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ABSTRACT 

A 42 day experiment was conducted to evaluate the effect of Cu and Zn source and Cu level on pig 

performance, mineral status, bacterial modulation, and the presence of antimicrobial resistant genes 

in isolates of Enteroccocus spp. At weaning, 528 pigs (5.9 ± 0.50 kg) were allotted to 48 pens of a 

randomized complete block design in a 2×2 factorial arrangement with two Cu and Zn sources (SF: 

sulfate and HCl: hydroxychloride) and two Cu levels (15 mg/kg and 160 mg/kg). As a challenge, the 

pigs were reared in dirty pens used by a previous commercial batch. Two-phase diets were offered: 

the pre-starter (PS) phase from d 1 to 14 and the starter phase (ST) from d 14 to 42. At d 14 and 42, 

pigs were individually weighed and blood samples from 1 pig/pen were taken. At the end of the 

experiment, 1 pig/pen was euthanized to collect samples. Feeding high levels of Cu increased BW 

from 16.6 to 17.7 kg (P < 0.001). Furthermore, ADG, G:F, ADFI and mineral status was enhanced with 

Cu at 160 mg/kg (P < 0.05) compared with Cu at 15 mg/kg. There was no effect of the interaction 

between source × level on any of the growth performance responses except for ADFI (P = 0.004) and 

G:F (P = 0.029) at the end of the ST period and for G:F (P = 0.006) for entire nursery period (d 0-42). 

At the end of the ST period, pigs fed Cu at 160 mg/kg as HCl had higher ADFI but also lower G:F than 

those fed Cu as SF at 160 mg/kg. Meanwhile, for the entire nursery period, G:F did not differ 

between pigs fed Cu at 160 mg/kg as HCl or SF. In colonic digesta, the relative abundance of 

Streptococcus, Enterobacter, Escherichia, among others, decreased (P-adjust < 0.05), while 

Lachnospira and Roseburia tended (P-adjust < 0.10) to increase in pigs fed Cu at 160 mg/kg as HCl 

compared to those fed Cu SF at 160 mg/kg. An increase (P-adjust < 0.05) in Methanosphaera and 

Roseburia was observed in pigs fed Cu at 160 mg/kg. From colon digesta, Enterococcus spp. was 
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isolated in 40 samples, being E. faecalis the most dominating (65%) regardless of the experimental 

diet. Genes of ermB (7.5%) and tetM (5%) were identified. No genes for Cu (tcrB) or vancomycin 

(vanA, vanB, vanC1, vanC2) were detected. In conclusion, EU permissible levels of Cu (160 mg/kg), of 

both sources, are able to increase performance, mineral status and bacterial modulation compared 

to nutritional level. Different effects on growth performance, mineral tissue content and microbial 

modulation were observed between Cu and Zn sources. 

 

Key words: antimicrobial resistance genes, copper, European levels, microbiota, weaned pigs, zinc 
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Abbreviations  

ADFI  Average daily feed intake 

ADG  Average daily gain 

BW  Body weight  

DNA  Deoxyribonucleic acid 

EFSA  European Food Safety Authority 

EU  European Union 

FDR  False discovery rate 

FEEDAP European Food Safety Authority Panel on Additives and Products or Substances used 

in Animal Feed 

G: F  Gain to feed 

GIT  Gastrointestinal tract 

GPX  Glutathione peroxidase 

HCl   Hydroxychloride 

ICP-OES Inductively coupled, plasma-optical emission spectroscopy 

MIC  Minimum inhibitory concentration 

NMDS  Non-metric dimensional scaling 

NRC  National Research Council 

PCR  Polymerase chain reaction 
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PRRS  Porcine reproductive and respiratory syndrome virus 

PS  Pre-starter period 

RNA  Ribonucleic acid 

rRNA  Ribosomal ribonucleic acid 

SCFA  Short chain fatty acids 

SF  Sulfate 

SOD  Superoxide dismutase 

ST  Starter period 

TBCC  Tribasic copper chloride 

US  United States 
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INTRODUCTION 

Copper and zinc are essential trace minerals involved in many physiological processes (Olivares and 

Uauy, 1996). The National Research Council (NRC) established a minimum requirement of Cu (6 

mg/kg) and Zn (100 mg/kg) for weanling pigs (NRC, 2012). However, stressing factors at weaning 

frequently result in low feed intake, gastrointestinal disorders and, consequently, impaired gut 

integrity and growth (Lallès et al., 2007). In the European Union (EU) until 2003, and today in other 

regions of the world (including the United States, US), commercial practice generally used high doses 

of Cu (200-250 mg/kg) and Zn (2,000-3,000 mg/kg) as therapeutic additives in post-weaning diets. 

The main positive effects attributed to these therapeutic doses are growth promotion (Cromwell et 

al., 1998) and antimicrobial activity (Højberg et al., 2005; Namkung et al., 2006). However, at high 

dietary levels, Cu and Zn are barely absorbed in the intestine, affecting the availability of other 

nutrients (Pang and Applegate, 2006, 2007) and generating a major environmental concern (EFSA 

FEEDAP, 2016) as well as a public health risk due to microbial tolerance and resistance to other 

antimicrobial agents ( Hasman and Aarestrup, 2002; Van Noten et al., 2016). Based on these 

considerations, the EU approved new maximum levels of Cu for pigs, being 150 mg/kg up to 4 weeks 

after weaning, followed by a reduction to 100 mg/kg until 8 weeks after weaning (European 

Commission, 2018). The previous regulation allowed the inclusion of Cu at 170 mg/kg in diets up to 

12 weeks age, when this experiment was performed. The current  total feed content of  Zn for pigs 

until 11 kg body weight (BW) is 150 mg/kg (European Commission, 2016); however, a further 

reduction to 110 mg/kg is not excluded (EFSA FEEDAP, 2017).  
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Sulfate is the most used mineral source in swine diets. It is characterized by a labile molecular bond 

which allows high solubility in water and acid solutions and is commonly used as a reference to 

compare the bioavailability of different mineral sources (Park and Kim, 2016). Alternatively, 

hydroxychloride mineral sources have a crystalline structure formed by covalent bonds, with slow 

solubility in the gastrointestinal tract (GIT) and a high amount of biologically active ions (Cohen and 

Steward, 2014). Thus, in the present study we hypothesize that due to differences in chemical 

properties of trace mineral sources, growth performance of early weaned pigs fed diets 

supplemented with hydroxychloride mineral sources will be higher or similar than those fed sulfate, 

hence offering an alternative to the use of high levels of sulfate and antimicrobials as growth 

promoters. The low solubility of hydroxychloride trace minerals, which are different to sulfates, 

makes them less prone to antagonistic nutrient interactions at the proximal section of GIT, hence 

increasing mineral and nutrients availability as well as probably promoting a greater impact on 

intestinal microbiota. Thus, the objective of this study was to compare the effect of two sources of 

Cu and Zn (sulfate and hydroxychloride) as well as the effect of two Cu dietary levels (15 mg/kg as 

nutritional or 160 mg/kg as high level) on growth performance, mineral status, microbial modulation 

and the possible presence of antimicrobial resistant genes in newly weaned pigs. Pigs were allocated 

to dirty pens used by a previous nursery batch in order to provide a more challenging scenario due 

to early contact with a dirty and non-disinfected environment.  

MATERIALS AND METHODS  

All animal experimentation procedures were approved by the Ethics Committee of the Universitat 

Autònoma de Barcelona in compliance with the European Union guidelines for the care and use of 

animals in research (European Parliament, 2010).  
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Animals and Housing 

The experiment was performed on a commercial farm of Catalonia, Spain. At weaning (21 d), 528 

pigs ([Large White × Landrace] × Pietrain) obtained from the same commercial farm and with an 

initial average BW of 5.9 ± 0.50 kg were used in a 42 day study in a commercial nursery unit. Pigs 

were ear tag identified, blocked according to the initial BW and distributed into four experimental 

diets in 48 pens (12 pens/treatment, 11 pigs/pen). Entire males and females were randomly assigned 

to the same pen. The pigs were housed in dirty pens used by a previous commercial batch in order 

to increase the environmental challenge. Each pen (3.12 m2) had fully slatted floor and was 

equipped with a commercial non-lidded hopper (TR5, Rotecna, Spain) and a nipple drinker to 

provide ad libitum access to feed and water. The facility was environmentally controlled 

(temperature and ventilation rate) by use of thermostatically controlled heaters and exhaust fans 

depending on the age of the pigs (28-22ºC). Pigs were allotted to two identical rooms. Each room 

had 28 pens divided by a central feeding corridor but only 24 pens were used in the experiment (the 

two at the far ends of the room close to the doors were discarded and used as refusal/hospital 

pens). In order for the weaned pigs to be kept in poor sanitary conditions, the pens were not cleaned 

or disinfected after use by a previous commercial batch. Since the pens had a fully slatted floor, an 

excessive amount of feces was not accumulated. Ventilation and temperature were adjusted prior to 

the housing of the newly weaned pigs. The commercial swine farm is stable but positive for the 

porcine reproductive and respiratory syndrome (PRRS) virus. The standard farm practices include the 

vaccination of pigs at 20 d of age against porcine circovirus type 2 and mycoplasma hyopneumoniae 

(Suvaxyn Circo + MH RTU, Pfizer, Spain) and the vaccination of sows against PRRS (MSD, Spain) every 

4 months. Pigs are weaned at 21 d and with an average BW of 5.8 kg. Nursery period is 6 weeks with 

a daily weight gain ranging between 280-290 g and 2-3% mortality. Zinc oxide is added to feed at 

pharmacological levels (2,500 mg/kg) for one week. The usual inclusion of Cu to weaned pig diets is 

9 mg/kg. Antibiotics are administered after veterinary prescription if required to treat specific 

diseases.  
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Experimental design and dietary treatments 

Two-phase diets (Table 1) were formulated to meet or exceed nutrient requirements (NRC, 2012): 

the pre-starter (PS) phase from d 1 to 14 and the starter (ST) from d 14 to 42. 

Four experimental diets were prepared in a 2 × 2 factorial arrangement, with two Cu and Zn sources 

(sulfate and hydroxychloride) and two Cu inclusion levels (nutritional: 15 mg/kg, and high: 160 

mg/kg). Supplementation of Zn was fixed for all diets at 110 mg/kg. Cu sulfate pentahydrate (25%) 

and Zn sulfate monohydrate (35%) were obtained from Pintaluba, Reus, Spain. The hydroxychloride 

Cu (54%, IntelliBond C) and Zn (55%, IntelliBond Z) were obtained from Trouw Nutrition, the 

Netherlands. A vitamin-mineral premix without Cu and Zn was prepared. For each dietary treatment, 

Cu and Zn products were pre-mixed with 25 kg of basal diet before being put directly in the mixer 

during the feed preparation process. In order to avoid cross contamination with elements from 

previous production, feed was prepared in an appropriate rank order starting with the lower 

concentrations to be included in the diet. The first and last 100 kg of the final pellet diet from each 

batch (experimental treatment) were discarded to reduce cross contamination. All diets were 

offered ad libitum in pellet form. Composite samples (1 kg) were collected during the bagging 

process in representation of each experimental treatment. Each sample was therefore 

proportionally split into four 250 g samples that were stored for further analysis. Zinc oxide was not 

added at pharmacological levels in the diets and no antibiotics or feed additives with antimicrobial 

properties were used. 

Experimental procedures and sampling 

The BW of each pig and feed left in the feeders were recorded on d 14 and 42. From these data, 

average daily gain (ADG), average daily feed intake (ADFI), and gain to feed (G:F) were calculated. At 

the end of the PS phase, one pig per pen was selected based on the mean BW within the pen 

(median) to take samples of blood by jugular puncture. Samples from the same animal were taken at 
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the end of the ST phase. For antioxidant enzyme determination, blood was collected into 4 mL 

vacutainer tubes containing lithium heparin (BD Vacutainer, LH, BD-Plymouth, UK) and centrifuged 

at 3,000 × g for 15 min. The acquired plasma was stored at       -80°C for further analysis. Meanwhile, 

blood samples for Cu and Zn determination were collected into 5 mL vacutainer tubes (BD 

Vacutainer, Z, BD-Plymouth, UK) free of detectable Zn. Serum was obtained after centrifugation 

(3,000 × g for 15 min) and immediately frozen at -20ºC. At the end of the experimental period, the 

selected pig per pen (n=12) was euthanized with an overdose of sodium pentobarbital (Dolethal, 

Vetoquinol, S.A., Madrid, Spain); and organ samples (liver and left tibia) were collected to determine 

Cu and Zn concentration. Finally, digesta from the proximal colon (1 m from the ileocecal junction) 

were collected for microbiota analyses and detection of antimicrobial resistant genes. Samples were 

immediately stored at -20°C until processing and analysis. 

Chemical Analysis  

Analytical determinations of diets were performed according to the AOAC International (2005) 

methods for dry matter (Method 934.01), crude protein with the Dumas Method (Method 968.06), 

ether extract was determined using traditional Soxhlet extraction (Method 920.39), and ash 

(Method 942.05). Neutral detergent fiber was analyzed using the Ankom nylon bag technique 

(Ankom 200 fiber Analyzer, Ankom Technology, Macedon, NY).  

The activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) in plasma were 

determined by spectrometry and following the instructions of Ransod and Ransel kits, respectively 

(Randox, County Antrim, UK).  Liver was dried in a forced air oven at 102ºC per 12 h and then milled 

at 0.5 mm. Tibia was autoclaved to remove all the adjacent muscle and tissue (121ºC for 30 min). 

Subsequently, tibia was oven-dried for 12 h at 102°C and soaked in acetone under a chemical hood 

for 48 h to extract fat. After this period, tibia was again oven-dried for 12 h at 102ºC and then 

broken in the middle before being ashed overnight at 550ºC in a muffle furnace. Samples of feed 

were milled at 0.5 mm before mineral analysis. All samples were solubilized in nitric acid prior to 
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mineral analysis by inductively coupled, plasma-optical emission spectroscopy (ICP-OES, model 

Optima 4300DV, Perkin-Elmer Inc.; Massachusetts, US). 

Microbial molecular analysis 

Bacterial DNA was extracted from 200 mg of colonic digesta by using the commercial 

MagMAX CORE Nucleic Acid Purification 500RXN Kit  (Thermo Fisher, Texas, US) and 

following the manufacturer’s instructions. For 16S rRNA gene sequence-based analysis, the 

V3-V4 region of the bacteria 16S ribosomal RNA gene were amplified by PCR (95°C for 3 

min, followed by 25 cycles at 95°C for 30 s, 55°C for 30 s, and 72°C for 30 s and 72°C for 5 

min) using primers F5′-barcode- 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′ and 

R5′-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATC

C-3′. A negative control of the DNA extraction was included as well as a positive Mock 

Community control to ensure quality control. After 25 cycles of amplifications, 550 pb 

amplicons were obtained. The Illumina Miseq sequencing 300 × 2 approach was used. Raw 

sequencing reads were quality clipped, assembled, and compared with available genomic 

sequences using a Microomics Systems S.L (Barcelona, Spain) software and were validated 

and subsequently completed with the Kraken Metagenomics (Wood and Salzberg, 2014) and 

QIIME (Caporaso et al., 2010) software. Taxonomic assignment of phylotypes was 

performed using a Bayesian classifier trained with Silva database version 132 (99% OTUs 

full-length sequences) (Wang et al., 2007). 
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Enterococcus spp. isolation, detection of resistance genes and phenotypical antimicrobial 

resistance tests 

Colon digesta samples were plated and incubated on Slanetz-Bartley agar (Oxoid, UK) for 48 h at 

37°C. Colonies morphologically compatible with Enterococcus spp. were confirmed by PCR (Dutka-

Malen et al., 1995). In parallel, using a boiling method (Queipo-Ortuño et al., 2008), bacterial DNA 

was extracted from Slanetz-Bartley agar plates to detect the following antimicrobial resistance 

genes: Cu (tcrB) (Hasman et al., 2006), vancomycin (vanA, vanB, vanC1, vanC2) (Dutka-Malen et al., 

1995; Kariyama et al., 2000), tetracycline (tetM), and erythromycin (ermB) (Jacob et al., 2008). In 

vitro susceptibility of Enterococcus spp. isolates was determined by the disk diffusion method using 

13 antimicrobial agents: vancomycin (30 µg, BD, US), penicillin G (10 µg, Oxoid, UK), ampicillin (25 

µg, BD, US), imipenem (10 µg, BD, US), erythromycin (15 µg, BD, US), tetracycline (30 µg, BD, US), 

ciprofloxacin (5 µg, BD, US), enrofloxacin (5 µg, BD, US), clindamycin (2 µg, BD, US), gentamicin (10 

µg, BD, US), kanamycin (30 µg, BD, US), streptomycin (10 µg, BD, US) and chloramphenicol (30 µg, 

BD, US). The CLSI cut-off values were used. Additionally, a minimum inhibitory concentration (MIC) 

test was performed to assess the susceptibility of Enterococcus spp. to Cu sulfate pentahydrate using 

the broth-microdilution method. Isolates were cultured for 24 h in wells plates with brain heart 

infusion broth supplemented with 0.5, 1, 2.5, 5, 10, 15 and 20 mM of Cu sulfate pentahydrate. The 

ATCC 29212 Enterococcus faecalis strain was used as a quality control. 

Statistical analysis 

Data was analyzed as a randomized complete block design using the MIXED procedure of SAS 

(version 9.4, SAS Institute; Cary, US). The model included the fixed effects of source, level source × 

level interaction, and the random effects of block. Pen was the experimental unit for performance 

response. Mineral concentration in organs, antioxidant measurements and microbiota community 

were analyzed with an individual pig as the experimental unit. The normality and homogeneity of 

the data were examined using the Shapiro-Wilk and Hovtest statistical tests by SAS®. The 
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concentration of Cu in liver exhibited heterogeneity, therefore it was log transformed before 

analysis. Serum mineral content was analyzed as repeated measures. Biostatistical analyses were 

performed in open source software R Studio v.3.5.1. Diversity was analyzed at specie level using a 

vegan package (Oksanen et al., 2017). Richness and alpha diversity were calculated with raw counts 

based on Shannon and Inverse Simpson estimators. Betadiversity was evaluated by multivariate 

anova based on dissimilarities with the adonis function. To compare any differential effects from 

treatments, an ANOVA was performed for richness and diversity. Finally, differential abundance 

analysis was performed with taxa relative abundances under a zero-inflated log normal mixture 

model, P-values were corrected by false-discovery rate (FDR) with the metagenomeseq package 

(Paulson et al., 2019). 

Due to factorial arrangement, the main effects are discussed for responses in which the interaction 

was not significant. Significantly different means were separated using Tukey adjust. Significance 

was declared at a probability P ≤ 0.05 and tendencies were considered when the P-value was 

between > 0.05 and < 0.10. 

RESULTS 

Analyzed mineral concentrations in feed were according to those planned. In sulfate diets, Cu level 

was 9.5 and 107.7 mg/kg for nutritional and high Cu level diets, respectively. Whereas, Zn content 

was 79.8 and 162.9 mg/kg for nutritional and high Cu sulfate diets, respectively. Likewise, in 

hydroxychloride diets the Cu content for nutritional (9.9 mg/kg) and high (133.4 mg/kg) diets was 

according to that expected. The Zn content was 110.1 and 176.1 mg/kg for nutritional and high Cu 

hydroxychloride diets, respectively. The difference between low and high levels of Cu in the diets 

were achieved with both sulfate and hydroxychloride Cu sources. 
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Growth performance 

Growth performance response for the interaction between two sources of Cu and Zn and two Cu 

levels is shown in Table 2. Feeding diets with the higher Cu level increased the ADFI, BW and ADG 

during the PS and ST periods, being the final BW increased from 16.6 to 17.7 kg (P = 0.0002). 

Likewise, G:F increased as Cu inclusion in the diet increased (P = 0.038), but no effects of Cu and Zn 

source were observed on growth performance (P > 0.10). There was no effect of the interaction 

between source × level on any of the growth performance responses except for ADFI (P = 0.004) and 

G:F (P = 0.029) at the end of the ST period and for G:F (P = 0.006) for the entire nursery period (d 0-

42). At the end of the ST period, pigs fed Cu at 160 mg/kg as hydroxychloride had a higher ADFI but 

also lower G:F than those fed Cu sulfate at 160 mg/kg. For the entire nursery period, G:F did not 

differ between pigs fed Cu at 160 mg/kg as hydroxychloride or sulfate. Mortality was 2.46% and was 

not related to any dietary treatment (P > 0.10). 

Antioxidant activity 

The activity of GPX on pigs fed Cu at nutritional level was greater than that for those fed Cu at a high 

level (3,389 U/L vs 3,004 U/L; P = 0.013) at the end of the ST period. The GPX activity tended to be 

higher in animals fed Cu and Zn hydroxychloride than those fed Cu and Zn sulfate (3,437 U/L vs 3,144 

U/L; P = 0.057) at the end of the PS period. No interactions between source × level on the activity of 

SOD or GPX in plasma was observed (P > 0.10; Table 3). 

Mineral content in organs and tissues 

Feeding diets with higher levels of Cu increased liver and serum content of Cu and Zn (P < 0.05; Table 

4). Pigs fed Cu and Zn hydroxychloride had a greater Cu content in the liver (P = 0.036) and serum (P 

= 0.037) than those fed Cu and Zn sulfate. No effect of mineral source on liver and serum Zn 

concentrations was observed (P > 0.10). There was no effect of the interaction between source × 

level on Cu and Zn content on liver and serum except for Zn content on tibia (P = 0.044). Pigs fed Cu 
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hydroxychloride at high level had a greater accumulation of Zn (277.3 mg/kg) than those fed high Cu 

level as sulfate (256.1 mg/kg). All treatments had low levels (< 0.02 mg/g) of Cu storage in bone, 

below the ICP-OES detection limit.  

Microbial molecular analysis 

A two-way interaction between source and level was observed for alpha estimators (Table 5). The 

Shannon and Inverse Simpson index were lower in pigs fed a high Cu level as hydroxychloride 

compared to those fed Cu sulfate (P < 0.05). Beta diversity analysis revealed distances between 

clustered samples of nutritional and high Cu level group (PADONIS = 0.001) and a tendency for the two-

way interaction between source and level (PADONIS = 0.054; Fig. 1a-b). 

At family level, 224 different families were identified. From those, the families most frequently 

reported to change are presented in Fig.2 and 3. Diets with high Cu levels increased the relative 

abundance of Chrysiogenaceae, Halomonadaceae and Ruminococcaceae and decreased the 

abundance of the Acetobacteraceae and Brucellae families (P-adjust < 0.05; Fig.2). Regarding Cu and 

Zn source effect, Vibrionaceae family decreased (P-adjust = 0.027) and Methylobacteriaceae tended 

to increase more in pigs fed hydroxychloride minerals than in those fed sulfate minerals (P-adjust < 

0.10; Fig.3).   

At the genus level, 554 different genera were detected. From those, the genera most frequently 

reported to change are presented in Fig. 2 and 3. Pigs fed Cu at 160 mg/kg had higher relative 

abundance of Methanosphaera and Roseburia genera compared to those fed nutritional levels (P-

adjust < 0.05; Fig.2). The effect of Cu and Zn source was observed in the relative abundance of 

Vibrio, Enterobacter, Propionibacterium and Halomonas, being lower for hydroxychloride than 

sulfate diets (P-adjust < 0.05; Fig.3). Meanwhile, the supplementation of Cu and Zn as 

hydroxychloride increased the Methanobacterium, Acidaminococcus, Gallibacterium, Anaerovibrio 

and Actinobacillus abundance compared to Cu and Zn sulfate (P-adjust < 0.05).  
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Additionally, the increase in Cu as hydroxychloride decreased the abundance of Blautia, 

Streptococcus, Enterobacter, Fusobacterium, Escherichia and Vibrio whereas sulfate did not (P-adjust 

< 0.05; Fig.4). Lachnospira and Roseburia tended to increase in pigs fed Cu at 160 mg/kg as 

hydroxychloride (P-adjust < 0.10; Fig.4). At nutritional level Cu as hydroxychloride decreased the 

abundance of Enterobacter, Pasteurella, Leptospira, Erysipelothrix, Vibrio, Actinopolyspora and 

Clostridium, while increasing Lactobacillus abundance compared to sulfate at the same Cu level (P-

adjust < 0.05; Fig.5).  

Enterococcus spp. isolation, detection of antimicrobial resistance genes and phenotypical 

antimicrobial resistance tests 

Enterococcus species were isolated in a total of 40 samples with E. faecalis being the most 

dominating (26 samples; 65%). E. faecium was isolated from one sample and the remaining samples 

were identified as Enterococcus spp. (32.5%). A similar proportion of the different Enterococcus 

species were isolated in both hydroxychloride and sulfate diets (Table 6). In general, the presence of 

antimicrobial resistance genes in Enterococcus isolates was low. Only, ermB and tetM genes were 

detected in three and two samples, respectively (Table 6). No resistance genes were identified for Cu 

(tcrB) and vancomycin (VanA, VanB, VanC1, and VanC2). Meanwhile, using a disk diffusion test, all 

isolates were resistant to erythromycin, tetracycline, clindamycin, kanamycin and streptomycin and 

sensitive to vancomycin (Fig. 6). The highest percentages of resistant isolates were observed for 

gentamicin (98%), ciprofloxacin (95%), chloramphenicol (85%) and enrofloxacin (83%). Whereas, the 

lower resistances were observed for imipenem (8%), penicillin G (22%) and ampicillin (35%). The 

rates of antimicrobial resistance did not differ between treatments (Fig. 6). Regarding MIC test 

results, 65% of the isolates showed MIC values between 5 mM and 10 mM. The mean MIC value of 

Cu for all isolates was 6.74 mM. No differences were observed among treatments (Table 6). 
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DISCUSSION 

Effect of Cu level supplementation 

Higher dietary Cu level increased growth performance, resulting in a difference of 1 kg BW at the 

end of the nursery period under challenging conditions. Suggested mechanisms for high dietary Cu 

level effects on performance include their effects on microbiota (Pang et al., 2009), lipase and 

phospholipase activity and fat digestibility (Luo and Dove, 1996; Gonzales-Eguia et al., 2009), on 

hormone production in the intermediary metabolism (Li et al., 2008) and ghrelin synthesis in the 

stomach (Yang et al., 2012). In fact, previous studies reported that high dietary Cu levels (160 mg/kg) 

in pigs’ diets increased feed intake and growth performance (Bikker et al., 2015). It must be noted 

that in our study, weaned pigs were allotted to previously used pens that were not disinfected or 

cleaned in order to provide poor sanitary conditions through contact with a wide range of fecal 

microorganisms from older pigs. In this sense, ADG (280 g) of pigs fed the high dietary levels of Cu 

diets were lower than the common ADG recorded in the farm (290 g) in standard commercial 

conditions when pens were properly clean but also with the inclusion of therapeutic doses of Zn in 

the feed.  

Different dietary levels of Cu were also associated with changes in mineral tissue concentration. High 

Cu levels in the diet increased the Cu and Zn content in the liver and serum. The liver is the primary 

storage organ and is responsible for regulating the amount of Cu and Zn in the body through bile 

excretion to the intestinal tract, or distributing it through the blood to other organs. Therefore, the 

complementary evaluation of trace minerals in serum or plasma could indicate the amount of trace 

minerals that is circulating in the body (López-Alonso, 2012). Usually, the main antagonistic 

interaction between Cu and Zn has been observed when high levels of Zn in the diet (> 2,000 mg/kg) 

are supplemented, resulting in a Cu deficiency (Gaudré, 2016). Meanwhile, dietary Cu has little or no 

effect on Zn metabolism (Keen et al., 1985). 
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One of the primary functions of Cu is to be part of a large number of cuproenzymes in the catalysis 

of superoxide radicals (Suttle, 2010). Nevertheless, in excess or free unbound in the bloodstream, Cu 

is potentially toxic resulting in oxidation, and catalyzing the formation of hydroxyl radicals (Bremner, 

1998; Gaetke et al., 2014). In the present study, feeding pigs high Cu levels resulted in lower GPX 

activity compared to pigs fed nutritional Cu levels, suggesting that more Cu ions lead to more 

oxidation in plasma.  

High dietary levels of Cu were also able to modify the main variable of microbiome composition. In 

fact, one of the growth-promoting actions of Cu has been attributed to its antimicrobial effect. Diets 

supplemented with Cu at 160 mg/kg decreased Brucellaceae, Streptococcus, Pseudomonas, which 

may contain opportunistic pathogens, and increased Ruminococcaceae, Actinobacillus and Roseburia 

compared to Cu at 15 mg/kg. The bacterial modulation, towards the reduction of opportunistic 

pathogens together with the development of saprophytic bacteria, could lead to a significant 

improvement in intestinal nutrient absorption and, therefore, pig feed efficiency. Furthermore, it is 

known that many members of the family and genera, which increased as a result of high Cu 

supplementation, produce (directly or indirectly) short-chain fatty acids (SCFA; ie, butyrate, 

propionate and acetate) (Tungland, 2018). For instance, Roseburia is known to be a butyrate 

producer from the fermentation of dietary non-digestible carbohydrates, but in vitro studies have 

also shown that genera such as Roseburia and Eubacterium can use the lactate and/or acetate 

produced by Bifidobacterium to produce other SCFA as propionate (Duncan et al., 2002; Tungland, 

2018). SCFA are essential forms of energy, which are rapidly absorbed by colonic epithelial cells to 

exert beneficial effects on the host such as protection against colonic diseases, improvement of 

intestinal barrier function and reduction of inflammation in the gut (Ríos-Covián et al., 2016). 

Although SCFA were not directly measured in the present study, these bacterial findings could 

support improved growth performance of pigs when diets are supplemented with Cu at 160 mg/kg 

in contrast to diets with Cu at 15 mg/kg.  The association between intestinal microbiota composition 
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of pigs and their growth performance and health has been explored in previous studies (Højberg et 

al., 2005; Mei et al., 2009; Yu et al., 2017). 

The effect of high Cu concentration on microbial cells has been related to the induced production of 

intracellular reactive oxygen radicals inactivating cell components such as nucleic acids, lipids, and 

proteins resulting in bacterial death (Djoko et al., 2015). However, to protect themselves from this 

toxic effect, bacteria evolved a range of mechanisms such as extracellular sequestration of Cu ions, 

relative impermeability of the outer and inner bacterial membranes to Cu ions, metallothionein Cu-

scavenging proteins in the cytoplasm and periplasm, and active extrusion of Cu from the cell. The 

latter appears to be the chief mechanism of Cu tolerance in bacteria and has been extensively 

studied in Gram-positive and Gram-negative bacteria (Grass et al., 2011). Most of the Cu-scavenging 

proteins (CPx-type ATPases), are encoded by genes located on the chromosome. Meanwhile, Cu 

resistance genes are often located on plasmids, being in most cases transferable (Hasman and 

Aarestrup, 2002). The transferable and plasmid-located Cu resistance gene designated as tcrB has 

been identified in several Enterococcus species including E. faecium and E. faecalis (Hasman and 

Aarestrup, 2002; Hasman et al., 2006). Interestingly, the same plasmid was also found to carry genes 

ermB and vanA, which encode resistance to macrolides and glycopeptides, respectively (Hasman and 

Aarestrup, 2002; Hasman et al., 2006). Therefore, in the present study we focused on the detection 

of Cu, vancomycin, tetracycline and erythromycin resistance genes in Enterococcus spp. isolates. A 

total of 40 samples were identified as Enteroccocus spp., being E. faecalis the most dominating 

(65%). From these, all isolates were negative for the tcrB gene. Previous studies conducted in 

Denmark and the US reported the prevalence of the tcrB gene in enterococcal isolates at 76% 

(Hasman and Aarestrup, 2002), 11.9% (Amachawadi et al., 2011) and 4.9% (Amachawadi et al., 

2010), on pigs, 34% on broiler chickens (Hasman and Aarestrup, 2002), 16% on calves (Hasman and 

Aarestrup, 2002) and 6.9% on heifers (Amachawadi et al., 2013). It must be noted that the highest 

prevalence (76%) of the tcrB gene was described in pigs before slaughter in Denmark. The authors 

(Hasman and Aarestrup, 2002) point out that in Denmark, on the date when the study was 
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performed (1998), high (165 mg/kg) concentrations of Cu sulfate were supplemented in weaned pigs 

(< 35 kg) decreasing afterwards (25 mg/kg). Whereas lower prevalence (Amachawadi et al., 2010, 

2011) were obtained in US studies feeding lower levels of Cu (16.5 and 125 mg/kg) for 35 to 42 days, 

similar to our study. Differences in prevalence of the tcrB gene reported in previous studies question 

whether the prevalence of the Cu resistance gene can be determined by the age of the animal, by a 

long-term effect of the animal’s exposure (e.g. from suckling until slaughter) or by prolonged 

exposure of the farm to high levels of Cu. In a longitudinal study, Amachawadi et al., (2011) did not 

find a linear increase (d 0, 14, 28 and 42) in the prevalence of tcrB-positve fecal enterococci in 

weaned pigs fed diets with a continued supplementation of low (16 mg/kg) or high (125 mg/kg) level 

of Cu for 42 days. Further longitudinal field studies are requiered to elucidate the effect of high 

levels of Cu in the diet in the presence of the tcrB gene in animals in a farm environment. The 

absence of the tcrB gene in our isolates agrees with the low MIC Cu results (< 10 mM). From the 

literature, it can be drawn that tcrB-positive Enterococcus are associated with MIC > 20 mM/Cu, 

while those tcrB-negative isolates had values < 8 mM/Cu (Hasman and Aarestrup, 2002; 

Amachawadi et al., 2010, 2011, 2013). No resistance genes for vanA, vanB, vanC1 and vanC2 were 

detected, and all isolates were phenotypically susceptible to vancomycin. Surprisingly, the 

prevalence of ermB (7.5%) and tetM (5%) genes was low as opposed to the phenotypically resistant 

results to erythromycin and tetracycline. In Enterococcus spp. the most common genes conferring 

resistance to antibiotics are for erythromycin, tetracycline and vancomycin (Oravcova et al., 2019; 

Tian et al., 2019). Nevertheless, it is possible that this phenotypical resistance is conferred by other 

mechanisms or untested genes. The high rates in phenotypical resistance of Enteroccocal isolates 

could be explained by the fact that the north-east of Spain has one of the densest pig populations in 

Europe and different antimicrobial agents are still widely used in livestock. Moreover, a long-term 

effect on the microbial population after antibiotic administration should be considered. In pigs, the 

effects of a single intramuscular administration of amoxicillin may persist at least after 5 weeks 

(Janczyk et al., 2007). Although the potential selective pressure that Cu supplementation could exert 
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on antimicrobial resistance was not evidenced in the present study, it certainly requires more 

attention.  

 

 

 

 

 

 

Effect of Cu and Zn source supplementation 

In the present study, differences between mineral sources were observed in growth performance 

(ADFI and G:F), mineral tissue content and microbial community. Results of studies with broiler 

chickens indicate that the effect of Cu and Zn on growth performance could depend on chemical 

differences between trace mineral sources. Olukosi et al., (2018) reported that broiler chickens 

receiving Zn and Cu hydroxychloride had greater G:F than those fed Zn and Cu sulfate. Likewise, Lu 

et al., (2010) described that broiler chickens fed 200 mg/kg Cu as Tribasic copper chloride (TBCC) had 

greater ADG than those fed Cu sulfate. Similarly, supplementation of diets for broiler chickens with 

Cu sulfate at 300 mg/kg had reduced ADG and reduced G:F ratio than birds fed Cu2O at the same 

level (Hamdi et al., 2018).  Results of pig studies have demonstrated that other forms of both Cu and 

Zn, such as lysine complex (Coffey et al., 1994; Apgar et al., 1995; Cheng et al., 1998) and 

hydroxychloride (Cromwell et al., 1998; Fry et al., 2012; Carpenter et al., 2016) are as effective in 

improving growth as sulfate minerals. Although different studies on pigs have shown no differences 

between Cu and Zn sources at high or low levels, the evaluation of intermediate levels might reveal 

differences that are mainly driven by the higher or lower bioavailability of trace mineral sources. In 
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this sense, Veum et al., (2004) reported that feeding pigs with intermediate Cu levels (25, 50 and 100 

mg/kg) as Cu proteinate had higher ADG and ADFI than those fed a high level of Cu sulfate (250 

mg/kg). The possibility of reducing the amounts of Cu and Zn by using higher bioavailable sources 

could represent an alternative to the inclusion of pharmaceutical doses of trace minerals in diets. 

Therefore, the negative interactions between nutrients and the environmental impact attributed to 

high doses could be reduced without affecting pig performance. In the context of stricter 

regulations, further studies exploring biovailability through increasing doses of different mineral 

sources should be explored, particularly to suckling and weaned pigs. 

Pigs fed with hydroxychloride minerals had higher Cu concentrations in liver and serum compared 

with sulfate. An important factor for intestinal absorption of Cu and Zn is their availability as free 

ions in intestinal lumen (Martin et al., 2013). Results from our laboratory confirmed that sulfates are 

highly soluble in a wide range of pH from 2.5 to 6.5 whereas hydroxychloride minerals are less 

soluble at pH 6.5 but highly soluble at pH 2.5, as previously reported (Pang and Applegate, 2006). 

Consequently, less chelated interactions with other components of the diet may have occurred with 

hydroxychloride minerals, making them more available to be absorbed compared to sulfate. The fact 

that pigs fed a high level of Cu as sulfate had lower Zn content in the tibia could suggest a likely 

antagonistic interaction between high Cu level and Zn, and possibly with other minerals, for metal-

binding sites that hydroxychloride minerals did not show. Results from earlier studies reported 

differences and interactions between Cu and Zn sources in absorption and mineral tissue 

accumulation. For instance, in broiler chickens, Olukosi et al., (2018) reported that Cu liver was 

influenced by the Cu and Zn source being greater for hydroxychloride than for sulfate minerals. In 

2015, Huang et al., reported greater Zn and Cu storage in the liver of pigs fed Cu as TBCC compared 

to those fed Cu as sulfate. Further studies involving complementary analysis of both protein and 

mRNA levels of Cu and Zn transporters could help to clarify differences in mineral storage as well as 

lead to a more comprehensive understanding of metal absorption pathways. 
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After 14 days of weaning, a tendency for higher serum GPX activity in pigs fed Cu and Zn 

hydroxychloride was observed. Highly soluble trace mineral sources may result in greater oxidation 

rates (Miles et al., 1998). Earlier studies in broiler chickens reported that TBCC was less active than 

sulfate in promoting oxidation of vitamin E in feed and in reducing vitamin E content in plasma and 

liver (Luo et al., 2005; Lu et al., 2010). Results of studies with pigs demonstrated that Cu sulfate diet 

at 225 mg Cu/kg may cause greater oxidative stress in the duodenum than Cu as TBCC (Fry et al., 

2012; Huang et al., 2015). The covalent bonding of hydroxychloride trace minerals could allow Cu 

and Zn to gradually become soluble in the small intestine, thus resulting in less oxidative stress than 

the sulfate counterparts, as suggested by Fry et al., (2012). 

Since mineral sources have different solubility, they may affect the intestinal microbiota differently. 

In our study, an increase in the relative abundance of some beneficial bacteria was observed in pigs 

fed hydroxychloride minerals, particularly at high Cu level. From the literature, it is known that gut 

microbiota plays essential roles in amino acid catabolism and energy harvest from the diet. Indeed, 

genera such as Lachnospira, Roseburia and Coprococcus produce various metabolites such as SCFA, 

and biogenic amines (Tungland, 2018). Based on these results, hydroxychloride diets appear to 

improve intestinal microbiota profile and some mineral content in tissues. High levels of Cu as 

hydroxychloride increased BW performance; however, the beneficial effects of hydroxychloride 

were not completely reflected in pig feed efficiency compared to high Cu sulfate. Additional markers 

such as fecal consistency score and intestinal integrity indicators, which were not measured in the 

present study, are needed to draw consistent conclusions.   

No differences in the presence of antimicrobial resistance genes or phenotypical antimicrobial 

resistance profile between Cu and Zn sources were observed. Nevertheless, this relationship should 

be discussed in field studies in greater depth and with a greater number of Enterococcus spp. 

isolated.  
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In conclusion, the EU permissible levels of Cu (160 mg/kg) increase growth performance and 

modulate bacterial communities compared to nutritional levels (15 mg/kg) in weaned pigs reared 

under challenging conditions. Different effects on mineral tissue content and microbial modulation 

were observed between Cu and Zn sources. The reduction of Cu and Zn contents in pig diets by using 

higher bioavailable sources should be explored in order to reduce the environmental impact. 

Longitudinal field studies are necessary to confirm the influence of high levels of Cu supplement on 

antimicrobial cross-resistance genes. 
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Figure 1. Non-metric dimensional scaling (NMDS) plot of dissimilarity matrix based on Bray-curtis 

distance clustered by Cu dietary level (PADONIS = 0.001) (A); and by experimental diets SF-N: Sulfate at 

nutritional level, SF-H: Sulfate at high level, HCl-N: Hydroxychloride at nutritional level, HCl-H: 

Hydroxychloride at high level (PADONIS = 0.054) (B). Data are means of 12 replicate pens for the two-

way interaction, whereas for the main effect of level are means of 24 replicate pens (1 pig per 

replicate pen was sampled). 

 

Figure 2. Differentially abundant taxa (ln change and FDR-adjusted P < 0.20) between diets 

supplemented at high and nutritional Cu levels, regardless of the mineral source. Positive values (  ) 

and negative values (  ) indicate greater and lower abundance, respectively. Taxa are sorted by level 

of significance (from higher to lower). Only significant taxa is presented. Data are means of 24 

replicate pens for the main effect of level (1 pig per replicate pen was sampled). 

 

Figure 3. Differentially abundant taxa (ln change and FDR-adjusted P < 0.20) between Zn and Cu 

hydroxychloride and sulfate diets, regardless of the Cu level. Positive values (  ) and negative values (  

) indicate greater and lower abundance, respectively. Taxa are sorted by level of significance (from 

higher to lower). Only significant taxa is presented. Data are means of 24 replicate pens for the main 

effect of source (1 pig per replicate pen was sampled). 

 

Figure 4. Differentially abundant taxa at genus level (ln change and FDR-adjusted P < 0.20) at high Cu 

supplementation between hydroxychloride (HCl) and sulfate source.  

Positive values (  ) and negative values (  ) indicate greater and lower abundance, respectively. Taxa 

are sorted by level of significance (from higher to lower). Only significant taxa is presented. Data are 

means of 12 replicate pens for the two-way interaction (1 pig per replicate pen was sampled). 

 

Figure 5. Differentially abundant taxa at genus level (ln change and FDR-adjusted P < 0.20) at 

nutritional Cu supplementation between hydroxychloride (HCl) and sulfate source. Positive values (  ) 

and negative values (  ) indicate greater and lower abundance, respectively. Taxa are sorted by level 

of significance (from higher to lower). Only significant taxa is presented. Data are means of 12 

replicate pens for the two-way interaction (1 pig per replicate pen was sampled). 

 

Figure 6. Percentage of Enterococcus spp. isolates resistant to different antimicrobials agents from 

pigs fed diets with two Cu and Zn sources (sulfate and hydroxychloride) at two Cu levels (15 and 160 

mg/kg). VAN, vancomycin; IMI, imipenem; PG, penicillin G; AMP, ampicillin; CLOR, chloramphenicol; 

ENR, enrofloxacin; CP, ciprofloxacin; GEN, gentamicin; KAN, kanamycin; ST, streptomycin; ERY, 

erythromycin; TET, tetracycline; CLIN, clindamycin  

 

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/advance-article-abstract/doi/10.1093/jas/skaa117/5818979 by U

N
IVER

SITAT AU
TO

N
O

M
A D

E BAR
C

ELO
N

A user on 12 M
ay 2020



Acc
ep

ted
 M

an
us

cri
pt

 

35 

 

ANNEX 

Figure 7. Differentially abundant taxa at genus level (ln change and FDR-adjusted P < 0.20) between 

sulfate diets supplemented at high and nutritional Cu levels. Positive values (  ) and negative values (  

) indicate greater and lower abundance, respectively. Taxa are sorted by level of significance (from 

higher to lower). Only significant taxa is presented. Data are means of 12 replicate pens for the two-

way interaction (1 pig per replicate pen was sampled). 

 

Figure 8. Differentially abundant taxa at genus level (ln change and FDR-adjusted P < 0.20) between 

hydroxychloride (HCl) diets supplemented at high and nutritional Cu levels. Positive values (  ) and 

negative values (  ) indicate greater and lower abundance, respectively. Taxa are sorted by level of 

significance (from higher to lower). Only significant taxa is presented. Data are means of 12 replicate 

pens for the two-way interaction (1 pig per replicate pen was sampled). 
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Table 1. Composition of the basal diets for the two phases, as-fed basis1 

 

Ingredients, % Pre-starter Starter 

Wheat 26.32 40.60 

Maize 6.75 20.00 

Barley 12.20 15.38 

Soybean meal 47% CP 0.90 12.98 

Fishmeal 4.00 5.00 

Lard 2.58 2.48 

Soybean meal heat treated 3.60 - 

Extruded Wheat 13.05 - 

Porcine Plasma 3.00 - 

Dextrose 4.00 - 

Acid milk whey 4.50 - 

Sweet milk whey 8.50 - 

Extruded soybeans 7.15 - 

Di calcium phosphate 1.36 1.40 

Calcium carbonate 0.18 0.11 

L-Lysine 50 0.80 0.85 

L-Threonine 0.22 0.24 

DL-Methionine 0.25 0.16 

L-Tryptophan 0.02 0.05 

Salt 0.22 0.35 

Vitamin premix nucleous2 0.40 0.40 
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Calculated composition    

DM 90.0 89.1 

NE, kcal/kg 2550 2401 

CP 19.5 17.9 

NDF 10.8 10.3 

Ether extract 6.5 4.8 

Ca 0.70 0.60 

Total P 0.68 0.68 

Dig P 0.40 0.40 

   

Analysed composition   

DM 91.5 90.2 

CP 18.7 18.6 

Ether Extract 6.3 6.3 

NDF 7.8 7.8 

Ash 5.1 4.8 

 

 

 

1Pre-starter phase diets were fed from d 0 to 14 and starter phase diets were fed from d 14 to 42. 

2Provided per kg of feed: vitamin A (acetate): 12,000 IU; vitamin A (retinol): 2,000 IU; vitamin D3 

(cholecalciferol): 1,204 IU; vitamin D (25-hydroxicholecalciferol): 600 IU; vitamin E: 104 IU; vitamin 

K3: 2 mg; vitamin B1: 3 mg; vitamin B2: 7 mg; vitamin B6: 3.5 mg; vitamin B12: 0,1 mg; D-

pantothenic acid: 17 mg; niacin:45 mg; biotin: 0.2 mg; folacin: 1.5 mg; Fe (chelate of amino acid): 15 

mg; Mn (oxide): 6.25 mg; Mn (chelate of glycine): 3.75 mg; I (calcium anhydrous): 1.75 mg; Se 

(organic): 25 mg; Se (sodium): 50 mg. Phytase: 1,500 FYT (Ronozyme® NP (M), DSM, Basel, 

Switzerland). 
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 1 

 2 

 3 

Table 2. Growth performance1 of pigs fed diets with two Cu and Zn sources (sulfate and hydroxychloride) at two Cu levels (15 and 160 mg/kg) 2 4 

 5 

Cu and Zn  

Source 

Cu level, BW, kg  ADFI, g  ADG, g  G: F 

mg/kg d 0 d 14 d 42  d 0-14 d 14-42 d 0-42  d 0-14 d 14-42 d 0-42  d 0-14 d 14-42 d 0-42 

Sulfate 15 5.86 6.97 16.62  126.6 492.6 ab 370.6  86.9 352.4 256.2  0.695 0.718 b 0.696 b 

 160 5.86 7.37 17.99  150.5 491.4 ab 376.3  111.9 381.1 288.8  0.757 0.778 a 0.770 a 

                 

Hydroxychloride 15 5.86 7.11 16.51  134.1 456.3 b 348.7  89.1 335.9 253.6  0.673 0.740 ab 0.729 ab 

 160 5.86 7.36 17.45  138.5 529.0 a 381.0  107.0 375.6 271.2  0.780 0.714 b 0.718 ab 

                 

SEM3  0.496 0.486 0.883  10.48 38.20 21.75  4.69 17.28 11.36  0.048 0.044 0.041 

P-value4                 

Source  0.894 0.398 0.256  0.701 0.957 0.417  0.767 0.383 0.162  0.989 0.259 0.544 

Level  0.894 <.0001 0.0002  0.020 0.005 0.075  <.0001 0.009 0.001  0.003 0.374 0.038 
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Source × Level  0.689 0.311 0.439  0.106 0.004 0.208  0.428 0.660 0.293  0.403 0.029 0.006 

 6 

1Body weight; Average daily feed intake; Average daily gain; Gain: Feed. 7 

2Data are means of 12 replicate pens for the two-way interaction, whereas for the main effects of source and level are means of 24 replicate pens (11 pigs 8 

per replicate pen). 9 

3Standard error of the mean. 10 

4a-b: Values within the same column with different letters differ significantly (P < 0.05).11 
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Table 3. Antioxidant activity of pigs fed diets with two Cu and Zn sources (sulfate and 12 

hydroxychloride) at two Cu levels (15 and 160 mg/kg)1 13 

 14 

Cu and Zn  

Source 

Cu level, 

mg/kg 

Superoxide dismutase, 

U/mL 

 Glutathione peroxidase, U/L 

d 14 d 42  d 14 d 42 

Sulfate  173.8 138.4  3,144 3,109 

Hydroxychloride  185.1 134.7  3,437 3,284 

SEM2  6.00 9.72  106.9 101.3 

       

 15 179.9 143.3  3,373 3,389 

 160 179.0 129.8  3,208 3,004 

SEM2  5.92 9.62  106.9 101.3 

P-value3       

Source  0.181 0.789  0.057 0.226 

Level  0.921 0.328  0.277 0.013 

Source × Level  0.465 0.792  0.621 0.637 

 15 

1Data are means of 12 replicate pens for the two-way interaction, whereas for the main effects of 16 

source and level are means of 24 replicate pens (1 pig per replicate pen was sampled). 17 

2Standard error of the mean. 18 

3a-b: Values within the same column with different letters differ significantly (P < 0.05). 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 
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 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

Table 4. Serum and tissue Cu and Zn content of pigs fed diets with two Cu and Zn sources (sulfate 40 

and hydroxychloride) at two Cu levels (15 and 160 mg/kg)1 41 

 42 

Cu and Zn  

Source 

Cu level, 

mg/kg 

Serum, mg/L2  Liver, mg/kg DM  Bone, mg/kg4 

Cu Zn  Cu3 Zn  Zn 

Sulfate  1.69 0.71  1.68 213.6  257.2 

 (48.7)  

Hydroxychloride  1.79 0.72  1.80 221.6  268.0 

 (71.0)  

SEM5  0.031 0.017  0.042 9.58  3.56 

         

 15 1.65 0.67  1.59 199.9  258.5 

 (39.5)  

 160 1.83 0.76  1.89 235.4  266.7 
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 (80.2)  

SEM5  0.031 0.017  0.041 9.53  3.72 

P-value6         

Source  0.037 0.438  0.036 0.553  0.041 

Level  <.0001 0.0002  <.0001 0.011  0.115 

Source × Level   0.130 0.593  0.584 0.991  0.044 

 43 

1Data are means of 12 replicate pens for the two-way interaction, whereas for the main effects of 44 

source and level are means of 24 replicate pens (1 pig per replicate pen was sampled). 45 

2P-value  of day of sampling at d 14 and d 42 (P < .0001). P-value of interaction between source × 46 

level × day for Cu (P = 0.299) and for Zn (P = 0.010). 47 

3Log10 transformed liver Cu concentration. Values in parentheses show the non-transformed values. 48 

4Cu detected values are lower than 0.02 mg/g by ICP-OES. 49 

5Standard error of the mean. 50 

6a-b: Values within the same column with different letters differ significantly (P < 0.05). 51 

 52 
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Table 5. Evenness and diversity of colon microbiota of pigs fed diets with two Cu and Zn sources 53 

(sulfate and hydroxychloride) at two Cu levels (15 and 160 mg/kg)1 54 

 55 

Cu and Zn  

Source 

Cu level, 

mg/kg 

Shannon Inverse Simpson 

Sulfate 15 2.38 
ab

 4.31 
b
 

 160 2.31 
b
 4.07 

bc
 

    

Hydroxychloride 15 2.54 
a
 5.18 

a
 

 160 2.12 
c
 3.36 

c
 

SEM
2
  0.047 0.220 

    

P-value
3
    

Source  0.761 0.715 

Level  <.0001 <.0001 

Source × Level  0.0006 0.0009 

 56 

1Data are means of 12 replicate pens for the two-way interaction, whereas for the main effects of 57 

source and level are means of 24 replicate pens (1 pig per replicate pen was sampled). 58 

2Standard error of the mean. 59 

3a-b: Values within the same column with different letters differ significantly (P < 0.05). 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 
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 69 

 70 
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Table 6. Characterisitics of Enteroccoccus spp. isolates1 and prevalence of antimicrobial resistance genes2 of pigs fed diets with two Cu and Zn sources 72 

(sulfate and hydroxychloride) at two Cu levels (15 and 160 mg/kg) 73 

 74 

1Data are means of 12 replicate pens for the two-way interaction, whereas for the main effects of source and level are means of 24 replicate pens (1 pig per 75 

replicate pen was sampled). 76 

2Antimicrobial resistance genes for: Cu (tcrB), erythromycin (ermB), tetracycline (tetM) and vancomycin (vanA, vanB, vanC1, vanC2). 77 

3Values in parenthesis show the prevalence percentage expressed for the total Enteroccocus spp. isolates.   78 

 79 

 80 

Cu and Zn  

Source 

Cu 

level, 

mg/kg 

Enteroccocus spp. 

isolated, n 

E.faecalis, 

n 

E.faecium, 

n 

Enteroccocus spp., 

n 

Mea

n 

MIC 

Cu, 

mM 

AMR genes3 

tcrB, 

n 

ermB, 

n 

tetM,  

n 

vanA, vanB, vanC1, 

vanC2, n 

Sulfate 15 11 8 1 2 5.41 0 0 0 0 

 

160 11 6 0 5 6.68 0 0 1 

(2.5) 

0 

 

          

Hydroxychlori

de 

15 8 6 0 2 7.85 0 1 (2.5) 1 

(2.5) 

0 

  160 10 7 0 3 7.05 0 2 (5) 0 0 
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 81 

Figure 1A 82 

 83 

 84 

 85 

 86 

 87 

 88 
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 90 

Figure 1B 91 
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Figure 2 100 
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Figure 3 102 
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Figure 4 105 
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Figure 5 107 
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Figure 6 110 
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Figure 7 119 
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Figure 8 121 
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