PCR negative at
	period	sampling	samplings	samplings	≥4 samplings	all samplings
	(%)	(%)	(%)	(%)	(%)	(%)
Farm A	28/34	15/34	10/34	2/34	1/34	6/34
	(82.35%)	(44.12%)	(29.41%)	(5.88%)	(2.94%)	(17.65%)
Farm B	32/44 (72.73%)	14/44 (31.82%)	7/44 (15.91%)	3/44 (6.82%)	8/44 (18.18%)	12/44 (27.27%)
Farm C	22/28	12/28	6/28	3/28	1/28	6/28
	(78.57%)	(42.86%)	(21.43%)	(10.71%)	(3.57%)	(21.43%)
Farm D	34/46	26/46	5/46	3/46	0/46	12/46
	(73.91%)	(56.52%)	(10.87%)	(6.52%)	(0%)	(26.09%)

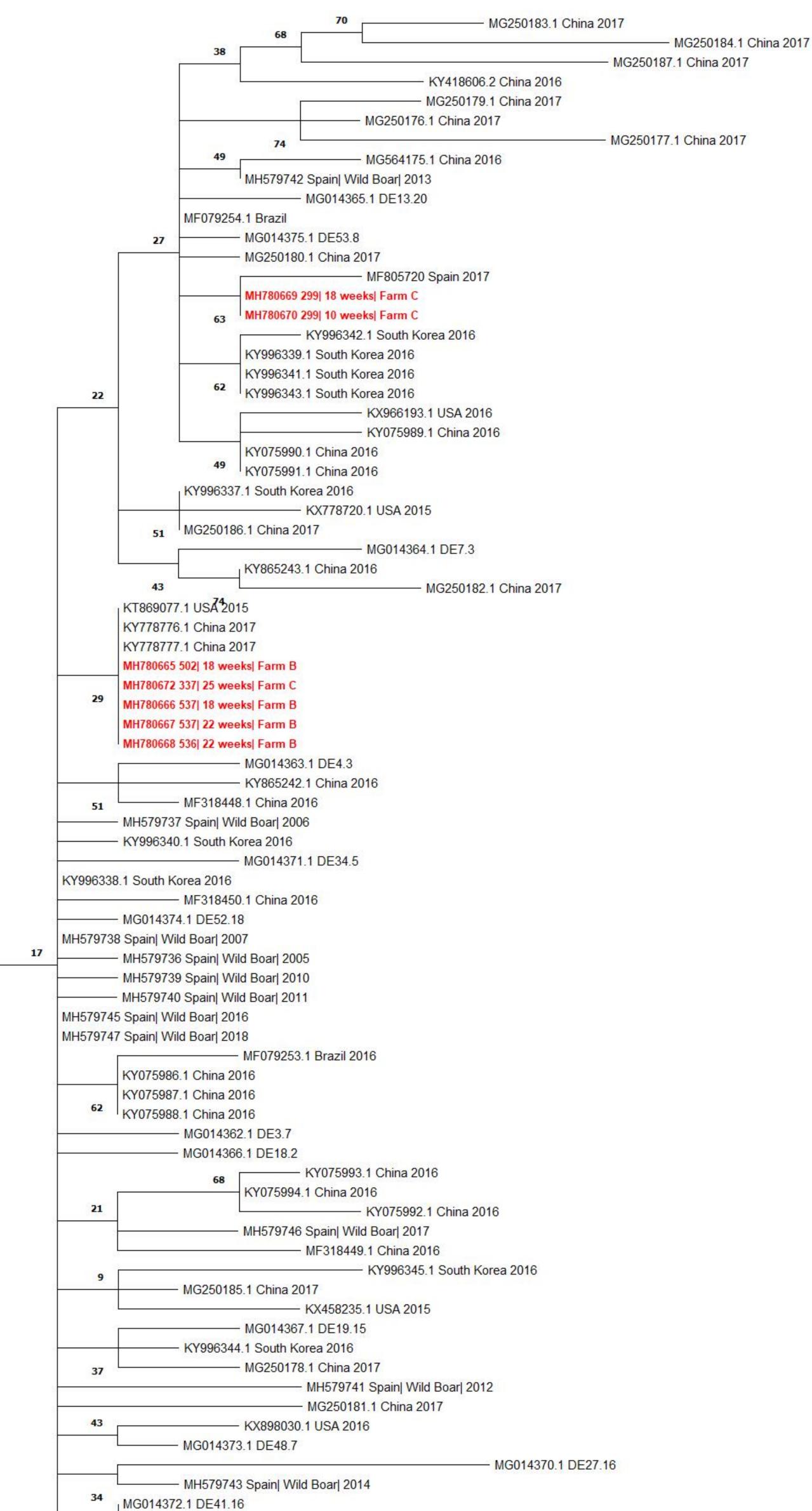

Different letters in superscript mean statistically significant differences (p<0.05) among different tested weeks of age

FIGURE 1 Percentage of PCV-3 frequency on tested farms distributed according to the analysed weeks of age and production periods. A= Farm A; B= Farm B; C= Farm C; D= Farm D.

297x210mm (300 x 300 DPI)

Page 21 of 21

 Veterinary Record

https://mc.manuscriptcentral.com/vetrec