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Abstract:  16 

There is a growing demand for clean label products and thus the elimination of curing 17 

additives in various dry-cured meats is of interest while maintaining colour characteristics. 18 

This study was aimed to examine the effect of pH at 24 h post mortem (pHSM24h ≤ 5.4; 5.4 > 19 

pHSM24h < 5.9; pHSM24h ≥5.9) and salting time (standard vs reduced) on zinc-protoporphyrin 20 

content, heme content and other physicochemical parameters of Serrano dry-cured hams 21 

manufactured without the addition of curing agents. Results showed that in those hams with 22 

higher post mortem pH heme content was increased whereas ZnPP content and proteolysis 23 

index were decreased. Reduced salting time decreased salt content whereas ZnPP and heme 24 

contents remained unaffected. Lower post mortem pH and reduced salting time led to a 25 

higher content in various free fatty acids which, in turn, were found to correlate positively 26 

with ZnPP formation. However, the observed changes in heme and ZnPP contents had no 27 

effect on the instrumental color of the final product.  28 

 29 

 30 

Keywords: porphyrin content, clean label, color development, ham processing, salt 31 

reduction  32 
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1 INTRODUCTION 33 

 34 

Consumer awareness of additives drives the industry to reformulate and change production 35 

processes to obtain clean label products. The addition of nitrate and/or nitrite during the 36 

production of dry-cured meat products, such as French Bayonne ham or Serrano ham, is 37 

common due to their effects on color, safety, and antioxidant properties (Sebranek & Bacus, 38 

2007; Skibsted, 2011). Conversely, the omission of nitrifying agents is mandatory in the Italian 39 

Parma hams (Parolari, 1996; Toldrá, 2002) and it is becoming popular in Spain (Olmos 40 

personal communication). However, the elaboration procedures and raw materials for Italian 41 

Parma ham are different from the ones used during the production of Serrano ham. Thus, it 42 

is important that the elimination of the curing agents in Serrano hams does not affect the 43 

typical color characteristics.  44 

The principal chromophore in nitrified dry-cured hams is nitrosylmyoglobin, whereas Zn-45 

protoporphyrin IX (ZnPP) has been identified as the main stable pigment in non-nitrified 46 

(sometimes also referred as uncured) hams (Wakamatsu, Nishimura, & Hattori, 2004). The 47 

formation of ZnPP in meat products, involving the replacement of Fe by Zn in the heme 48 

moiety, is mainly believed to be of enzymatic origin (Wakamatsu, Okui, Ikeda, Nishimura, & 49 

Hattori, 2004). The endogenous enzyme, ferrochelatase (also known as Zn-chelatase), is 50 

suggested to play a crucial role in the formation of ZnPP (Benedini, Raja, & Parolari, 2008; 51 

Khozroughi, Kroh, Schluter, & Rawel, 2018). This enzyme is active throughout the processing 52 

of dry-cured hams (Adamsen, Moller, Parolari, Gabba, & Skibsted, 2006; Parolari, Aguzzoni, & 53 

Toscani, 2016; Parolari, Benedini, & Toscani, 2009). The enzyme residual activity can explain 54 

the high ZnPP content found at the end of the process. However, the formation pathway of 55 

ZnPP in meat and meat products has not been completely elucidated. Several alternative non-56 

enzymatic mechanisms have been proposed in addition to different factors that can modulate 57 
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the activity of ferrochelatase (Becker, Westermann, Hansson, & Skibsted, 2012; Grossi, do 58 

Nascimento, Cardoso, & Skibsted, 2014; Parolari et al., 2016).  59 

To gain a better understanding of the factors that can influence the formation of this pigment, 60 

the relationships between the ZnPP content and various physicochemical parameters of the 61 

commercial Parma hams were previously examined (Bou, Llauger, Arnau, & Fulladosa, 2018). 62 

In this prior study, a high amount of ZnPP was associated with high salt content and increased 63 

proteolysis and marbling. These findings are in good agreement with various in vitro studies. 64 

For instance, the enzymatic formation of ZnPP in meat extracts was found to increase with 65 

high amounts of sodium chloride (Benedini et al., 2008). Paganelli et al. (2016) reported that 66 

the formation of ZnPP was favored in the presence of partly proteolyzed myoglobin. With 67 

regards to the relationship between ZnPP and marbling in hams, it was hypothesized that 68 

elevated marbling values may lead to a higher amount of free fatty acids during ham's 69 

processing. In in vitro studies, the formation of ZnPP from heme was markedly activated by 70 

fatty acids and phospholipids (Chau, Ishigaki, Kataoka, & Taketani, 2010; Taketani, 1993). In 71 

addition to these factors, there are others such as pH that may also have an effect on the 72 

formation of ZnPP in hams. In this regard, the enzyme ferrochelatase is able to remove the Fe 73 

ion from porphyrin with an optimal pH range between 5.5–6.0, whereas Zn insertion is 74 

favored at a neutral or basic pH (7.5–8.0) (Chau et al., 2010; Ishikawa et al., 2006).  75 

Therefore, the formation of the stable pigment ZnPP could be influenced by acting on some 76 

intrinsic and extrinsic factors (Bou et al., 2018). However, some factors can affect different 77 

characteristics in the final product. It is well known that hams with a low post mortem pH are 78 

more prone to proteolysis (Tabilo, Flores, Fiszman, & Toldra, 1999). Alternately, lipolysis can 79 

be enhanced with high salt contents (Andres, Cava, Martin, Ventanas, & Ruiz, 2005; Motilva, 80 

Toldra, Nieto, & Flores, 1993) and temperatures (del Olmo, Calzada, & Nunez, 2016; Martin, 81 

Cordoba, Ventanas, & Antequera, 1999). In general, the biochemical changes and effects of 82 

processing parameters on the dry-cured meat products are reasonably well understood. 83 
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However, the information regarding the factors that can affect the content of heme and ZnPP 84 

is limited, considering that the research on ZnPP content in dry-cured hams is relatively 85 

recent. In addition, most research on this pigment has been carried out in Parma hams. It is 86 

important to note that the elaboration procedures and raw materials for Italian Parma ham 87 

are different from the ones used during the production of Serrano ham. In comparison to 88 

Serrano hams, the elaboration of Parma hams uses legs from heavier pigs, which are exposed 89 

to a longer salting period. After salting, hams are exposed to resting and washing and, finally, 90 

dried and ripened to lower temperatures than Serrano ham (Parolari, 1996; Toldrá, 2002).  91 

To the best of our knowledge, no studies on ZnPP formation following the non-nitrified 92 

Serrano dry-cured ham elaboration procedures have been performed till date. Therefore, the 93 

aim of this work is to evaluate the effects of post mortem pH, salt content, and, indirectly, the 94 

free fatty acid (FFA) content on the ZnPP and heme contents in dry-cured hams after the 95 

Serrano ham elaboration procedures without the addition of nitrifying agents.  96 

 97 

2 MATERIAL AND METHODS 98 

 99 

2.1 Reagents and standards 100 

Chlorohemin (hemin) from porcine was purchased from Paneac Química SLU (Barcelona, 101 

Spain) and ZnPP was obtained from Sigma-Aldrich (St. Louis, Missouri, United States). 102 

Methanol was of HPLC grade (Merck KGaA, Darmstadt, Germany). Other ACS grade reagents 103 

were used. 104 

2.2 Dry-cured ham elaboration and sampling 105 

Twenty-eight raw ham samples from animals with crosses of Large White and Landrace 106 

breeds were selected in a commercial slaughterhouse according to the pH measured on the 107 
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semimembranosus (SM) muscle at 24 h post mortem (pHSM24h) with a penetration electrode 108 

(Crison 52-32) and a portable pH-meter (Crison PH 25, Crison Instruments, SA, Alella, Spain). 109 

A 24-h post-slaughter pH ranging between 5.7 and 6.0 has been used as a threshold for dark, 110 

firm and dry (DFD) meat (Ponnampalam et al., 2017). On the other hand, low post-mortem 111 

pH is correlated with pastiness and anomalous color. In order to minimize the appearance of 112 

defective texture in the final product, a cut-off point of pH 5.55 was reported for the 113 

classification of hams (Garcia-Rey, Garcia-Garrido, Quiles-Zafra, Tapiador, & de Castro, 2004). 114 

Accordingly, 10 hams with a low pH (pHSM24h ≤ 5.4), nine hams with normal pH (5.4 < pHSM24h 115 

< 5.9), and nine hams with high pH (pHSM24h ≥ 5.9) were selected. All hams were weighed and 116 

salted according to the traditional method, but without using the nitrifying salts (nitrite and 117 

nitrate). Hams were manually rubbed with 10 g of salt per kilogram of raw ham and then 118 

covered with salt and piled at 3 ± 2 °C and 85 ± 5% relative humidity (RH) for 1 d/kg of raw 119 

ham (standard salting) or 0.5 d/kg of raw ham (reduced salting). After salting, the hams were 120 

washed with cold water and stored at 3 ± 2 °C and 85 ± 5% RH for two months. The drying of 121 

hams was performed at 8 ± 2 °C and 70 ± 5% RH until three months of processing. The 122 

temperature was then increased to 14 °C and 60 ± 5% RH until nine months of processing and 123 

then to 25 °C until the end of process (12 months). Weight losses were monitored during the 124 

entire elaboration process. 125 

At the end of the process, the ham was boned the cushion part of the hams, which contains 126 

Biceps femoris (BF) and SM muscles, was sampled. Three two-centimeter thick slices were cut 127 

with a slicer machine, and BF muscle was excised to evaluate the instrumental color 128 

characteristics within 10 min and determine, at the end of the process, the pH in BF and SM 129 

muscles (pHBF and pHSM, respectively). Thereafter, the BF muscles from all slices were 130 

homogenized together and some aliquots were frozen at -80 °C for pigment and other 131 

physicochemical analyses. 132 

2.3 Determination of ZnPP 133 
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ZnPP was quantitatively extracted in subdued light conditions with ethyl acetate/acetic 134 

acid/dimethyl sulfoxide solvent mixture (10:2:1, v/v/v) in quadruplicate as described 135 

elsewhere with minor changes (Bou et al., 2018). In brief, two grams of ground ham samples 136 

were weighed into 50-mL capacity centrifuge tubes and homogenized using an UltraTurrax 137 

T25 model disperser (IKA Werke GmbH & Co. KG, Staufen, Germany) for one minute at 9000 138 

rpm with 10 mL of the solvent mixture while the tube was immersed in ice. The sample 139 

residues were re-extracted (few second burst) with the same volume of solvent mixture and 140 

added to the previous one. After extraction on ice for 20 min and centrifugation (1100 g, 14 141 

min, 4 °C), the supernatant was filtered through a filter paper (grade 1) and collected into a 142 

volumetric flask. The solvent extractions were performed until the final volume was attained 143 

(typically 20 mL). Two hundred microliters of extracts were transferred to 96-microwell plates 144 

and sealed with a polyolefin acrylate sealing tape. The samples were then incubated for two 145 

minutes at 30 °C and shaken for 30 sec before measuring the fluorescence of ZnPP using a 146 

Thermo Fisher Scientific Varioskan microplate reader (Waltham, Massachusetts, USA) with 147 

excitation at 416 nm and emission at 588 nm. Ethyl acetate/acetic acid/dimethyl sulfoxide 148 

solvent mixture (10:2:1, v/v/v) was used as a blank. Each sample was analyzed four times, and 149 

the excitation and emission spectra of the standards and samples were compared. ZnPP 150 

content was calculated using a calibration curve prepared with ZnPP standard solutions and 151 

expressed on the fresh weight basis, dry matter (DM) basis (ZnPP content DM = ZnPP 152 

(mg)/(sample (kg) – water (kg))), and desalted DM basis (ZnPP content DM = ZnPP (mg) 153 

/(sample (kg) – water (kg) – NaCl (kg))).  154 

2.4 Determination of heme content 155 

The total heme pigments were determined after the extraction of heme in subdued light 156 

conditions with 90% (v/v) aqueous acetone containing HCl (0.24 M) in triplicate as described 157 

in literature with some minor modifications (Hornsey, 1956). Briefly, 1.5 g of ground ham was 158 

weighed in subdued light conditions into 50-mL capacity centrifuge tubes, and 200 µL of 0.5% 159 
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(w/v) aqueous cysteine HCl solution and 10 mL of acidified acetone solution were added. The 160 

mixture was homogenized using an UltraTurrax T25 model disperser for one minute at 9000 161 

rpm while the tube was immersed in ice. The sample was further macerated on ice for one 162 

hour in the dark and thereafter centrifuged for 15 min (1100 g at 4 °C). The supernatant was 163 

filtered through filter papers (grade 42) and collected in a volumetric flask with maximum 164 

protection from light. An aliquot was filtered through a PTFE syringe filter (0.45 µm) before 165 

injection (40 µL) into an Agilent HPLC 1100 series instrument (Agilent Technologies, Inc., Santa 166 

Clara, California, United States) equipped with a Luna C18 column (150 x 4.6 mm, 5 µm, 100 167 

Å; Phenomenex, Torrance, California, USA) and a UV/Vis detector set at 414 nm. Aqueous 168 

acetic acid (2%) and methanol were used as mobile phases A and B, respectively. Heme was 169 

eluted with a gradient in which phase B was increased from 60 to 100% in 5 min and then 170 

maintained for 10 min at a constant flow rate of 1 mL/min. Each sample was analyzed three 171 

times. The total heme content was calculated by means of a calibration curve prepared with 172 

chlorohemin standard solutions and expressed on a fresh weight basis, DM basis (heme 173 

content DM = heme (mg)/(sample (kg) – water (kg))), and desalted DM basis (heme content 174 

DM = heme (mg)/(sample (kg) – water (kg) – NaCl (kg))). The ratio between ZnPP and heme 175 

contents was also calculated. 176 

2.5 Physicochemical determinations  177 

The analyses were conducted in duplicate unless specified. The color was measured in 178 

triplicate on the surface of the BF muscle on two-centimeter thick slices immediately after 179 

slicing. A colorimeter (Minolta CM 600d, Konica Minolta, Inc., Chiyoda, Tokyo, Japan) was 180 

used to measure the color in the CIE-Lab space (lightness (L*), redness (a*) and yellowness 181 

(b*)). The illuminant used was D65 with 10° observer angle. The final pHBF and pHSM values 182 

were determined in quadruplicate using a S40 SevenMulti pH meter (Mettler Toledo, 183 

Columbus, Ohio, United States) and an Inlab Solids Pro (Mettler Toledo) probe. The chloride 184 

content was determined according to the ISO protocol 1841-2 using a 785 DMP Titrino 185 
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potentiometric titrator (Metrohm AG, Herisau, Switzerland) and expressed as the NaCl 186 

content. The NaCl content on fresh weight basis (Salt = NaCl (g)/(100 g sample)) was 187 

calculated. Water activity (aw) was measured at 25 °C ± 0.3 with an AquaLab model Series 3 188 

TE water activity meter (Decagon Devices, Inc., Pullman, Washington, USA). The moisture was 189 

determined by drying at 103 ± 2 °C until a constant weight was reached (AOAC, 2000). The 190 

protein content was calculated by multiplying the total nitrogen content obtained via Kjeldahl 191 

digestion by a factor of 6.25 (AOAC, 2000). The non-protein nitrogen content was determined 192 

by the precipitation of proteins with trichloroacetic acid followed by the determination of 193 

total nitrogen (Careri et al., 1993). The proteolysis index was determined as a percentage of 194 

the ratio between non-protein nitrogen and total nitrogen.  195 

2.6 Lipid analysis 196 

The lipids were extracted according to the Folch extraction procedure by homogenizing 10 g 197 

of minced dry-cured ham (subcutaneous fat was previously removed) in 250 mL of 198 

CHCl3:methanol (2:1, v/v). The lipid extract was fractionated by passing 30–60 mg of lipid 199 

dissolved in 5 mL of CHCl3:methanol (2:1, v/v) through an aminopropyl column. The neutral 200 

lipids were eluted with 5 mL of CHCl3:isopropanol (2:1, v/v), FFAs with 5 mL of diethylic 201 

ether:acetic acid (2%), and phospholipids with 5 mL of methanol:HCl (9:1, v/v). The fatty acid 202 

composition of the fractionated FFAs and that of the total lipid fraction were determined by 203 

gas chromatography after methylation as described in a prior literature report (Garcia 204 

Regueiro, Gibert, & Diaz, 1994). Pentadecanoic acid was used as an internal standard for the 205 

quantification of FFAs and the extent of lipolysis (total amount FFA). The samples were 206 

analyzed in duplicate. 207 

2.7 Visual estimation of intramuscular fat 208 

To visually estimate the intramuscular fat content, high quality images were acquired using a 209 

photographic system that included a calibrated Canon EOS 50D digital camera (Canon Inc., 210 
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Tokyo, Japan) with a picture resolution of 15.1 megapixels and an objective Canon EF-S 18–211 

200 mm f/ 3.5–5.6 IS. White balance was carried out with a white card (Lastolite Ltd., 212 

Leicestershire, United Kingdom) to electronically adjust the color reproduction without 213 

showing color dominants. The camera was connected to a computer into which the images in 214 

RAW format were uploaded. The dry-cured ham slices were positioned below the camera lens 215 

and an image of the entire slice surface was acquired. Capture One Pro software (Phase One 216 

A/S Inc., Frederiksberg, Denmark) was used to perform the white balance of the RAW images 217 

and digitalize them to 667 × 1000 pixels to afford a TIF file with 16-bit color and size of 4 MB. 218 

This was considered as sufficiently high quality for computer image analysis. 219 

The visual intramuscular fat of the two different sections of BF muscles was segmented using 220 

the previously described procedures (Muñoz, Rubio-Celorio, Garcia-Gil, Guardia, & Fulladosa, 221 

2015; Santos-Garcés, Muñoz, Gou, Garcia-Gil, & Fulladosa, 2014). In brief, Matlab scripts 222 

written in-house were used for the segmentation of visual intramuscular fat using edge 223 

detection based on the discrete Fourier transform. The total area of the BF muscles and visual 224 

intramuscular fat area were segmented, and the number of pixels for each was determined. 225 

The percentage of intramuscular fat area related to the total area of the BF muscle was 226 

calculated. 227 

2.8 Statistical analysis 228 

The means of replicates were employed for the statistical analysis. To evaluate the effects of 229 

pHSM24h, salt content, and its interaction on weight loss, pigment content, and 230 

physicochemical composition, a two-way ANOVA was performed. The differences between 231 

the mean values were tested using Tukey’s test. Pearson correlations were calculated 232 

between the ZnPP content, heme content, and physicochemical parameters. Principal 233 

component analysis (PCA) was used to examine the correlations between different variables. 234 
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Statistical significance was predetermined at p < 0.05. All analyses were performed using the 235 

JMP13 statistical package (SAS Institute, Cary, North Carolina, USA).  236 

 237 

3 RESULTS  238 

The interaction between the factors post mortem pHSM24h and salting time was found to be 239 

not significant for all the studied parameters. Accordingly, this interaction is not considered 240 

in the model and the main effects are discussed separately. The overall appearances of the 241 

final dry-cured hams are similar, particularly, the color of BF muscles (Figure 1). 242 

 243 

3.1 Effect of post mortem pHSM24h  244 

As intended, the post mortem pHSM24h values are different between the groups, whereas the 245 

initial weight and weight losses during processing are similar (Table 1). During elaboration, 246 

the hams with high pHSM24h values result in a lower content of ZnPP than those for the hams 247 

with medium and low pHSM24h, regardless of the mode of expression (p < 0.05). The opposite 248 

trend is observed for the heme content. This observation explains the lower ratio between 249 

ZnPP and heme in hams with high pHSM24h in comparison to those with medium and low 250 

pHSM24h, which have similar ratios. The Instrumental color is not affected regardless of the 251 

post mortem pHSM24h (Table 1).  252 

At the end of the process, no differences are observed in final pHBF and pHSM of the medium 253 

and low post mortem pHSM24h hams (Table 1). However, the final pHBF and pHSM values are 254 

higher in hams from animals with high post mortem pHSM24h compared to those with medium 255 

and low pHSM24h. The salt contents are higher in the high pHSM24h hams than in medium pHSM24h 256 

hams. However, the salt contents in the hams with the lowest post mortem pHSM24h values are 257 

not different from those with medium and high pHSM24h. The higher salt contents in high 258 



12 
 

pHSM24h hams compared to medium pHSM24h hams are consistent with the previous findings 259 

(Ruiz-Ramirez, Arnau, Serra, & Gou, 2005). Moisture and water activity are unaffected by the 260 

post mortem pHSM24h. Similarly, the protein content is similar in all hams. However, the 261 

proteolysis index increases when pHSM24h decreases. No differences are observed in the fat 262 

content, marbling, and the extent of lipolysis (total amount of FFAs), regardless of the pHSM24h 263 

values. 264 

The fatty acid profile of the total lipid fraction of the hams is not affected by the post mortem 265 

pHSM24h (data not included). Accordingly, the average fatty acid profile of the total lipid 266 

fraction is included in Table 2. This table also shows the variation in the amounts of different 267 

FFAs with different pHSM24h values. The contents of saturated free fatty acids (SFFAs) remain 268 

unchanged. However, the content of free erucic acid (22:1 n-9) is low in hams with high post 269 

mortem pHSM24h. This is the only fatty acid affected among the fatty acids belonging to the n-270 

9 series. Free linoleic acid (18:2 n-6) is high in hams with low post mortem pHSM24h. A similar 271 

trend is observed for 20:3 n-6 and docosahexaenoic (22:6 n-3) FFA which are also affected by 272 

the variation in pHSM24h value. These results explain the increase in the total polyunsaturated 273 

fatty acid (PUFFA) content, and also of the PUFFAs corresponding to n-6 and n-3 series, at low 274 

pHSM24h.  275 

 276 

3.2 Effect of salting time 277 

After the salting step, the weight losses are higher in hams subjected to standard salting 278 

times. However, the weight losses are similar after 3, 9, and 12 months (end of the process). 279 

In addition, the salting time does not affect the porphyrin contents (ZnPP and heme). This 280 

observation explains that the ZnPP/heme ratio remains unaffected (Table 1). These results 281 

are consistent with the lack of effect on the instrumental color.  282 
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A slight increase in final pHBF and pHSM is observed in hams treated with a reduced salting 283 

time. As expected, the final salt content is lower in hams exposed to a reduced salting time 284 

compared to those subjected to standard salting time. The moisture content remains 285 

unchanged, whereas the water activity is high in hams with reduced salting time. In addition, 286 

no changes are observed in the protein content, proteolysis index, fat content, and marbling 287 

with reduced salting times (Table 1). However, the lipolysis extent is higher in hams with 288 

reduced salting time compared to that in hams subjected to standard salting time.  289 

The fatty acid profile of the total lipid fraction is not affected by the salting time (data not 290 

included). For this reason, the average of the fatty acid composition is reported in Table 2. 291 

The contents of free stearic acid (18:0) and SFFA are higher in hams exposed to reduced 292 

salting times compared to those subjected to standard salting times. However, the 293 

monounsaturated free fatty acids (MUFFAs) remain unaffected by the variation in salting 294 

time. Free linoleic acid (18:2 n-6), free arachidonic acid (20:4 n-6), and total n-6 PUFFAs are 295 

higher in hams with reduced salting time compared to those subjected to standard salting 296 

time. However, the FFA contents of the n-3 series do not change with the salting time.  297 

 298 

3.3 Relationships between parameters 299 

 300 

Principal component analysis (PCA) and Pearson’s correlation analysis were performed to 301 

examine the relationships between the obtained data. The first two dimensions of the PCA 302 

exhibit 59.3% of the variance. As shown in Figure 2, all of FFA, water activity, moisture, ZnPP 303 

content regardless of its mode of expression, proteolysis index, and the ratio of ZnPP and 304 

heme positively influence the first component. The NaCl content is strongly characterized by 305 

the first component, although it is situated on the negative axis. Final pHBF, post mortem 306 

pHSM24h and different ways of expression of the heme content are localized in similar 307 
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coordinates and affected by the 1st and 2nd dimensions. However, the coordinates of the latter 308 

parameters are opposite to those of the proteolysis index, marbling, and the ratio of ZnPP 309 

and heme. The MUFFA content, redness, and ZnPP/heme ratio are also negatively influenced 310 

by the 2nd principal component. Overall, all PUFFAs are plotted in similar coordinates and n-3 311 

PUFFAs are grouped together with the ZnPP content.  312 

The similar localization of the different ways of expression of heme and ZnPP contents (Figure 313 

2) explain the close relationships between both the contents and with other parameters. The 314 

final pHBF is highly correlated with final pHSM (r = 0.944, P < 0.001) and not shown. Likewise, 315 

post mortem pHSM24h is positively correlated with final pHSM (r = 0.730, P < 0.001) and with 316 

pHBF (r = 0.708, P < 0.001). For better clarity, Table 3 only shows the most relevant correlations 317 

between the contents of ZnPP and heme expressed on the desalted DM basis and the 318 

remaining physicochemical parameters. The ZnPP content is positively correlated with the 319 

ZnPP/heme ratio (r = 0.650, P < 0.001), free stearic acid (18:0; r = 0.379, P = 0.047), free linoleic 320 

acid (18:2 n-6; r = 0.480, P = 0.010), and free arachidonic acid (20:4 n-6; r = 0.568, P = 0.002), 321 

as well as with n-6 (r = 0.534, P = 0.003), n-3 (r = 0.446, P = 0.017), and total (r = 0.537, P = 322 

0.003) PUFFAs. Contrarily, the ZnPP content is negatively correlated with the pHBF (r = -0.516, 323 

P = 0.005) and salt content (r = -0.391, P = 0.040). The heme content is positively correlated 324 

with redness (r = 0.434, P = 0.021), pHBF (r = 0.854, P <0.001), and n-3 PUFFAs (r = 0.557, P = 325 

0.002), and negatively correlated with the ZnPP/heme ratio (r = -0.839, P <0.001), proteolysis 326 

index (r = -0.521, P = 0.004), and n-3 PUFFAs (r = -0.557, P =0.002). The ZnPP/heme ratio is 327 

positively correlated with the proteolysis index (r = 0.492, P = 0.008), free linoleic acid (r = 328 

0.391, P = 0.040), and n-6 (r = 0.397, P = 0.037), n-3 (r = 0.500, P = 0.007), and total (r = 0.406. 329 

P = 0.032) PUFFAs. However, this ratio is negatively correlated with the final pHBF (r = -0.891, 330 

P < 0.001).  331 

The onset of lipolysis causes the formation of FFA and as expected, these are highly correlated 332 

(Table 3). In addition to the existing correlations with porphyrins, the pHBF is negatively 333 
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correlated with the proteolysis index (r = -0.568, P = 0.002) and n-3 PUFFAs (r = -0.530, P = 334 

0.004). However, the proteolysis index is positively correlated to moisture (r = 0.391, P = 335 

0.040), free arachidonic acid (r = 0.474, P = 0.011), and n-6 (r = 0.377, P = 0.048), n-3 (r = 0.433, 336 

P = 0.021), and total (r = 0.383, P = 0.044) PUFFAs. The NaCl content is negatively correlated 337 

to water activity (r = -0.955, P <0.001), moisture (r = -0.735, P < 0.001) and in general, lipolysis 338 

(Table 3). The opposite trend is observed for water activity. This latter parameter is generally 339 

positively correlated with various FFAs and moisture (r = 0.845, P < 0.001), and inversely 340 

correlated to protein content (r = -0.407, P = 0.032). The fat content is positively correlated 341 

with MUFFA content (r = 0.586, P < 0.001). 342 

 343 

4 DISCUSSION 344 

 345 

4.1 Effect of post mortem pHSM24h  346 

 347 

The proximal compositions (moisture, protein, and fat) of hams at the end of the process (12 348 

months) remains unaffected by the post mortem pHSM24h (Table 1), which explains their similar 349 

appearance (Figure 1). This lack of effect on the major food components allows a better 350 

comparison between different treatments in terms of the porphyrin content. Table 1 shows 351 

the differences in the final pHBF and pHSM of hams. The ability of ferrochelatase to remove and 352 

insert the ions is regulated by pH (Chau et al., 2010). The ability of porcine ferrochelatase to 353 

form ZnPP is reported to be maximum at a pH of ≤ 6 in in vitro studies (Benedini et al., 2008; 354 

Ishikawa et al., 2006; Wakamatsu et al., 2019; Wakamatsu, Murakami, & Nishimura, 2015). It 355 

has recently been reported that the optimal pH values for ZnPP formation in porcine skeletal 356 

muscles are 5.5 and 4.75 depending on muscle fiber type (Wakamatsu et al., 2019). These 357 
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findings explain that at the end of the processing, the animals with a pHSM24h of ≥ 5.9 afford 358 

hams with lower ZnPP contents than those from animals with low pHSM24h (Table 1).  359 

The replacement of Fe ions in the protoporphyrin ring by Zn ions in hams has been mainly 360 

attributed to the demetallation of heme by ferrochelatase at low pH (Parolari et al., 2009; 361 

Wakamatsu, Okui, et al., 2004). Therefore, this explains the decreased content of ZnPP in 362 

hams from animals with high pHSM24h values (Table 1). This is in agreement with the similar 363 

coordinates of final pHBF and heme in the PCA (Figure 2), and the high correlation between 364 

the final pHBF and heme, as well as between the final pHBF and ZnPP/heme ratio. These results 365 

support the pH dependence of this enzyme and in particular, its crucial role in the removal of 366 

Fe from the porphyrin ring as a first step toward forming ZnPP.  367 

The pH value typically increases during processing, which is mainly attributed to proteolysis 368 

(Arnau, Guerrero, Casademont, & Gou, 1995; Morales, Serra, Guerrero, & Gou, 2007). 369 

However, high proteolysis indexes are usually observed in hams with low post mortem pH 370 

(Morales et al., 2007; Ruiz-Ramirez, Arnau, Serra, & Gou, 2006; Tabilo et al., 1999), which is 371 

mainly attributed to an increased cathepsin activity (Arnau, Guerrero, & Sárraga, 1998). It is 372 

worth noting that the pH at the end of the process in SM and BF muscles is very similar (Table 373 

1), which is in agreement with other authors (Arnau et al., 1995; Parolari et al., 2016). 374 

Accordingly, the increased proteolysis in hams with low pHSM24h can explain the absence of 375 

differences in pHBF and pHSM compared to those for hams with medium post mortem pHSM24h. 376 

This reasoning is also consistent with the observed correlation between the proteolysis index 377 

and pHBF. However, in a prior study on commercial Parma hams, the correlation between the 378 

final pH and proteolysis index, between final pH and ZnPP, and between the proteolysis index 379 

and heme were not found to be significant (Bou et al., 2018). It is possible that the pH values 380 

at the initial stages are particularly relevant to the formation of ZnPP because the activity of 381 

ferrochelatase decreases significantly after 3–8 months of production (Parolari et al., 2009). 382 
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Therefore, the formation of ZnPP may not only be affected by the post mortem pH, but also 383 

by the evolution of the pH during the complete elaboration process of hams.  384 

In general, the content of ZnPP in Serrano hams seems to be higher than that reported in 385 

Parma hams (Bou et al., 2018; Parolari et al., 2016) probably due to the higher process 386 

temperatures in Serrano hams. After 12 months of processing at 16 °C, Parolari et al. (2016) 387 

reported that in BF muscles the content of ZnPP averaged 59 mg/kg dry matter while the final 388 

pH was around 5.9. This pH is comparable to the recorded final pHBF in those hams with low 389 

post mortem pHSM24h. The formation of ZnPP has not been completely elucidated, and in 390 

addition to pH, other factors can be involved (Khozroughi, Braga, Wagner, & Rawel, 2019; 391 

Paganelli et al., 2016; Parolari et al., 2016). Paganelli et al. (2016) reported that the partial 392 

proteolysis of myoglobin with pepsin facilitated its interaction with ferrochelatase. According 393 

to the authors, the mild hydrolysis of the myoglobin facilitated the enzymatic removal of Fe 394 

and subsequent insertion of Zn in the porphyrin ring. In agreement with this finding, the 395 

proteolysis index is concomitant with the ZnPP/heme ratio and loss of heme (Figure 2 and 396 

Table 3). A similar relationship between the proteolysis index and ZnPP/heme ratio was 397 

observed in commercial Parma hams (Bou et al., 2018). Interestingly, the sum of porphyrins 398 

is higher at high post mortem pH than at low pH. This finding is difficult to explain but it could 399 

be attributed to an increased myoglobin oxidation at low pH and its subsequent interaction 400 

with proteins (Chaijan, Benjakul, Visessanguan, Lee, & Faustman, 2008; Richards, 2013; 401 

Thongraung, Benjakul, & Hultin, 2006). Thus, the low ZnPP/heme ratios could be partly due 402 

to a higher stability or better extractability of heme at high pH compared to those at low pH 403 

values. The relationships between the pH, proteolysis, and formation of ZnPP, as well as the 404 

stability of heme should be investigated in more depth in future studies. 405 

The proteolytic and lipolytic processes occur simultaneously during the processing of dry-406 

cured meat products and contribute to the flavor characteristics of dry-cured hams (Toldrá, 407 

1998). Muscle lipases and phospholipases are responsible for lipolysis in dry-cured hams 408 
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(Andres et al., 2005; Motilva et al., 1993). Considering that ham is rich in oleic acid, the activity 409 

of lipases can explain the correlation between fat content and MUFFAs. In addition, the 410 

concurrent lipolytic and proteolytic processes can clarify the correlation between the 411 

proteolysis index and some FFAs such as arachidonic acid, n-6 PUFFAs, n-3 PUFFAs, and total 412 

PUFFAs (Table 3). However, the presence of FFAs and phospholipids can also activate the 413 

enzymatic formation of ZnPP from heme (Chau et al., 2010). The onset of lipolysis and its 414 

effect on ferrochelatase could explain the relationship between marbling and ZnPP in Parma 415 

hams in a prior study (Bou et al., 2018). However, in the present study, the levels of marbling 416 

and lipolysis (total amount of FFA) in BF are similar at different pHSM24h values (Tables 1 and 417 

2). This can explain the lack of correlation between these parameters and ZnPP content as 418 

well as the ZnPP/heme ratio (Table 3). Despite this, the contents of free linoleic acid and other 419 

PUFFAs are higher in hams with medium and low pHSM24h compared to those in hams with 420 

high pHSM24h (Table 2). The increase in content of these PUFFAs rather than free oleic acid is 421 

likely due to the high extent of lipolysis in the phospholipid fraction (Andres et al., 2005; 422 

Toldrá, 1998). However, pHSM24h also affected salt content and this may in turn cause changes 423 

in the content of FFA.  Despite that, the free linoleic acid, n-6 PUFFAs, and total PUFFAs are 424 

correlated with the ZnPP content and ZnPP/heme ratio (Table 3). The content in FFA will be 425 

further discussed in the following section but, as suggested by other researchers, the release 426 

of certain fatty acids and phospholipids can also modulate the formation of ZnPP by 427 

ferrochelatase to some extent (Chau et al., 2010; Taketani, 1993).  428 

With regards to color, the overall redness values of these non-nitrified Serrano hams is higher 429 

than that previously found in Parma hams (Parolari et al., 2016; Parolari et al., 2009). The 430 

characteristic bright red color of Parma ham has been mainly attributed to the ZnPP content 431 

(Wakamatsu, Nishimura, et al., 2004). However, ZnPP and heme are present in relatively 432 

similar percentages in hams elaborated without the addition of nitrites (Bou et al., 2018; 433 

Wakamatsu, Nishimura, et al., 2004). The relationship between porphyrins and color is of 434 
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technological interest. However, regardless of its effect on the different contents of 435 

porphyrins, the production of dry-cured hams with a relatively broad range of pHSM24h has a 436 

small impact on the overall appearance of hams produced without the addition of curing salts 437 

at the end of the process (Figure 1 and Table 1).  438 

 439 

4.2 Effect of salting time  440 

 441 

The addition of salt in meat homogenates results in an increase in the formation of ZnPP 442 

(Becker et al., 2012; Benedini et al., 2008). This is in agreement with the results of a prior 443 

study with commercial Parma hams in which the salt content is correlated with the ZnPP 444 

content, when expressed on a dry weight basis (Bou et al., 2018). However, in the present 445 

study with Serrano processed hams, the ZnPP and heme contents are unaffected by the 446 

salting time (Table 1). Moreover, the salt content is inversely correlated with ZnPP, when 447 

expressed on desalted dry weight basis (Table 3) or on a dry weight basis (data not included). 448 

Although these results suggest that the role of salt content in the conversion of Fe porphyrin 449 

into ZnPP is less relevant than the effect of pHSM24h, further studies aimed at explaining these 450 

controversial results in dry-cured hams are needed as these utilize a narrow range of salt 451 

concentrations than those assayed in the in vitro studies. The lack of any significant effect of 452 

the salting time on ZnPP and heme contents can explain the similar instrumental color values 453 

obtained in this study (Table 1).  454 

The reduced salting time leads to a relatively low salt content in hams (Table 1) in comparison 455 

to typical content values ranging from 4.3% to 6.4% in the BF muscles of the commercial 456 

Parma hams (Bou et al., 2018). Considering that the weight losses are similar at the end of 457 

their production, the low salt content in hams subjected to reduced salting time is consistent 458 

with the increased water activities as this parameter is affected by both moisture and salt 459 
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content. Morales et al. (2007) reported that the final pH of dry-cured BF muscles reduced with 460 

an increase in the salting levels, when studying the effect of three salting levels (1%, 2% or 4% 461 

of added NaCl) and three different pH24h values (pH < 5.66; 5.66 ≤ pH ≤ 6.00; pH > 6.00). This 462 

result is in agreement with the slight increase in the final pHBF values of the hams subjected 463 

to reduced salting time in the present study (Table 1). These results can be explained by the 464 

activity of cathepsins, which has been reported to increase with the addition of salt, resulting 465 

in an increase in the final pH (Arnau et al., 1998; Gil, Hortos, & Sarraga, 1998). However, the 466 

proteolysis index remains unchanged regardless of the salting time as this effect appears to 467 

be more dependent on the post mortem pH.  468 

In pork muscle, the activity of acid lipase is increased by the addition of salt at 6-8% (Motilva 469 

& Toldra, 1993). This fact explained the decrease in the fatty acids in both neutral and polar 470 

lipid fractions during the processing of dry-cured hams with high salt contents (Andres et al., 471 

2005; Motilva et al., 1993). In the present study, the percentages of total SFFAs, MUFFAs, and 472 

PUFFAs are 32%, 26–24%, and 42–44%, respectively. This PUFFAs levels are higher than that 473 

corresponding to the total lipid fraction (Table 2). The composition of the total lipid fraction 474 

is supposed to be mainly affected by the level of marbling (i.e. neutral lipids) which was similar 475 

between salting treatments. Therefore, the relative increase in PUFFAs with respect to total 476 

polyunsaturated fatty acids (PUFAs) suggests that the lipolysis is more intense in the 477 

phospholipid fraction than in the neutral lipid fraction, which is in agreement with other 478 

authors (Andres et al., 2005; Martin et al., 1999). However, higher amounts of FFAs are 479 

expected in hams subjected to a standard salting time in comparison to those with a reduced 480 

salting time because of a decrease in fatty acids. As shown in Table 1, an opposite trend is 481 

observed herein which also agrees with results reported in previous studies (Andres et al., 482 

2005). The decreased amounts of FFAs in dry-cured hams subjected to standard salting time 483 

are attributed to the high susceptibility of PUFA to oxidation, the existence of an equilibrium 484 

between lipolysis and oxidation phenomena (Andres et al., 2005; Martin et al., 1999), and 485 
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possibly to low microbial counts. Thus, the oxidation processes can be responsible for the 486 

negative correlation between FFAs and salt content, and high contents of a number of FFAs 487 

in hams subjected to reduced salting time (Tables 2 and 3).  488 

The enzyme ferrochelatase is presumed to have an important role with regards to the 489 

formation of ZnPP in cured hams without the addition of nitrite (Parolari et al., 2016; Parolari 490 

et al., 2009). Therefore, the presence of fatty acids and phospholipids may enhance the 491 

activity of the enzyme which is located in the inner mitochondrial membrane (Chau et al., 492 

2010; Taketani, 1993). This fact may help to explain the correlations between PUFFAs and 493 

ZnPP (Table 3). However, the higher lipolysis extent in hams with a reduced salting time had 494 

no effect on pigments content.  The substitution of Fe by Zn in the heme group catalyzed by 495 

the enzyme takes place in both native and partly proteolyzed myoglobin (Khozroughi et al., 496 

2017; Paganelli et al., 2016; Wakamatsu et al., 2019). Despite that, it seems that the formed 497 

ZnPP bound to protein can be transitioned into free ZnPP during the process of incubation 498 

(Khozroughi et al., 2019). Interestingly, the formation of ZnPP in meat systems and fermented 499 

sausages has been reported without causing a decrease in heme iron content (De Maere et 500 

al., 2016; Wakamatsu et al., 2019). Thus, the formation of ZnPP in meat products can be very 501 

complex and may involve different mechanisms.  502 

 503 

5 CONCLUSIONS 504 

 505 

In the production of Serrano dry-cured hams without the addition of curing salts, low ZnPP 506 

and high heme contents are observed in hams with high pHSM24h values. The reduction of the 507 

salting time results in a decrease in the salt content but does not affect the ZnPP content. 508 

However, the proteolytic and lipolytic processes, which are affected by the post mortem pH 509 

and salt content, can also affect the formation of ZnPP. This issue should be clarified in future 510 
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studies as in the production of dry-cured hams proteolysis and lipolysis processes are 511 

concomitant and thus difficult to interpret. At the end of the process, instrumental redness 512 

seemed to be unaffected by the initial pH and salting period. Despite that, a high ZnPP content 513 

can offer technological advantages owing to its color stability compared to that of heme, 514 

which can be beneficial in obtaining a final product with better color characteristics and 515 

stability. 516 
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FIGURE CAPTIONS 673 

 674 

Figure 1. Images of the dry-cured ham sections. The hams displayed on the left (A, C, E) were 675 

exposed to standard periods of salting whereas those in the right (B, D, F) were exposed to 676 

reduced salting periods. On the top (A, B), middle (C, D) and bottom (E, F) positions are displayed 677 

those hams with low, medium and high post mortem pHSM24h, respectively.  678 

 679 

Figure 2. Principal components analysis of the content in zinc-protoporphyrin (ZnPP), heme and 680 

free fatty acid and other physicochemical parameters in non-nitrified dry-cured hams. The 681 

abbreviation aw stands for water activity. See Tables 1 and 2 for other abbreviations and units.  682 

  683 
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Table 1. Effect of post mortem pHSM24h range and salting time on weight losses during the 

elaboration of dry-cured hams and physicochemical composition of muscle Biceps femoris at 

the end of the process (12 months). 

 Post mortem pH range  Salting time 

 High Medium Low  Standard Reduced 

pHSM24h 6.12 ± 0.13 a  5.59 ± 0.03 b 5.40 ± 0.01 c   5.69 ± 0.34 5.69 ± 0.31 

Initial weight (kg) 13.1 ± 0.37 13.0 ± 0.40 12.6 ± 1.12  12.85 ± 0.78 12.85 ± 0.74 

Weight loss after salting (%) 5.4 ± 1.3 5.8 ± 1.2 6.4 ± 1.4  6.7 ± 1.1 b 5.1 ± 1.0 a 

Weight loss after 3 months (%) 21.2 ± 1.8 21.5 ± 1.0 22.4 ± 2.3  22.1 ± 2.0 21.4 ± 1.6 

Weight loss after 9 months (%) 32.4 ± 2.8 32.4 ± 1.1 33.8 ± 3.2  33.0 ± 3.1 32.8 ± 2.1 

Weight loss after 12 months (%) 36.1 ± 3.3 36.0 ± 1.1 37.5 ± 3.4  36.6 ± 3.4 36.5 ± 2.3 

ZnPP (mg/kg)1 25 ± 9 a 34 ± 7 b 36 ± 4 b  31 ± 8 33 ± 8 

ZnPP (mg/kg dm)2 67 ± 24 a  91 ± 17 b  95 ± 11 b  83 ± 22 86 ± 22 

ZnPP (mg/kg ddm)3 78 ± 29 a 105 ± 22 b 106 ± 13 b  94 ± 25 99 ± 26 

Heme (mg/kg)1 47 ± 10 b 27 ± 5 a 23 ± 10 a  31 ± 12 34 ± 15 

Heme (mg/kg dm)2 128 ± 26 b 74 ± 14 a 61 ± 22 a  82 ± 34 93 ± 40 

Heme (mg/kg ddm)3 145 ± 30 b 84 ± 15 a 67 ± 26 a  93± 37 103 ± 47 

ZnPP/heme ratio 0.52 ± 0.14 a  1.28 ± 0.38 b  1.73 ± 0.58 b  1.27 ± 0.76 1.11 ± 0.54 

L*  43 ± 2.0 42 ± 1.6 43 ± 1.4  43± 1.5 42 ± 1.8 

a*  11 ± 1.3 11 ± 0.3 12 ± 0.9  11 ± 0.8 11 ± 1.2 

b*  6 ± 0.5 6 ± 0.9 6 ± 0.6  6 ± 0.7 6 ± 0.7 

Final pHSM 6.15 ± 0.11 b 5.93 ± 0.07 a 5.86 ± 0.14 a  5.93 ± 0.15 a 6.02 ± 0.16 b 

Final pHBF 6.14 ± 0.09 b 5.93 ± 0.06 a 5.86 ± 0.16 a  5.93 ± 0.15 a 6.01 ± 0.17 b 

Salt content (%) 5.8 ± 1.5 b 4.2 ± 0.9 a 4.7 ± 1.1 ab  5.7 ± 1.2 b 4.0 ± 0.7 a 

Water activity 0.925 ± 0.019 0.940 ± 0.008 0.929 ± 0.015  0.921 ± 0.015 a 0.941 ± 0.007 b 

Moisture (%) 62 ± 1.9 63 ± 0.9 61 ± 2.7  61 ± 2.3 63 ± 1.6 

Protein (%) 28 ± 0.8 28 ± 1.0 29 ± 2.0  28 ± 1.4 28 ± 1.4 
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Proteolysis index (%) 27 ± 3.3 a 29 ± 1.4 ab 33 ± 4.7 b  30 ± 4.1 30 ± 4.4 

Fat (%) 2.6 ± 0.49 2.3 ± 0.56 2.6 ± 0.39  2.6 ± 0.48 2.4 ± 0.48 

Marbling (%) 1.4 ± 0.77 1.8 ± 0.49 2.1 ± 0.87  1.7 ± 0.82 1.8 ± 0.71 

Lipolysis extent (mg/100g)4 1016 ± 96 1054 ± 102 1062 ± 87  1002 ± 88 a 1090 ± 78 b 

Results expressed as means ± standard deviation. Different letters in the same row (a-b) indicate 

significant differences within a factor (p ≤ 0.05). 

1 Expressed on a fresh weight basis 

2 Expressed on a dry weight basis 

3 Expressed on a desalted dry matter basis 

4 The extent of lipolysis is calculated as the amount of free fatty acids in 100 g dry matter sample  
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Table 2. Fatty acid profile (expressed as % of area normalization) of the total lipid fraction of 

muscle Biceps femoris in dry-cured hams and the content in free fatty acids (expressed as 

mg/100 g dry matter) as affected by post mortem pHSM24h range and salting time. 

   Post mortem pH range  Salting time 

Fatty acid1 
Total lipid 
fraction 

 High Medium Low  Standard Reduced 

 (%)    (mg/100 g)    

14:0 0.97 ± 0.20  10 ± 1 10 ± 1 9 ± 1  9 ± 1 10 ± 1 

16:0 20.84 ± 1.04  182 ± 18 188 ± 20 185 ± 18  178 ± 19  192 ± 15 

16:1 n-7 2.51 ± 0.67  19 ± 3 18 ± 5 15 ± 3   17 ± 4 17 ± 4 

18:0 11.89 ± 1.12  136 ± 25 140 ± 12 142 ± 12  132 ± 15 a  147 ± 15 b 

18:1 n-9 34.21 ± 4.68  199 ± 37 191 ± 33 181 ± 25  187 ± 35 192 ± 28 

18:1 n-7 4.00 ± 0.46  38 ± 3 35 ± 6 35 ± 4  35 ± 5 37 ± 5 

18:2 n-6 18.81 ± 3.62  268 ± 41 a 287 ± 27 ab  315 ± 30 b  275 ± 35 a  307 ± 34 b 

18:3 n-6 0.21 ± 0.07  8 ± 1 a 10 ± 1 b 9 ± 1 ab  9 ± 1 9 ± 1 

18:3 n-3 0.53 ± 0.09  10 ± 1 11 ± 1 11 ± 1  10 ± 1 11 ± 1 

20:1 n-9 0.59 ± 0.14  9 ± 1 9 ± 1 9 ± 1  9 ± 1 9 ± 1 

20:3 n-6 0.57 ± 0.21  15 ± 2 a 16 ± 1 ab 17 ± 2 b  16 ± 2 17 ± 2 

20:4 n-6 4.55 ± 1.78   106 ± 14 115 ± 9 116 ± 11  107 ± 10 a 118 ± 12 b 

22:1 n-9 0.10 ± 0.08  8 ± 1 a 9 ± 1 b 9 ± 1 b  8 ± 1 9 ± 1 

22:6 n-3 0.20 ± 0.14  8 ± 1 a  10 ± 1 b 11 ± 2 b  9 ± 2 10 ± 2 

SFA 33.70 ± 1.32  328 ± 42 338 ± 30 336 ± 28  320 ± 33 a  349 ± 27 b 

MUFA 41.42 ± 5.53  272 ± 41 262 ± 44 248 ± 31  257 ± 43 264 ± 35 

PUFA n-3 0.73 ± 0.15  19 ± 2 a  21 ± 1 b 21 ± 3 b  20 ± 2 21 ± 2 

PUFA n-6 24.14 ± 5.44  397 ± 54 a  429 ± 34 ab 457 ± 41 b  406 ± 44 a 451 ± 43 b 

Total PUFA 24.87 ± 5.55  415 ± 54 a  449 ± 35 ab 478 ± 43 b  426 ± 46 a  472 ± 45 b 

Results expressed as means ± standard deviation. Different letters in the same row (a-b) indicate 

significant differences within a factor (p ≤ 0.05). 
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1 SFA stands for saturated fatty acids of the total lipid fraction and the amount of saturated free fatty 

acids; MUFA stands for monounsaturated fatty acids of the total lipid fraction and the amount of 

monounsaturated free fatty acids; PUFA stands for polyunsaturated fatty acids of the total lipid fraction 

and the amount of polyunsaturated free fatty acids. 
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Table 3. Pearson’s coefficients of dry-cured hams’ physicochemical variables and their content in free fatty acids1.    

 ZnPP  Heme 
ZnPP 

/ heme 
a* pHBF Salt aw Moisture  Protein  PI Fat Marbling  16:0 18:0 18:2 n-6 20:4 n-6 SFFA MUFFA 

PUFFA  
n-6 

PUFFA  
n-3 

PUFFA 
Total 
FFA 

ZnPP  1.000 -0.357 0.650** 0.279 -0.516** -0.391* 0.287 0.288 -0.069 0.219 -0.373 -0.027 0.276 0.379* 0.480* 0.568** 0.334 -0.247 0.534** 0.446* 0.537** 0.309 

Heme   1.000 -0.839** 0.434* 0.854** 0.186 0.025 -0.021 0.191 -0.521** 0.054 -0.359 -0.053 0.017 -0.351 -0.192 -0.007 0.139 -0.348 -0.557** -0.362 -0.142 

ZnPP/heme   1.000 -0.154 -0.891** -0.225 0.022 0.041 -0.032 0.492** -0.181 0.358 0.065 0.146 0.391* 0.280 0.095 -0.287 0.397* 0.500** 0.406* 0.135 

a*    1.000 0.337 -0.005 -0.004 -0.250 0.402* -0.103 0.205 -0.258 0.169 0.225 0.248 0.242 0.209 0.002 0.233 -0.281 0.213 0.193 

pHBF     1.000 0.145 0.017 -0.084 0.226 -0.568** 0.109 -0.354 0.108 0.127 -0.257 -0.147 0.139 0.286 -0.261 -0.530** -0.276 0.020 

Salt      1.000 -0.955** -0.735** 0.296 -0.291 0.140 -0.328 -0.462* -0.503** -0.636** -0.741** -0.512** 0.113 -0.701** -0.534** -0.702** -0.521** 

aw       1.000 0.845** -0.407* 0.239 -0.181 0.291 0.415* 0.451* 0.503** 0.687** 0.463* -0.103 0.581** 0.431* 0.581** 0.442* 

Moisture        1.000 -0.705** 0.391* -0.404* 0.249 0.301 0.313 0.277 0.631** 0.330 -0.152 0.395* 0.479* 0.404* 0.275 

Protein         1.000 -0.452* 0.012 -0.337 -0.093 0.058 0.029 -0.275 -0.028 -0.043 -0.064 -0.355 -0.078 -0.071 

PI          1.000 -0.122 0.228 -0.006 -0.068 0.310 0.474* -0.048 -0.291 0.377* 0.433* 0.383* 0.070 

Fat           1.000 0.314 0.122 -0.235 -0.050 -0.303 -0.036 0.586** -0.125 -0.222 -0.131 0.165 

Marbling            1.000 -0.015 -0.036 0.082 0.074 -0.023 -0.016 0.096 0.217 0.103 0.042 

16:0             1.000 0.744** 0.663** 0.567** 0.945** 0.604** 0.671** 0.508** 0.672** 0.966** 

18:0              1.000 0.680** 0.631** 0.921** 0.061 0.696** 0.476* 0.694** 0.738** 

18:2 n-6               1.000 0.736** 0.706** 0.013 0.983** 0.715** 0.983** 0.799** 

20:4 n-6                1.000 0.629** -0.163 0.845** 0.565** 0.842** 0.620** 

SFFA                 1.000 0.389* 0.719** 0.519** 0.718** 0.919** 

MUFFA                  1.000 -0.033 0.050 -0.030 0.548** 

PUFFA n-6                   1.000 0.726** 1.000** 0.794** 

PUFFA n-3                    1.000 0.747** 0.617** 

PUFFA                     1.000 0.795** 

Total FFA                      1.000 

1 The content of zinc-protoporphyrin (ZnPP) and heme were expressed on a desalted dry matter basis. ZnPP, pHBF, PI, SFFA, MUFFA, PUFFA and Total FFA stand for zinc-

protoporphyrin, pH in Biceps femoris muscle at the end of the process, proteolysis index, saturated free fatty acids, monounsaturated free fatty acids, polyunsaturated free 
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fatty acids and total amount of free fatty acids, respectively. The content of ZnPP and heme are expressed on a desalted dry matter basis. See table 1 for the units of the 

remaining parameters. 

*P < 0.05, **P < 0.01 
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