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Abstract 20 

Crop thinning is an important and difficult agricultural practice. Knowing the effect of the 21 

application dose of a product is a crucial element of any thinning program. The aims of this 22 

study were to investigate the effect of different metamitron doses on Gala and Fuji apples 23 

applied at fruit king diameters of between 8 and 10 mm and to determine fluorescence 24 

inhibition at the different application rates. Trials were conducted over two seasons from 25 



 

2015 to 2016 in apple orchards in Lleida (Spain). Photosynthesis inhibition caused by 26 

metamitron was also analysed and measured, using chlorophyll fluorescence and 27 

biexponential pharmacokinetic models. Under the trial conditions, the application of 28 

metamitron reduced final fruit set, number of fruits per tree and crop load depending on the 29 

application rate. A dose effect was observed in all yield parameters. Moreover, when 30 

metamitron showed high efficacy, there was an improvement in fruit weight, coloration and 31 

diameter. The estimated parameters A, α and B using a biexponential equation were related 32 

with final fruit set, however the period of inhibition has to be finished before prediction can 33 

be made of metamitron efficacy in the year. The fluorescence analysis showed a dose effect, 34 

with metamitron dose increasing inhibition. Additionally, the same result was also observed 35 

in the area under curve analysis, with metamitron dose reducing the area and inhibition 36 

increasing. In all yield parameters, the fluorescence and area under curve analyses showed 37 

differences between cultivars, with the inhibition caused by metamitron higher in Gala than 38 

in Fuji. Moreover, differences between years were observed. 2015 was warmer than 2016, 39 

and the higher temperatures increased the thinning efficacy of metamitron. 40 
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1. Introduction 43 

Crop load management on apple trees remains a significant challenge to producers (Cline 44 

et al., 2018). Crop thinning is a vitally important but difficult agricultural practice that has a 45 

significant impact on orchard profitability (Lordan et al., 2018; Robinson et al., 2016). Apple 46 

flowers are initiated the year prior to bloom, and inadequate thinning can result in biennial 47 

bearing (Cline et al., 2018). Good crop load management requires a sufficient reduction of 48 

crop load (yield) to achieve optimum fruit size and adequate return bloom, but without an 49 

excessive reduction of yield (Robinson et al., 2016). 50 

Hand, mechanical and chemical thinning are the strategies currently used on apple. Hand 51 

thinning is costly in terms of labour and time-consuming. It requires waiting until the natural 52 

drop is complete, which often occurs late and may consequently affect fruit size and the 53 

return bloom (Lordan et al., 2018; McArtney et al., 1996). Mechanical thinning can be a 54 

valuable tool to initially reduce crop load prior to chemical or hand thinning (McClure and 55 

Cline, 2015). However, this method can present different problems, requires special 56 

machinery, special training systems and is not selective for fruit size (Byers, 2003; McClure 57 

and Cline, 2015). Finally, chemical thinning is a commonly used practice because it acts 58 

early on the fruit and reduces production costs. However, its efficacy is variable as its use is 59 

dependent on climatic conditions and cultivar (Byers, 2003; Gonzalez et al., 2019b; Lordan 60 

et al., 2018; Robinson and Lakso, 2004). Currently, in Spain, chemical thinning can be 61 

carried out during flowering (naphthalene acetamide (NAD)) and after fruit set on young 62 

fruitlets at the 6-16 mm stages (using the hormones 6-benzyladenine (BA) and naphthyl 63 

acetic acid (NAA)). 64 

Brevis® was registered in Spain in 2015. As metamitron, its active ingredient at 15%, 65 

belongs to the triazinone family of herbicides, the mode of action of metamitron differs from 66 

that of other known bioregulators. Although the maximum permitted application commercial 67 



 

rate is 2.20 kg/ha, no studies are available to know the effect of applying higher dosages. The 68 

thinning activity of metamitron in apple is via inhibition of photosynthesis (Basak, 2011; 69 

Lafer, 2010). More specifically, it is a photosystem II (PSII) inhibitor that disrupts the 70 

photosynthetic apparatus (McArtney and Obermiller, 2012; Stern, 2014, 2015), and acts by 71 

blocking electron transfer between the primary and secondary quinones (McArtney et al., 72 

2012). This interruption of photosynthetic electron transport inhibits adenosine 5´-73 

triphosphate production and carbon fixation (McArtney et al., 2012). One of the oldest 74 

approaches to testing photosynthesis is by measuring chlorophyll fluorescence, with Kautsky 75 

and Hirsch (1931) the first to determine the significant relationship between photosynthesis 76 

and chlorophyll fluorescence (Chen and Cheng, 2010). Chlorophyll fluorescence has been 77 

used as way of measuring photosystem activity, especially PSII (Fernandez et al., 1997; 78 

Krause and Weis, 1984).  79 

Knowing the effect of the application dose of a product is a crucial element of any 80 

thinning program. With this in mind, the aims of the current study were to investigate the 81 

effect of different metamitron doses on Gala and Fuji apples applied at fruit king diameters 82 

of between 8 mm and 10 mm and to determine fluorescence inhibition at the different 83 

application rates. 84 

2. Materials and methods 85 

2.1. Plant material and temperatures 86 

The trials were conducted in an apple orchard of the Institute of Agrifood Research and 87 

Technology (IRTA) experimental station of Lleida (Mollerussa, NE Spain) during the 88 

seasons of 2015 and 2016, using mature, uniform “Brookfield Gala” and “Fuji Kiku 8” trees 89 

grafted onto M9 rootstock and planted in 2003 at 4 x 1.4 m spacing (1786 trees/ha). The 90 

training system was a central leader. The trees were irrigated and fertilized using a drip 91 



 

irrigation system. Fertilization, pruning, herbicide and phytosanitary treatments were applied 92 

following standards normally used in apple orchards in the region.  93 

Meteorological data were collected from a weather station of the official meteorological 94 

service of Catalonia, situated 50 m away from the experimental area in the orchard of the 95 

IRTA facilities. The night temperature was calculated as average temperature when there was 96 

no solar radiation. 97 

2.2. Experimental design and treatment 98 

The trials tested the use of the commercial chemical thinner Brevis® (ADAMA, Spain), 99 

containing 15% metamitron. Brevis® was applied at five different commercial rates (1.10, 100 

1.65, 2.20, 3.30, 4.40 kg/ha) and an untreated control was included in the study. The time of 101 

application was determined by measuring king fruit diameter which should be in the range 102 

of 8-10 mm, and water volume was equivalent to 1000 l/ha.   103 

All trials were arranged in a randomized block design with four replicates of four uniform 104 

trees per elementary plot. On each plot, the 2 central trees were used for the trial assessments. 105 

All trees were selected by uniformity of initial number of flower clusters at full bloom. 106 

2.3. Yield assessments 107 

In each trial, the total number of flower clusters per tree was counted at bud break stage 108 

(BBCH 61-65), before the treatments were applied. Moreover, harvesting was performed 109 

during the commercial harvest season. Individual sample trees were harvested and evaluated 110 

separately. The criteria established for first class (Extra) products at harvest were fruit color 111 

>60% of fruit surface with a good red color development, and fruit size >70 mm. Fruit size 112 

distribution was based on fruit diameter categories (>70 mm and >75 mm). Fruit weight, 113 

diameter, blush color, total fruit yield (kg per tree) and fruits per tree were measured with a 114 

commercial apple sorting and packing line machine (MAF RODA AGROBOTIC, France). 115 

Crop load was obtained from the number of fruits harvested per cm2 of trunk cross-sectional 116 



 

area (TCSA) (number of fruits / trunk cross-sectional area). The final fruit set was obtained 117 

from the relationship between number of flower clusters and number of fruits at harvest time 118 

([number of fruits / floral clusters] x 100).  119 

2.4. Chlorophyll fluorescence 120 

Chlorophyll fluorescence measurements were carried out in the orchard of the trials for 121 

all Galaxy and Fuji test strategies (five Brevis® strategies vs. untreated control trees). 122 

Measurements were made on 3 recently fully expanded leaves per control tree (6 leaves per 123 

block and 24 leaves per treatment) using handheld portable fluorimeters (FluorPen FP100, 124 

Photon Systems Instruments, Czech Republic) under full daylight conditions in the shaded 125 

part between 10:00 and 16:00 and at a height of 1-1.5 m. They were taken 0, 2, 4, 6 and 8 126 

days after Brevis® application, and subsequently repeated one day per week until treatment 127 

values stabilized at 90% of the control level. An analysis was made of Qy (quantum yield) 128 

to provide an indication of the effects of Brevis® on the maximum potential quantum 129 

efficiency of PSII (Fv/Fm). 130 

2.4.1. Biexponential functions 131 

Biexponential functions can be used in pharmacokinetics to study the absorption, 132 

distribution, biotransformation and elimination of drugs in man and animals (Urso et al., 133 

2002). Similar models have been used in agriculture to study the degradation of a pesticide 134 

in soil (Swarcewicz and Gregorczyk, 2013) and the same type of model has also been used 135 

to study the dissipation of pesticides in surface soil (Navarro et al., 2009). In the present 136 

study, this model was used to evaluate the inhibition of photosynthesis caused by Brevis® in 137 

apple trees. 138 

The parameter evaluated with this model was Qy percentage (Qy(%)). Calculated as 139 

Qy(Treatment)÷Qy(Control), Qy(%) allows correction for the natural fluctuation of 140 



 

fluorescence in the Control. The Qy(%) curves were fitted to the biexponential 141 

pharmacokinetic model (Urso et al., 2002) of type: 142 

𝒇(𝒕) = 𝑨 × 𝒆!"# + 𝑩 × 𝒆!𝜷𝒕 143 

where 𝑓(𝑡) is the value of Qy(%) at time t, and t is the moment in time of the fluorescence 144 

measurement.  145 

The parameters B and β in the biexponential analysis of Qy explain the reduction of Qy. 146 

These parameters represent from the time of application to the time of minimum Qy(%) 147 

value, which is the time of maximum inhibition (Fig. 1) (Gonzalez et al., 2019b). The 148 

parameters A and α explain the recuperation of Qy, representing from the time of maximum 149 

inhibition, Qy(%) minimum value to the end of the period of inhibition caused by Brevis® 150 

(Fig. 1). The parameters β and α are the slopes of the descent and ascent of the curve, 151 

respectively. When β is higher, the slope descends faster and the minimum value of the curve 152 

is earlier in time. When α is lower, the recuperation phase is slower and the inhibition period 153 

is longer. The origin of the function is A+B. A and B represent the y-intercepts (Gustafson 154 

and Bradshaw-Pierce, 2011). When 𝑓(𝑡))=1, the function starts in 1 and in this case the tree 155 

realizes 100% of fluorescence at the start of the trial (Fig. 1). The area under the curve (AUC) 156 

is the area in the 20 days after application (Fig. 1) (Gonzalez et al., 2019b). Table 1 shows 157 

the calculations of the parameters.  158 

 159 
Fig. 1: Graphic representation of the parameters calculated with the biexponential pharmacokinetic model 160 
(AUC, AUC/day, A, α, B and β) (Gonzalez et al., 2019b). 161 



 

Table 1: Parameters calculated 162 
Parameter Calculation 
AUC/day (All AUC) AUC ÷ inhibition 20 days 
AUC reduction (0-min) Area between day 0 and day of minimum Qy(%) value 
Day of minimum Qy(%) value Number of days between beginning of inhibition and day of minimum Qy(%) 

value 
AUC recuperation (min-end) Area between day of minimum Qy(%) value and 20 days after application 

2.5. Statistical analysis 163 

Analyses of crop load and AUC parameters were analyzed with a mixed model to assess 164 

the long-term effects of each production system using the PROC MIXED procedure of in 165 

SAS 9.2 (SAS Institute Inc., 2009). The mixed model included year (2015 and 2016), cultivar 166 

(Fuji and Gala), treatment, and their interactions as fixed effects for no. flower clusters per 167 

tree, no. fruits per tree, final fruit set, crop load, yield (kg/tree), average fruit weight, average 168 

fruit diameter (mm), yield >70 Ø , red blush (%) and yield (Kg) >60% red blush. Block was 169 

random effect. Main effects, interactions, and treatment effects within interactions were 170 

considered significant when P ≤ 0.05. Moreover, a lineal regression analysis was made using 171 

JMP13 statistical analysis software (SAS institute, 2017), between commercial rates, crop 172 

load and AUC parameters for each experiment. 173 

Chlorophyll fluorescence and AUC parameters were performed in JMP13 statistical 174 

analysis software (SAS institute, 2017). Data fitting of chlorophyll fluorescence and AUC 175 

(area under the curve) was performed using constrained nonlinear curve fitting in JMP13 176 

statistical analysis software (SAS institute, 2017). 177 

3. Results 178 

3.1. Temperatures  179 

The average 24h temperatures before and after the dates of Brevis® application were 180 

different in the two study years, with temperatures in 2015 higher than in 2016. In 2015, the 181 

temperature before application was generally higher than 15ºC, whereas in 2016 this 182 

temperature was never reached. Moreover, 4 days after Brevis® application, the average all 183 



 

day temperature in 2015 reached as high as 21ºC, whereas in 2016 it never reached 16ºC 184 

(Fig. 2).  185 

 186 
Fig. 2: Average 24h temperature and date of application in 2015 and 2016 187 

Fig. 3 shows the average night temperature before and after Brevis® application. The 188 

average night temperature in 2015 was always higher than in 2016, except for 5 days. In 189 

2015, the temperatures before and after application were higher than 11ºC, except for 2 days 190 

(day of application and day 1 after application). However, 11 days in the same period in 2016 191 

had average night temperatures lower than 11ºC. Moreover, in 2015, the highest average 192 

night temperature after Brevis® application was 19ºC, but only 14ºC in 2016. These 193 

differences between 2015 and 2016 explain part of the differences in Brevis® efficacy. 194 

 195 
Fig. 3: Average night temperature (average temperature when there was no solar radiation) and date of 196 
application in 2015 and 2016.   197 
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3.2. Final fruit set and yield 198 

In the two cultivars, all rates and years, the number of flower clusters per tree was uniform 199 

at the start of the trials (data not presented). All crop load parameters showed a significant 200 

differences between thinning rates. The values for average number of fruits per tree, final 201 

fruit set and yield (kg/tree) were significantly lower in Gala than in Fuji. However, average 202 

crop load in Fuji was significantly lower than in Gala. All productive parameters in 2015 203 

were significantly lower compared to 2016 (Table 2). The interaction between year and 204 

cultivar was significant in the case of final fruit set, crop load, number of fruits per tree and 205 

yield. In yield and number of fruits per tree, there was significant interaction between 206 

thinning rate and year (Table 2). The triple interaction between year, cultivar and thinning 207 

rate was significant in number of fruits per tree and final fruit set (Table 2). With this in mind, 208 

Fig. 4 shows analysis of regression for each trial and parameters. 209 

Table 2: Effect of thinning with Brevis® on final fruit set and yield in Gala and Fuji trees (avg. 2015-2016). 210 

  No. fruits 
per tree 

Final fruit set  
(No. fruits per 100 
flowers clusters) 

Crop load  
(No. of fruits per 

cm2 of TCSA) 

Yield 
(kg/tree) 

Thinning rate (Br) *** *** *** ***  

Cultivar (C) *** *** *** *** 
Gala 295  109  7.5 38 
Fuji 365  134  5.5 63 

 

Year (Y) *** *** *** *** 
2015 253 94 4.5 41 
2016 405   147 8.5 60 

 

Significant interactions 
Br x C ns ns ns ns 
Br x Y * ns ns ** 
C x Y *** *** *** * 

Br x C x Y ** ** ns ns 
*, **, and *** denote means significantly different at P< 0.05, 0.01, or 0.001, respectively. 
ns - not significant at P<0.05 

All Brevis® strategies showed a reduction in number of fruits per tree, final fruit set, crop 211 

load and yield in comparison with the Control treatment, except for Fuji 2016 (Fig. 4). A 212 

Brevis® lineal dose effect was observed, with an increase in the dose rate accompanied by a 213 

decrease in fruit number per tree, final fruit set, crop load and yield. Minimum Brevis® 214 

efficacy was at 1.10 kg/ha, and maximum Brevis® efficacy at 4.40. However, Fuji 2016 215 



 

showed lower efficiency in all treatments and dose effect was not observed (Fig. 4). 216 

Moreover, Brevis® thinning efficacy varied from year to year (Fig. 4) 217 

 218 

 219 
Fig. 04: Relationships between Brevis® comerial rates and the number of fruit per tree, final fruit set, crop load 220 
and yield in Gala and Fuji trees. 221 

3.3. Fruit quality 222 

All quality parameters showed a significant difference between thinning rates. Average 223 

fruit weight, diameter, and percentage of fruit >70 mm and >60% red blush in 2016 were 224 

significantly lower than in 2015. Gala yielded significantly lower fruit weight, diameter and 225 
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percentage of fruit >70 mm and >75 mm compared with Fuji (Table 3). While red blush 226 

percentage showed no significant differences between cultivars, it did between years, with 227 

2015 having a significantly higher percentage than 2016. The interaction between year and 228 

cultivar was significant in all fruit quality parameters. Average fruit weight, diameter, red 229 

blush and percentage of fruit >60% red blush were significant in the interaction between 230 

Brevis® rate and year. The triple interaction between year, cultivar and thinning rate was 231 

significant in the case of average fruit weight and yield percentage > 70 mm diameter, but 232 

not in the other parameters (Table 3). With this in mind, Fig. 5 and 6 shows analysis of 233 

regression for each trial and parameters.  234 

Table 3: Effect of thinning with Brevis® on fruit weight, fruit size and fruit color in Gala and Fuji trees (avg. 235 
2015-2016). 236 

  
Average 

fruit weight 
(g) 

Average fruit 
diameter 

(mm) 

Yield >70 Ø 
(% of total) 

Red blush 
(%) 

Yield (Kg) 
>60% red 

blush  
Thinning rate (Br) *** *** *** *** ***       

Cultivar (C) *** *** *** ns *** 
Gala 138 69 53 23 18 
Fuji 177 74 67 23 10       

Year (Y) *** *** *** *** *** 
2015 162 73 71 31 23 
2016 151 70  49 14 5         

Significant 
interactions 

  
 

 
 

Br x C ns ns ns ns ns 
Br x Y * ** ns ** ** 
C x Y *** *** *** *** *** 

Br x C x Y * ns ** ns ns 
*, **, and *** denote means significantly different at P< 0.05, 0.01, or 0.001, respectively. 
ns - not significant at P<0.05 

All Brevis® rates increased fruit weight and diameter in comparison with the Control 237 

treatment. Moreover, when the chemical rate increased, the fruit weight, diameter, fruit size 238 

distribution and fruit color also increased. That is, all these parameters showed a lineal dose 239 

effect and a direct relation with crop load reduction. Maximum Brevis® efficacy was at 4.40 240 

kg/ha (Fig 5), with this treatment giving the highest fruit weight, diameter, and red blush 241 

percentage. Moreover, minimum Brevis® efficacy was at 1.10 kg/ha, with minimum fruit 242 

weight, diameter and red blush percentage (Fig 5). 243 



 

 244 

Fig. 5: Relationships between Brevis® comerial rates and fruit weight average fruit diameter and average red 245 
blush (%)  in apple in Mollerussa, Spain. 246 

There were significant (P < 0.05) positive relationships between percentage of fruit >70 247 

mm and different rates in all the experiments, except for Fuji 2016. If so, percentage of fruit 248 

>70 mm increased as rates increased. That is, the treatment with highest percentage of fruit 249 

>70 mm, the 4.40 kg/ha treatment, had a higher Brevis® efficiency (Fig 6). 250 

For Fuji and Gala 2015 showed a significant positive relationship between percentage of 251 

red blush >60%. These trials a lineal dose effect was observed, with an increase in the rate 252 

accompanied by an increase percentage of red blush >60%. Fuji and Gala 2016 showed a 253 

lower color development because climate conditions of hot and dry summers do not favor 254 

fruit color development. However, these trials showed a dose effect tendency (Fig 6). 255 
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 256 
Fig. 6: Relationships between Brevis® comerial rates and yield >70 mm and percentage of red blush >60%. 257 

3.4. Biexponential pharmacokinetic model  258 

The p-value was significant at <0.001 in all models. Moreover, the R2 values were 259 

between 0.7 and 0.98 in the biexponential pharmacokinetic model of the Qy(%) (Table 4). 260 

Thus, the biexponential equation provided adequate fits to the data, and the values calculated 261 

from the biexponential fits correlated very closely with the real values of Qy(%). 262 

Table 4: Biexponential pharmacokinetic model results (p-value and R2) for the evolution of Qy(%) in time at 263 
different doses. 264 

Year 2015 2016 
Thinning rate 
(Kg/ha) 1.10 1.65 2.20 3.30 4.40 1.10 1.65 2.20 3.30 4.40 

Gala R2 0.922 0.871 0.849 0.977 0.837 0.805 0.706 0.775 0.772 0.89 
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Fuji R2 0.904 0.861 0.839 0.918 0.957 0.857 0.851 0.859 0.796 0.922 
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

The parameters B and β of the biexponential analysis of Qy(%) explain from the start of 265 

the inhibition period until the day of maximum inhibition of the product, and the parameters 266 

A and α explain from the day of maximum inhibition until the end of the period of inhibition. 267 

The Qy(%) values showed significant differences between treatments. Brevis® inhibition at 268 

4.40 kg/ha was significantly different to the other treatments in the parameters A, α and B 269 

(Table 5). There were significant differences between cultivars in all the productive and 270 
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quality parameters. However, the estimated parameters showed no differences between 271 

cultivars, except for the parameter β. On the other hand, all parameters showed significant 272 

differences between years, as in all productive and quality parameters. Parameter β showed 273 

significant interaction between cultivar and year. The other interactions were not significant 274 

(Table 5). 275 

Table 5: Parameters estimated with the biexponential pharmacokinetic model (A, α, B and β) for Qy(%) 276 
evolution in time at different doses on Gala and Fuji trees in 2 years (2015 and 2016). 277 
 A α B β 

Thinning (Br)  * *   * ns  
     

Cultivar (C) ns ns ns * 
Gala 0.518 -0.024 0.495   a 0.386 
Fuji 0.530 -0.027 0.482   a 0.467      

Year (Y) ** ** ** *** 
2015 0.588 -0.020 0.416 b 0.679 
2016 0.460 -0.030  0.561 a 0.173      

Significant 
interactions 

    

Br x C ns ns ns ns 
Br x Y ns ns ns ns 
C x Y ns ns ns * 

Means within a column followed by different letters denotes significant differences (t-test).  
*, **, and *** denote means significantly different at P< 0.05, 0.01, or 0.001, respectively.    
ns - not significant at P<0.05 

All Qy(%) parameters, except β, were related to final fruit set and crop load reduction. 278 

The parameters A, α and B had significant p values, however parameter β was not significant. 279 

The R2 values ranged between 0.97 and 0.74. When final fruit set increased, A and α 280 

increased and B decreased (Table 5 and Fig. 7). The parameter β explained the reduction 281 

period, and there were no significant differences between doses because this period was the 282 

same in all doses (Table 5 and Fig. 7). This situation is also observed in the analysis of the 283 

AUC reduction (Table 6). However, parameters A and α, which explained the recuperation 284 

period, did show differences between doses. These parameters were significantly lower in 285 

the 4.40 kg/ha dose (0.4 and -0.034, respectively) in comparison with the other doses (A 286 

between 0.5 and 0.6, and α between -0.021 and 0.025) with inhibition values of between 10% 287 

and 15%. This difference caused the period of Brevis® inhibition to be longer in the 4.40 288 

kg/ha dose than the other doses. 289 



 

 290 
Fig. 7: Correlation between final fruit set and the parameters estimated with the biexponential pharmacokinetic model 291 
of Qy(%) (A, α, B and β) for the different application doses (kg/ha). 292 

Table 6: Area under the curve (AUC), Qy(%) predicted minimum (Qy(%) min), day of minimum Qy(%) value 293 
(number of days from day 0 to minimum Qy(%) value), AUC reduction (AUC between day 0 to minimum 294 
Qy(%) value), AUC recuperation (AUC between day of minimum Qy(%) value to end of inhibition period) and 295 
AUC/day (all AUC), for the evolution of Qy(%) in time at different doses on Gala and Fuji trees in 2 years 296 
(2015 to 2016). 297 

 All AUC Qy(%) 
min 

Day of 
minimum 

Qy(%) value 

AUC 
reduction 
(0-min) 

AUC 
recuperation 
(min-final) 

AUC/day 
(All 

AUC) 
Thinning (Br) * * ns ns * * 

       

Cultivar (C) * ns ns ns * * 
Gala 15.1 0.68 8 5.9 9.2 0.75 
Fuji 15.8 0.71 7 5.5 10.3 0.79 

       
Year (Y) * * *** *** ** * 

2015 15.0 0.66 5 3.5 b 11.6 0.75 
2016 15.8 0.73 10 7.9 a 7.9 0.79        

Significant 
interactions 

      

Br x C ns ns ns ns ns ns 
Br x Y ns ns ns ns ns ns 
C x Y ns ns ns ns ns ns 

Means within a column followed by different letters denotes significant differences (t-test).  
*, **, and *** denote means significantly different at P< 0.05, 0.01, or 0.001, respectively.    
ns - not significant at P<0.05 

The AUC, value of Qy(%) min, AUC recuperation (min-final) and AUC/day (All 298 

AUC) showed a significant differences between thinning rates (Table 6). A lineal dose effect 299 

was observed in the analysis of the AUC and fluorescence inhibition (Fig. 8). When chemical 300 

dose increased, the AUC, value of Qy(%) min, AUC recuperation (min-final) and AUC/day 301 

(All AUC) decreased, except for Fuji 2016 (Fig. 8). However, there were no differences in 302 

the day of minimum Qy(%) value and AUC reduction (0-min) at different doses (Table 6). 303 
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 305 
Fig. 8: Relationships between Brevis® comerial rates and Area under the curve (AUC), Qy(%) predicted 306 
minimum (Qy(%) min), AUC recuperation (AUC between day of minimum Qy(%) value to end of inhibition 307 
period) and AUC/day (all AUC), in Gala and Fuji trees in 2 years (2015 to 2016). 308 

Gala showed significantly lower AUC, AUC recuperation (min-final) and AUC/day 309 

compared with Fuji. Therefore, the inhibition was higher in Gala that Fuji. Moreover, the 310 

reduction period was the same in Gala and in Fuji, and the recuperation period or the period 311 

of Brevis® inhibition was longer in Gala than in Fuji, with Gala showing 18% of inhibition 312 

20 days after application and Fuji 10% (Fig. 9A). However, the other AUC parameters 313 

showed no significant differences between cultivars because the reduction period was the 314 

same in both cultivars (Fig. 9A). Moreover, the biexponential analysis of Qy(%) and all AUC 315 

parameters showed significant differences between years (Table 6 and Fig. 9B). The period 316 

of inhibition was the same in both years and 20 days after application showed 15% of 317 

inhibition. However, the day of minimum Qy(%) was faster in 2015 in comparison with 2016 318 

(5 and 10 days after application, respectively) (Table 6 and Fig. 9B). Moreover, the maximum 319 
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inhibition (Qy(%) min) was higher in 2015 than in 2016 (34% and 27%, respectively). For 320 

all these reasons, the recuperation period was longer in 2015 than 2016 (15 and 10 days, 321 

respectively) (Fig. 9B). There were no significant interactions (Table 6). 322 

 323 
Fig. 9: Graphic representation of the Brevis® inhibition 20 days after application estimated with the 324 
biexponential pharmacokinetic model of Qy(%) (A, α, B and β) for cultivars (A) and years (B). 325 

 326 

4. Discussion 327 

The maximum effectiveness for chemical thinner is based on the diameter of the 328 

developing fruit, the application rate, the cultivar and climatology (Byers, 2003). In all trials, 329 

the spraying of apple trees with chemical photosynthetic inhibitors induced fruit abscission, 330 

as also reported by Byers et al. (1990). The application of Brevis® reduced final fruit set, 331 

number of fruits per tree and crop load depending on the application rate, which concurs with 332 

the observations of Brunner (2014), Deckers et al. (2010),Gonzalez et al. (2019a), Mathieu 333 

et al. (2016) and McArtney et al. (2012). Final fruit set, number of fruits per tree, crop load 334 

and yield showed differences between Gala and Fuji cultivars because product susceptibility 335 

differs according to cultivar because the meteorological conditions differed between years.   336 

McArtney et al. (2012) reported a negative relationship between fruit yield per tree at 337 

harvest and metamitron concentration, which concurs with the results of this study. 338 

Moreover, average fruit weight, diameter and coloration increased with the Bevis® induced 339 

thinning effect, with the highest values for these parameters detected in those treatments in 340 
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which crop load and final fruit set were significantly reduced. These results again concurring 341 

with earlier observations made by McArtney et al. (1996), Brunner (2014), Gonzalez et al. 342 

(2019a) and Maas and Meland (2016). Fruit size and fruit color distribution improved with 343 

yield reduction, also concurring with earlier observations of Bergh (1990), Dorigoni and 344 

Lezzer (2007) and Lafer (2010), as did the various % values of the fruit harvested at first pick 345 

(% of yield >70 mm, >75 mm and >60% blush area), as also reported by Mathieu et al. 346 

(2016). 347 

In this study, differences between years were observed, which concurs with the 348 

observations of Brunner (2014) and Gonzalez et al. (2019b), who argued that the same 349 

amounts of metamitron applied in different years might not always reduce final fruit set to 350 

the same extent. In this respect, the results of this study also concur with those of previous 351 

studies made by Robinson and Lakso (2004) and Robinson et al. (2016) with 352 

naphthaleneacetic acid (NAA), 6-benzyladenine (BA) and carbaryl, which reported 353 

significant variation in chemical thinning efficacy from year to year and within year. Byers 354 

(2003) indicate that cool temperatures may delay or interfere with abscission and that 355 

increasing temperatures may promote it. According to Jackson (2003), high night 356 

temperatures increase respiration and, according to Yoon et al. (2011), warm temperatures 357 

intensify competition among competing sinks at a time when metabolic demand is highest in 358 

the tree. This concurs with the observations of the present study (the year 2015 was warmer 359 

than 2016). The carbohydrate balance can also play a significant role in apple tree response 360 

to fruit abscission; if the carbohydrate supply is abundant it may limit fruit development and 361 

abscission (Lordan et al., 2019). Other factors may also explain year-to-year Brevis® 362 

efficacy, including the weather of the previous year, carbohydrate ratios from the previous 363 

year, temperature and sunlight from bud break to bloom or post bloom, tree vigor, leaf area, 364 

or the sensitivity of the tree itself. Lordan et al. (2019) reported how these factors can affect 365 



 

natural fruit abscission. The significant interactions between year and cultivars in most of the 366 

parameters evaluated can be attributed to the different efficacy between years and cultivars. 367 

The triple interaction between year, cultivar and thinning rate was significant in number of 368 

fruits per tree and yield, because the results of the previously explained factors were 369 

significant, and the Brevis® dose at 3.30 kg/ha in Fuji in 2016 had no thinning effect. 370 

However, the triple interaction was not significant in crop load and final fruit set because 371 

these parameters were calculated with the trunk diameter and number of flower clusters. 372 

Many authors have reported the day of maximum Brevis® induced inhibition at between 373 

2 and 6 days after application (Brunner, 2014; McArtney et al., 2012; Rosa, 2016; Stern, 374 

2015). Their results differ from the observations of this study, with maximum inhibition 375 

Qy(%) values observed 5-10 days after treatment. Moreover, Brevis® reduced electron 376 

transport rates by up to 40%, with similar observations reported by McArtney and Obermiller 377 

(2012), Stern (2014) and Stern (2015). 378 

An interesting development in this field has been the use of pharmacokinetic models for 379 

the study of the behavior or effect of phytosanitary products in plants, and studies on how 380 

these products affect plants at physiological level. In the present study, the biexponential 381 

function of the pharmacokinetic model was adapted for inhibition of fluorescence caused by 382 

Brevis® in time. The biexponential equation provided adequate fits to the data, and the values 383 

calculated from the biexponential fits correlated very closely with the real values of Qy(%). 384 

Bringe et al. (2006) reported that the tolerance of plants toward triazines may be influenced 385 

by differing environmental conditions. This could explain the result in this study which 386 

showed differences between years. The estimated parameters A, α and B were related with 387 

final fruit set, however the period of inhibition has to be finished before prediction can be 388 

made of Brevis® efficacy in the year. Moreover, in trials performed by Gonzalez et al. 389 

(2019b) with applications at different fruit size, these parameters were not related with final 390 



 

fruit set. With these results, the parameters can be related with crop load when the 391 

applications are made at the same time and at different doses. Additionally, this model 392 

showed high differences between years and the parameters were different each year, making 393 

it more difficult to use these parameters to predict Brevis® efficacy. Future studies in this 394 

respect are therefore recommended. 395 

Previous research has shown an increasing negative effect of Brevis® concentration on the 396 

maximum potential quantum efficiency of PSII in apple leaves (McArtney and Obermiller, 397 

2012), which concurs with the AUC, Qy(%) min and AUC/day results reported in this study. 398 

Gala showed a significantly higher AUC compared with Fuji because the period of inhibition 399 

was longer in Gala, indicating that Gala is more sensitive to Brevis® than Fuji. This difference 400 

between cultivars was also observed by Brunner (2014) and Gonzalez et al. (2019b), they 401 

reported that leaf susceptibility differs according to cultivar. This result suggests that Brevis® 402 

absorption rates could differ between cultivars because of differing leaf structure and/or leaf 403 

wax concentration. On the other hand, Lordan et al. (2019) studied natural fruit drop, 404 

suggesting that some cultivars could be more susceptible than others to carbohydrate deficit 405 

and that thinning windows may depend on the cultivar.   406 

 This study found higher AUC, Qy(%) min, day of Qy(%) min and AUC-day values in 407 

2016 than 2015, because in 2016 the cool temperatures reduced the period of inhibition 408 

caused by Brevis®, as also reported by Byers (2002) and Kviklys and Robinson (2010). In 409 

their greenhouse studies with potted trees, it was observed that, for the same application 410 

concentration, cool temperatures with high sunlight after chemical application resulted in less 411 

thinning efficacy, while high temperatures (especially high night temperatures) with low light 412 

levels after chemical application resulted in greater thinning efficacy. The combined effects 413 

of temperature and sunlight on thinning efficacy indicate that carbohydrate supply to the 414 

young fruitlets influences fruitlet retention or abscission (Lakso, 2011; Robinson et al., 415 



 

2016). Moreover, Stern (2014) concluded that the higher efficacy of metamitron in Israel 416 

than Europe was due to the higher average 24 hours temperatures in Israel, which can 417 

increase the efficiency of photosynthesis inhibition by metamitron. This result in 418 

concordance with those obtained in the present study and could explain the differences 419 

between years in all the parameters evaluated. 420 

5. Conclusions 421 

A dose effect was observed, with Brevis® dose reducing final fruit set and crop load. 422 

Additionally, when Brevis® showed high efficacy, there was an improvement in fruit weight, 423 

coloration and diameter.  424 

The fluorescence analysis showed a dose effect, with Brevis® dose increasing inhibition. 425 

Additionally, the same result was also observed in the AUC analysis, with Brevis® dose 426 

reducing the area and inhibition increasing. The biexponential equation provided adequate 427 

fits to the data, and the values calculated from the biexponential fits correlated very closely 428 

with the real Qy(%) values.  429 

Thinning efficacy varied between cultivars, with Gala more sensitive to Brevis® than Fuji. 430 

Moreover, the year 2015 was warmer than 2016, and the higher temperatures increased the 431 

thinning efficacy of Brevis®. Thus, the efficacy of the thinning agent Brevis® is conditioned 432 

by dose rate, cultivar and temperature. 433 
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