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Abstract

Significant efforts have been made recently in the application of high-resolution remote sensing 

imagery (i.e., sub-meter) captured by unmanned aerial vehicles (UAVs) for precision agricultural 

applications for high-value crops such as wine grapes. However, at such high resolution, shadows 

will appear in the optical imagery effectively reducing the reflectance and emission signal received 

by imaging sensors. To date, research that evaluates procedures to identify the occurrence of 

shadows in imagery produced by UAVs is limited. In this study, the performance of four different 

shadow detection methods used in satellite imagery was evaluated for high-resolution UAV 

imagery collected over a California vineyard during the Grape Remote sensing Atmospheric 

Profile and Evapotranspiration eXperiment (GRAPEX) field campaigns. The performance of the 

shadow detection methods was compared and impacts of shadowed areas on the normalized 

difference vegetation index (NDVI) and estimated evapotranspiration (ET) using the Two-Source 

Energy Balance (TSEB) model are presented. The results indicated that two of the shadow 

detection methods, the supervised classification and index-based methods, had better performance 

than two other methods. Furthermore, assessment of shadowed pixels in the vine canopy led to 

significant differences in the calculated NDVI and ET in areas affected by shadows in the high-

resolution imagery. Shadows are shown to have the greatest impact on modeled soil heat flux, 

while net radiation and sensible heat flux are less affected. Shadows also have an impact on the 

modeled Bowen ratio (ratio of sensible to latent heat) which can be used as an indicator of vine 

stress level.
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Introduction

Unmanned aerial vehicles (UAVs) used for remote sensing (RS) purposes have become a 

rapidly developing technology for acquiring high-resolution imagery of the earth’s surface. 

The use of UAVs for monitoring agricultural crop conditions has greatly expanded in recent 

years due to recent advances in high-resolution aerial image processing and sensor 

technology. These advances have extended the capability to measure crop conditions from a 

single field to multiple fields in a small time interval. The MIT Technology Review has 

listed Agricultural UAVs (or drones) as number one in 10 Breakthrough Technologies of 

2014 (http://www.technologyreview.com/lists/technologies/2014/). UAVs now offer sub-

meter resolution remote sensing relevant to water management through optical and thermal 

imagery and evapotranspiration estimation advances. This UAV technology is now being 

applied to high-value crops such as orchards and vineyards to assess individual plant water 

use or evapotranspiration (ET) and stress (Ortega-Farías et al. 2016; Nieto et al. 2018). This 

enhanced sensing capability can provide information of plant water use and symptoms for 

biotic/abiotic stresses at individual plant scale, a capability not achievable with commercial 

or NASA satellite data. However, as image resolution increases, new challenges emerge such 

as data transfer and storage, image processing, and detection and characterization of finer 

scale features such as plant canopy glint, blurriness due to wind, and shadows. Although in 

some cases shadows might not be a significant issue, they affect surface reflectance and 

temperature not accounted for in RS energy balance models, which in turn are likely to 

cause bias in determining plant water use and stress, among other parameters. Therefore, 

neglecting the shadow impact on monitoring and detecting plant water use and stress and 

soil moisture status might well result in less reliable assessments for high-value crops.

Shadows appear when elevated objects, such as buildings or trees, occlude and block the 

direct light (e.g., sun shortwave radiation) produced by a source of illumination. In some 

cases, information about shadows can provide additional clues about the geometric shape of 

the elevated object (Lillesand and Kiefer 2000), the position of the source of light (Bethsda 

1997), and the height of the object (Sirmacek and Unsalan 2008). In most cases, the 

appearance of shadows in an image acquired by RS complicates the detection of objects or 

areas of interest that are located under the shaded area and thus reflect reduced radiance. The 

appearance of shadows in aerial imagery may also cause loss of valuable information about 

features, such as shape, height, and color. Consequently, the darkening effect of shadows 

increases land cover classification error and causes problems for remote sensing studies, 

such as calculation of vegetation indices and change detection (Zhu and Woodcock 2012). 

Typical RS vegetation indices and outputs used in agriculture include NDVI, enhanced 

vegetation index (EVI), LAI (Carlson and Ripley 1997), ET estimates (Nemani and Running 

1989), and land cover classification (Trout and Johnson 2007), among others. In addition, 

sun position changes lead to moving and changing shadow locations. As a result, shadow 

detection algorithms have received widespread attention, primarily with respect to the 

impacts of shadows on satellite RS data.

Multiple studies have been conducted to develop methods that detect shadows in images 

captured by satellites, and several shadow detection methods have been documented. These 

methods can be categorized into four groups: (a) unsupervised classification or clustering, 
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(b) supervised classification that employ tools such as artificial neural networks (ANNs) or 

support vector machines (SVMs), (c) index-based methods, and (d) physical-based methods.

(a) Unsupervised classification/clustering Xia et al. (2009) presented an 

unsupervised classification/clustering algorithm to detect shadows using the 

affinity propagation clustering technique in the hue–saturation–intensity (HSI) 

color space. Shiting and Hong (2013) presented a clustering-based shadow edge 

detection method using K-means clustering and punishment rules to modify 

false alarms. Xia’s results revealed that the proposed method has the capability 

of producing a robust shadow edge mask.

(b) Supervised classification/object-based methods Kumar et al. (2002) proposed an 

object-based method to detect shadows using a color space other than RGB. 

Siala et al. (2004) worked on a supervised classification method to detect 

moving shadows using support vectors in the color ratio space. Zhu and 

Woodcock (2012) presented an object-based approach to detect shadows and 

clouds in Landsat imagery.

(c) Index-based methods Scanlan et al. (1990) reported a method to detect and 

remove shadows in images by partitioning the image into pixel blocks, 

calculating the mean of each block, and comparing it with the image median. 

Rosin and Ellis (1995) worked on the impact of different thresholds on the 

detection of shadows in an index-based method. Choi and Bindschadler (2004) 

presented an algorithm to detect clouds using normalized difference snow index 

(NDSI) to match plausible cloud shadow pixels based on solar position and 

Landsat7 images. Qiao et al. (2017) used normalized difference water index 

(NDWI) and NDVI to separate shadow pixels from both water bodies and 

vegetation, and then applied a maximum likelihood classifier (MLC) and 

support vector machines (SVMs) to classify the shadow pixels. Kiran (2016) 

converted an RGB color image to a grayscale image using the average of the 

three bands, and then used Otsus method to define a threshold for differentiating 

between shadow and non-shadow pixels. Finally, a histogram equalization 

method was applied to improve the contrast of the grayscale image.

(d) Physical-based methods Sandnes (2011) used the sun position and shadow 

length to approximately estimate the geolocation of the sensor. Huang and Chen 

(2009a) presented a physical approach for detecting the shadows in video 

imagery and showed that the proposed method can effectively identify the 

shadows in three challenging video sequences. Also, Huang and Chen (2009b) 

proposed a method for detecting a moving shadow using physical-based 

features. In this method, the physical-based color features are derived using a bi-

illumination reflection model. More information about physical-based models 

can be found in Sanin et al. (2012).

Concerning the impact of shadows on vegetation indices and water stress, Ranson and 

Daughtry (1987) and Leblon et al. (1996) concluded that NDVI estimates were highly 

sensitive to the shaded part of a forest canopy. Leblon et al. (1996) analyzed the mean sunlit 

and shadow reflectance spectra of shadows cast by a building and by conifers and hardwood 
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trees on grass, bare soil, and asphalt using the visible and near-infrared bands. Their results 

indicated that reflectance of hardwood shadows was greater than those of conifers and 

buildings, except for shadow reflectance on bare soil. Moreover, the average NDVI and the 

atmospherically resistant vegetation index (ARVI) in sunlit areas could be lower or higher 

than in shaded areas depending on the surface type and shadow type. Hsieh et al. (2016) 

analyzed the spectral characteristics in the shadow areas and also investigated the NDVI 

differences between shaded and non-shaded land covers using high-radiometric resolution 

digital imagery obtained from Leica ADS-40, Intergraph DMC airborne. They found that 

digital number (DN) values in shaded pixels are much lower than in sunlit pixels and also 

reported NDVI mean values in shadows and non-shadows from the vegetation category of 

0.38 and 0.64, respectively. Poblete et al. (2018) proposed an approach to detect and remove 

shadow canopy pixels from high-resolution imagery captured by a UAV using a modified 

scale invariant feature transformation (SIFT) computer version algorithm and K-means++ 

clustering. Their results indicated that deletion of shadow canopy pixels from a vineyard 

leads to an improved relationship between the thermal-based Crop Water Stress Index and 

stem water potential (13% in terms of the coefficient of determination). They also concluded 

that the impact of shadow canopy pixel removal should be evaluated for ET models working 

with high-resolution imagery.

While the literature identifies several shadow detection approaches, a few studies have 

focused on shadow detection for very high-resolution imagery captured by UAVs. 

Furthermore, limited work is available that demonstrates how shadows might affect the 

interpretation of the imagery in terms of vegetation indices, biophysical parameters and ET. 

Therefore, the objectives of this study were to characterize the advantages and disadvantages 

of a version of each shadow detection model group using high-resolution imagery captured 

by UAVs over complex canopy locations such as vineyards, and consider the impacts of 

shaded pixels on NDVI and ET estimations.

Materials and methods

Area of study and UAV sensor descriptions

The high-resolution images for this study were collected by a small UAV over a Pinot Noir 

vineyard located near Lodi, California (38.29 N 121.12 W), in Sacramento County as part of 

the GRAPEX project. It is a drip-irrigated system vineyard in which irrigation lines run 

along the base of the trellis at 30 cm agl with two emitters (4 liters/hour) between each vine. 

The training system is with “U”-shaped trellises and canes trained upwards. The vine 

trellises are 3.35 m apart, and the height to first and second cordons is about 1.45 and 1.9 m, 

respectively (Kustas et al. 2018). The orientation of the vine rows is east–west. In terms of 

cycle of vine canopy growth in that area, the bud break (grape flowering state) occurs in 

early May, and the veraison to harvest stage occurs in early or mid-June to late August. 

Thus, June, July, and August are the months that the canopy may undergo stress. The UAV 

was supplied and operated by the AggieAir UAV Research Group at the Utah Water 

Research Laboratory at Utah State University (http://www.aggieair.usu.edu/). Four sets of 

high-resolution imagery (20 cm or finer) were captured over the vineyard by the UAV in 

2014, 2015, and 2016. These UAV flights were synchronized with Landsat satellite overpass 
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dates and times. The data were used to evaluate the various shadow detection methods. The 

study area is shown in Fig. 1, and information describing the images is summarized in Table 

1. Details of the AggieAir aircraft, along with sensor payload, are shown in Fig. 2.

As described in Table 1, different optical cameras were used each year (2014, 2015, and 

2016). Cameras ranged from consumer-grade Canon S95 cameras to industrial type 

Lumenera monochrome cameras fitted with narrowband filters equivalent to Landsat 8 

specifications. The thermal resolution for all four flights was 60 cm and the visible and NIR 

(VNIR) were 10 cm except for the first one (15 cm).

A photogrammetric point cloud was produced from the multispectral images with a density 

of 40 (points/m2) for the 15 cm resolution (2014 imagery) and 100 (points/m2) for the 10 cm 

resolution (2015 and 2016 imagery), after which a digital surface model (DSM) was 

generated at the same spatial resolution than the original imagery (i.e., 15 cm for 2014 and 

10 cm for 2015 and 2016). In addition to UAV point cloud products that describe the 

surveyed surface, a LiDAR-derived bare soil elevation (digital terrain model DTM) product 

for the same location, collected by the NASA G-LiHT project, was used Cook et al. (2013). 

Also, 2014 and 2015 images were captured between veraison and harvest stage, and the 

2016 flight was between bloom and veraison stages (Table 2).

Following the imagery acquisition, a two-step image processing phase occurred, including 

(1) radiometric calibration and (2) image mosaicking and orthorectification. In the first step, 

the digital images are converted into a measure of reflectance by estimating the ratio of 

reference images from pre- and post-flight Labsphere (https://www.labsphere.com/) 

Lambertian panel readings. For this conversion, a method has been adapted from Neale and 

Crowther (1994), Miura and Huete (2009), and Crowther (1992) that is based solely on the 

reference panel readings, which do not require solar zenith angle calculations. This 

procedure additionally corrected camera vignetting effects that were confounded in the 

Lambertian panel readings. In the second step, all images were combined into one large 

mosaic and rectified into a local coordinate system (WGS84 UTM 10N) using the Agisoft 

Photoscan software AgiSoft (2016), and survey-grade GPS ground measurements. The 

software produced hundreds of tie-points between overlapping images using 

photogrammetric principles in conjunction with image GPS log file data and UAV 

orientation information from the on-board Inertial Measurement Unit (IMU) to refine the 

estimate of the position and orientation of individual images. The output of this step is an 

orthorectified reflectance mosaic (Elarab et al. 2015). For thermal imagery processing, only 

step 2 is applied. The resulting thermal mosaic was brightness temperature in degree 

Celsius. Moreover, a vicarious calibration for atmospheric correction of microbolometer 

temperature sensors proposed by Torres-Rua (2017) was applied to the thermal images.

Shadow detection methods

Figure 3 provides a schematic overview of the four different shadow detection methods that 

were evaluated in this study. For unsupervised k-means classification, the value of k 
(maximum number of classes) must be determined. When using supervised classification, 

the signature spectra for each of the categories must be previously identified. The index-

based method required that an index be calculated using two or more spectral bands and the 
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identification of a threshold value (digital number or reflectance). Because the shadowed 

pixels can be visually identified, the threshold value can be modified in a trial-and-error 

process. Application of the physical-based model involved calculation of the sun position 

based on the central latitude and longitude of the imagery, together with the local time at the 

flight area. Since the case study is not a large area (<1.4 km2) and the flight time is less than 

20 min, we can assume that the sun position is constant for all pixels.

To statistically determine the impact of shadows over NDVI, a standard analysis of variance 

(ANOVA) analysis was implemented. The ANOVA analysis compared shadowed and non-

shadowed pixels over the canopy and was applied to the best of the four shadow detection 

methods.

To separate the canopy pixels from ground pixels, DTM and DSM products for each image 

acquisition date are used. If the difference between DSM and DTM was greater than a 

threshold (e.g., 30 cm), that pixel could be considered as belonging to the canopy vegetation; 

otherwise, it was assumed to be a pixel of bare ground/inter-row. This threshold filtered the 

canopy pixels in the images and its selection included a trial-and-error process.

Afterward, based on the filtering procedure and the evaluation of the shadow detection 

methods, the leaf canopy portions that were shaded or sunlit were extracted. From here, 

NDVI was calculated and estimated separately for the shaded and sunlit portions of the 

canopy. For NDVI, the shadowed versus sunlit pixels were compared to each other in terms 

of histogram analysis and ANOVA. The null hypothesis for the ANOVA test is that the 

average of the two populations are similar (e.g., the mean values of the shaded and sunlit 

NDVI pixels were equal). If the null hypothesis was rejected, a further comparison was 

performed on how the difference in shaded versus sunlit could affect NDVI and ET.

Results and discussion

Unsupervised classification (clustering)

Examples of the results of unsupervised classification (clustering) for shadow detection are 

illustrated in Fig. 4 for the various flight dates over the study area. Five clusters were 

considered in applying the clustering method. These were generated based on the k-means 

method. The unsupervised classification toolbox of the ERDAS Imagine Software was used 

to execute the k-means algorithm. As shown in Fig. 4, it is evident that most of the pixels 

assigned to Cluster 1 represent the pixels in shadows. Clusters 2 and 3 were mostly related 

to the sunlit vegetation canopy, and most of the pixels categorized into Clusters 4 and 5 were 

bare soil. In addition, some parts of the bare soil in the central part (dark pixels) of the 2015 

images were classified as shadowed pixels (Cluster 1), which was not correct. Also, in the 

May 2016 image, some pixels classified in Cluster 5 (which were mostly bare soil pixels) 

overlapped with vegetation pixels. Thus, each cluster is a mixture of at least two features 

(shadow, soil, etc.) as different levels of shade (particularly, the shadow over the canopy in 

the vine row) can be found in Cluster 2 not in Cluster 1. As shown in Table 1, only the red 

and NIR bands were used in 2016. This might have affected the performance of 

classification because it employed less information than was used for the imagery from the 

2014 and UAV flights.
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Supervised classification

The supervised classification results were obtained using the supervised classification of the 

ERDAS Imagine Software. Before running this model, a signature file was collected for 

each of the different targets (vegetation, shadow, bare soil) using the area of interest layers as 

the training areas and signature editor. Then each pixel was assigned to these discrete 

signature classes based on a maximum likelihood method. The results of the supervised 

classification method for shadow detection in images captured by the UAV in August 2014, 

June 2015, July 2015, and May 2016 are shown in Fig. 5. From visual inspection, which is 

the customary approach used to evaluate the performance of different shadow detection 

methods (Tolt et al. 2011), the performance of this classification for detecting shadows was 

better than that of the clustering approach, as can be seen by comparing the black pixels in 

the classified image to the pixels that are obviously in shadows in the false color image. In 

this method, however, selecting the targets and assigning them to classes was time 

consuming.

Index- or pixel-based methods

A MATLAB program was written for detecting shadowed pixels using the index-based 

method. In this program, the average of red and NIR bands was considered as a grayscale 

image. Then, based on a trial-and-error search, a threshold was applied to the grayscale 

image to separate shadowed from non-shadowed pixels. The results of the index-based 

method are illustrated in Fig. 6. Again, from visual inspection of these figures, the 

performance of the index-based approach for detecting shadows is better than that of 

clustering, and somewhat better than that of the classification method. However, as 

discussed previously, to identify the shadowed pixels with this method, threshold values 

must be defined to separate the shadowed area from the original version of the image, which 

requires a trial-and-error approach and a visual histogram analysis.

Physical-based methods

The hillshade toolbox of ArcGIS was executed to project shadows according to the solar 

position, using the UAV DSM data. The results of this modeling are shown in Fig. 7. These 

images show some uncertainties within the leaf canopy when projecting the shadows using 

these tools. Although the ArcGIS hillshade toolbox is independent of the reflectance of each 

pixel, several factors can affect its accuracy. First, to execute the hillshade toolbox, the solar 

position (azimuth and elevation) must be defined. Based upon the latitude and longitude of 

the image, as well as the time that the image was captured by the UAV, the solar position is 

defined. Obviously, latitude and longitude are not fixed values over the entire image. 

Moreover, the duration of the flight is around 20 minutes or less. Therefore, the solar 

position is not consistent relative to all pixels, so the average solar position was used as 

input. Moreover, the accuracy of the hillshade projection critically depends upon the 

accuracy of the DSM. Similar to the index-based method, separating the shadowed area from 

the image required a threshold. Thus, uncertainties for the ArcGIS hillshade method could 

be attributed to one or more of the following sources: (1) the accuracy of the DSM, (2) the 

threshold definition, (3) the use of an average value for the time at which the image was 

captured by the UAV, and (4) the use of an average value for latitude/longitude.
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The Hillshade Toolbox in ArcGIS was executed to project shadows according to solar time 

and position and DSM. Although the ArcGIS Hillshade Toolbox is independent of pixel 

reflectance, the main factor that can affect its performance is related to DSM accuracy. 

Similar to the index-based method, separating the shadowed area required a threshold 

selection. One advantage of using this method is the ability to generate the shadow layer in 

the absence of optical imagery. This is illustrated in Fig. 8, wherein the diurnal shadow layer 

for a small part of the vineyard imagery captured by the UAV in July 2015 is simulated from 

7:00 a.m. to 8:00 p.m.

Visual assessment of shadow detection model performance

Figure 9 illustrates the shadow detection differences produced by the different classification 

methods over an area in the approximate center of the GRAPEX vineyard for imagery 

captured from the various UAV flights. The performance of the unsupervised and supervised 

classification approaches and the index-based method varies in this region of the image and 

serves to contrast their performance in detecting shadows.

From visual inspection of the imagery in Fig. 9, the performance of these four classification 

methods in the center portion of the vineyard for the flights in August of 2014 (Fig. 9a, e, i, 

m) and May of 2016 (Fig. 9d, h, l, p) is acceptable. However, for the flights in June of 2015 

(Fig. 9b, f, j, n) and in July of 2015 (Fig. 9c, g, k, o), the physical-based classification 

methods performed much better than the unsupervised, supervised, and index-based 

classification methods in the flat region (the center area) where the gray and black pixels can 

be classified into the shadow class. In addition, the performance of the index-based method 

is superior to that of the supervised classification method in July 2015 (Fig. 9g vs. k). Thus, 

although in the flat area, the physical-based and index-based methods performed similar to 

each other and much better than the unsupervised, and supervised methods, within the leaf 

canopy the physical-based method overestimates shadowed pixels (see Figs. 7, 9m–p).

Statistical assessment of shadow detection method performance

Since shadow detection is a classification task, one approach for evaluating the accuracy of 

the classification methods is to use the confusion matrix and report the correctness metric [or 

user accuracy as described in Congalton (1991)] shown in (Eq. 1). To create a confusion 

matrix, the images on the left column of Fig. 5 were manually separated into two categories: 

(1) shadowed and (2) non-shadowed areas. Afterward, each class in the manually extracted 

method was compared to the corresponding class in each of the classification methods. 

Ultimately, the correctness metric (Eq. 1) was calculated based on the confusion matrix. The 

results of the confusion matrix, along with the correctness metric, are shown in Table 3. 

According to the correctness metric, the accuracy of the index-based (~94%) method and the 

supervised (~92%) method is higher than for the unsupervised (~ 83%) method and the 

physical-based (~87%) method. These results confirmed the visual assessment performed in 

the previous subsection.

correctness metric = TP
TP+FN, (1)
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where TP is the number of shadow pixels identified correctly and FN is the number of 

shadow pixels categorized into non-shadow class.

To summarize the advantages and disadvantages of the shadow detection methods, the 

clustering approach requires no pre-knowledge of the shadow pixel features and the operator 

only needs to specify the number of the clusters, but each cluster contains the information of 

more than one feature. The performance of the unsupervised classification method is lower 

than supervised, index-based, and physical-based model, particularly near harvest time 

(August 2014). However, between bloom and veraison stages of the canopy, the 

unsupervised classification performance is similar to the physical-based method. The 

supervised classification method requires pre-knowledge of and sample collection for the 

desired groups such as vegetation and bare soil and is time consuming and expensive, 

especially if there are numerous targets in the imagery. Despite the phenological stages, the 

accuracy of supervised classification is quite high (more than 90%), but with thriving canopy 

its performance improves from 90% (bloom to veraison in May 2016) to 93% (near harvest 

in August 2014), which is unlike the behavior of the unsupervised classification. In the 

index-based method, the desired class or target is more sensitive to the threshold that 

separates the pixels of the desired class from others. Defining an accurate threshold value 

requires a trial-and-error process that is time consuming; however, the computational time is 

generally much less than the unsupervised and supervised classification methods. The 

accuracy of the index-based method is quite high and even better than the supervised 

classification method. Like the supervised classification method, the weakest performance of 

the index-based method occurred when the canopy is not well developed (bloom to veraison 

in May 2016), whereas from closing to the harvest time, its accuracy increases (96%). The 

physical-based method requires several inputs, including sun position (azimuth and altitude 

angles) in the sky, data contained in a DTM, and data from a DSM. The physical-based 

method is independent of the optical imagery and provides an opportunity to model a diurnal 

pattern of shadow changes over the study area. However, its performance is completely 

dependent on the quality and spatial resolution of the DEM and DSM data, which is a 

significant limitation. Its performance classified between the unsupervised and supervised/

index-based method. There are no significant changes in the accuracy of the physical-based 

method with a thriving canopy; however, the supervised, index-based, and physical-based 

methods all have higher performance in shadow detection during veraison–harvest (June–

August) when the canopy may be under stress versus the bloom–veraison.

Impacts of shadows on NDVI and ET

The results of evaluating NDVI in both the sunlit and shaded areas of the vineyard leaf 

canopy are presented here. As discussed in Materials and methods, assessing the impact of 

shadows on NDVI involved extracting two groups of pixels, sunlit and shaded, using two 

steps. The first step separates the vine canopy pixels from the ground surface and inter-row 

areas using DTM and DSM data. The second step is the results from the index-based shadow 

detection method. To test the equality of these two groups, ANOVA was used on the NDVI 

data from Eq. 2. The results of ANOVA for NDVI are presented in Table 4. The null 

hypothesis in the ANOVA is that the mean in both groups (sunlit pixels and shaded pixels) is 
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equal. The results of ANOVA for all images are presented in Table 4 (where SS is the sum of 

squares, df is the degrees of freedom, MS is the mean of squares and F is the f statistic).

H0: μ1 = μ2, (2)

H1: μ1 ≠ μ2, (3)

in which H0 and H1 are the null and alternative hypotheses, respectively, and μ1 and μ2 are 

the means of the two groups (in this study, NDVI on the sunlit and shaded leaf canopies).

As shown in Table 4, the F statistic (observed value) is greater than the critical value for F. 

Therefore, the null hypothesis is rejected for all images. This means that there is a 

statistically significant difference between the values of NDVI for the shadowed and non-

shadowed pixels within the vine canopy. The histograms shown in Fig. 10 further illustrate 

the difference in the distribution of NDVI values for the UAV flights conducted in 2014, 

2015, and 2016.

A close examination of the distribution range of the shadowed pixels as presented in Fig. 10 

indicates that it is smaller than that of sunlit pixels. In addition, the average values of NDVI 

in the sunlit pixels are higher than those in the shadowed pixels. This means that ignoring 

the effect of shadows on NDVI can lead to biased results and conclusions when using this 

variable. The LAI is a critical input to land surface models for ET estimation that can be 

calculated based on NDVI. Hence, shadow effects over this biophysical variable will cause 

error if the models ignore or fail to compensate for the bias on the LAI estimates. For 

example, in the two-source energy balance (TSEB) model developed by Norman et al. 

(1995), the radiometric temperature sensed at the satellite is partitioned into canopy 

temperature (Tc) and soil temperature (Ts) components using the following equation:

TR = f c(ϕ)Tc
4 + 1 − f c(ϕ) Ts

4 0.25, (4)

where fc(ϕ) is the fraction of vegetation observed by the thermal sensor with view angle ϕ 
and can be calculated using the following equation proposed by Campbell and Norman 

(1998):

f c(ϕ) = 1 − exp−0.5Ω(ϕ)LAI
cosϕ , (5)

where Ω is a clumping factor and LAI is estimated in this study using an empirical NDVI–

LAI relation (Anderson et al. 2004) proposed by Fuentes et al. (2014) for vineyards:
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LAI = 4.4 × NDVI . (6)

Satellite and also UAV imagery provide a single observation of (TR) per pixel. Therefore, to 

partition TR using Eq. 4, there are still two unknown variables, Tc and Ts. One approach to 

solve the equation is to estimate an initial value for Tc considering plants are transpiring at a 

potential rate defined by Priestley and Taylor (1972):

LEc = α f g
S

S + γ Rnc, (7)

where α is the Priestley–Taylor coefficient (default value is 1.26), fg is the fraction of 

vegetation that is green, S is the slope of the saturation vapor pressure curve versus 

temperature, and γ is the psychrometric constant. Rns is the net radiation at the soil surface 

and Rnc is the net radiation at the canopy layer estimated based on irradiance, LAI and 

surface spectra and temperature (Kustas and Norman 1999; Campbell and Norman 1998)

By subtracting LEc from Rnc, the sensible heat flux of the canopy (Hc) is achieved. Now, we 

are able to have an initial estimate of (Tc) using the following equation and solve Eq. 4 with 

a single unknown variable (Ts):

Hc = Rnc − LEc = ρcp
Tc − T0

Rx
, (8)

in which ρcp is the volumetric heat capacity of air, T0 is the aerodynamic temperature at the 

canopy interface, and Rx is the bulk canopy resistance to heat transport. In this step, if the 

soil latent heat flux (LEs) calculated based on Ts is non-negative, a solution is found. If not, 

LEc decreases using an incremental decrease in α, which leads to increasing Tc and 

decreasing Ts until a non-negative solution for LEs is found (Norman et al. 1995 and Kustas 

and Norman 1999). In the case of vineyards, the more sophisticated radiation and wind 

extinction algorithm in the TSEB model developed by Parry et al. 2017 (this issue) and 

Nieto et al. 2018) requires several additional inputs, including LAI.

To evaluate the impact of shadows on energy balance components, TSEB was applied 

considering two scenarios (with and without masking shadows), one in which canopy 

parameters (LAI, canopy width) are estimated from the original VNIR images, and a second 

in which the canopy parameters are estimated with the image after masking out the shadows. 

Moreover, to preserve the assumptions in TSEB related to turbulent transport, TSEB was run 

by aggregating the UAV imagery to 3.6m. The impact on the magnitude of the energy 

balance components and their distribution are illustrated in Figures 11, 12, 13, 14 for the 

UAV image of August 2014. These figures show the spatial absolute differences of fluxes as 

well as histogram and relative cumulative frequency of fluxes for both scenarios (with and 

without masking shadows). The histograms show a clear shift in soil heat flux (G) indicating 

that the peak is moved to the higher values when shadows are involved. Since the NDVI-
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derived LAIs present smaller values when shaded pixels are involved, LAI yields lower 

values and, therefore, net radiation reaching the ground (Rns) is increased. As G is a ratio of 

(Rns) in TSEB, including the shadows in NDVI–LAI calculation led to an increase of G. For 

the same scenario, the peak of sensible heat flux (H) and Rn are shifted to smaller values. 

Increasing G and decreasing Rn account for shadows, and indicate that the available energy 

(Rn–G) is decreasing. As shown in Fig. 13, H decreased slightly due to slight changes in the 

soil temperature and canopy temperature values derived from a lower LAI in involving 

shadows scenario. The latent heat flux (LE) considering the shadows results in a slight shift 

in the LE distribution to larger values and a greater number of LE values at the centroid of 

the distribution.

An additional evaluation of the shadow impact on crop water stress using Bowen ratio was 

performed as shown in Figs. 15 and 16. These figures indicate that ignoring shadows led to 

larger water stress areas, particularly in the southern section of the field. Moreover, the 

histograms show there are some differences (approximately 6%) in the Bowen ratio 

calculated by involving versus ignoring the shadows.

The ANOVA test was used to evaluate whether there was a significant difference in the 

fluxes computed by TSEB when accounting versus ignoring shadows. The results of 

ANOVA for those fluxes are presented in Tables 5, 6, 7, 8. The ANOVA results indicate that 

there is a statistically significant difference in ignoring versus accounting for shading for G 

and, for most of the flights, for Rn. However, in only half the flights does the ANOVA 

indicate that accounting for shadows makes a difference in the output of H (August 2014 and 

June 2015 flights) and in only one of the flights for LE (May 2016 flight). Although 

ANOVA does not indicate a significant difference for LE in 2014 and 2015 flights, it is 

important to note that ANOVA is used for testing the equality of the means of the 

distributions and consequently does not evaluate differences in the flux distributions between 

ignoring and accounting for shadows. For this reason, the spatial differences in the fluxes 

shown in Figs. 11, 12, 13, 14, 15, 16 indicate the areas of the vineyard where significant 

discrepancies in fluxes and stress (i.e., Bowen ratio) can exist.

Conclusions

Shadows are an inherent component of high-resolution RS imagery. If ignored, they can 

cause bias in products derived from RS data that are intended for monitoring plant and soil 

conditions. In this study, four different shadow detection methods developed for satellite 

imagery were applied to very high resolution images captured by a UAV at various times 

over a GRAPEX vineyard and evaluated for accuracy. These methods were (a) unsupervised 

classification or clustering, (b) supervised classification, (c) index-based methods, and (d) 

physical-based methods. The results from visual and statistical assessments indicated that 

the accuracy of the supervised classification method and the index-based method were 

generally comparable to one another, and superior to the other two. In terms of phenological 

stage, the performance of the supervised and index-based methods increases with growing 

canopy (from bloom stage to harvest stage, when the canopy may be under stress) whereas 

the accuracy of the unsupervised classification decreases during late growing stage. 

However, the performance of the physical-based model was not sensitive to the growth 
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stages of the grapevine canopy. Furthermore, an ANOVA assessment between sunlit or 

shaded canopy indicates statistical differences between the two groups for NDVI. Finally, 

the impacts of shadows on ET estimation and other fluxes using energy balance models and 

high-resolution RS data are examined. According to the TSEB model outputs, G increased, 

while Rn, H, and available energy (Rn–G) decreased in conditions involving shadows. 

However, in most cases the overall effect on LE was minimal, although differences were 

significant in certain areas in the vineyard. This implies that high-resolution models of ET 

and biophysical parameters should consider the impact of shadowed areas that could cause 

significant bias in modeled ET.

The analyses presented, together with the emerging ability to employ UAV-based remote 

sensing technologies to acquire high-resolution, scientific-grade spectral data in three 

dimensions (high-resolution DTM and DSM data, and point cloud data), also point to the 

possibility of successfully applying high-resolution energy balance modeling techniques to 

acquire plant-scale estimates of ET and plant stress. Such information could be potentially 

exploited by growers to manage irrigation deliveries in differential patterns within individual 

fields while, at the same time, conserving water and reducing management costs. Additional 

research is required to prove this capability has utility and economic return for high-value 

crops, such as wine grapes. Future steps based on this work involve the diurnal modeling of 

shadows for quantification of their impact on energy balance model results, as well as 

incorporation of shadow conditions into energy balance algorithms.
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Fig. 1. 
Example of an aerial image of the study area captured by the AggieAir UAV on June 2015 

(left), and NASA phenocam photographs for the same site (right, obtained on 24 March 

2013 and 02 July 2 2013 during the growing season)
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Fig. 2. 
Photos of the AggieAir aircraft and its sensor payload
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Fig. 3. 
Flowchart illustrating the process of the study for evaluating the shadow detection methods 

using the very high resolution images captured by UAV
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Fig. 4. 
Original UAV false color image subset (left column) and unsupervised classification results 

(right column) from the vineyard imagery. a, b August 2014, c, d June 2015, e, f July 2015, 

and g, h May 2016. Black pixels on the right column represent shaded locations

Aboutalebi et al. Page 19

Irrig Sci. Author manuscript; available in PMC 2019 December 03.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Fig. 5. 
Original UAV false color image subset (left column) and supervised classification results 

(right column) from the vineyard imagery. a, b August 2014, c, d June 2015, e, f July 2015, 

and g, h May 2016. Beige pixels on the right column represent shaded locations
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Fig. 6. 
Original UAV false color image subset (left column) and index-based method classification 

results (right column) from the vineyard imagery. a, b August 2014, c, d June 2015, e, f July 

2015, and g, h to May 2016. Beige pixels on the right column represent shaded locations
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Fig. 7. 
Original UAV false color image subset (left column) and physical-based method 

classification results (right column) from the vineyard imagery. a, b August 2014, c, d June 

2015, e, f July 2015, and g, h May 2016. Beige pixels on the right column represent shaded 

locations
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Fig. 8. 
Simulated diurnal shadow pattern shown hourly, from 7:00 a.m. to 8:00 p.m., using the 

physical-based model and shown on the background image captured by the UAV on July 

2015 around 11:45 am PST. shadow layer for 7:00 a.m. (a), 8:00 a.m. (b), 9:00 a.m. (c), 

10:00 a.m. (d), 11:00 a.m. (e), 12:00 a.m. (f), 1:00 p.m. (g), 2:00 p.m. (h), 3:00 p.m. (i), 4:00 

p.m. (j), 5:00 p.m. (k), and 6:00 p.m. (l). Dark areas indicate shadow locations
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Fig. 9. 
Classification maps of the center portion of the vineyard (original UAV false color image) 

using unsupervised classification for August of 2014 (a), June of 2015 (b), July of 2015 (c), 

and May of 2016 (d); using supervised classification for August of 2014 (e), June of 2015 

(f), July of 2015 (g), and May of 2016 (h); using the index-based method for August of 2014 

(i), June of 2015 (j), July 2015 (k), and May of 2016 (l); using physical-based method for 

August of 2014 (m), June of 2015 (n), July of 2015 (o), and May of 2016 (p)
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Fig. 10. 
The NDVI histograms for the shadowed and sunlit pixels for the August 2014 imagery (a), 

the NDVI histograms for the shadowed and sunlit pixels for the June 2015 imagery (b), the 

NDVI histograms for the shadowed and sunlit pixels for the July 2015 imagery (c), the 

NDVI histograms for the shadowed and sunlit pixels for the May 2016 imagery (d)
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Fig. 11. 
Flight, August 2014; the spatial absolute differences of soil heat flux considering shadows 

and ignoring shadows (a), histogram of soil heat flux considering/ignoring shadows (b), 

CDF of soil heat flux considering/ignoring shadows (c)

Aboutalebi et al. Page 26

Irrig Sci. Author manuscript; available in PMC 2019 December 03.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Fig. 12. 
Flight, August 2014; the spatial absolute differences of latent heat flux considering shadows 

and ignoring shadows (a), histogram of latent heat flux considering/ignoring shadows (b), 

CDF of latent heat flux considering/ignoring shadows (c)
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Fig. 13. 
Flight, August 2014; the spatial absolute differences of sensible heat flux considering 

shadows and ignoring shadows (a), histogram of sensible heat flux considering/ignoring 

shadows (b), CDF of sensible heat flux considering/ignoring shadows (c)
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Fig. 14. 
Flight, August 2014; the spatial absolute differences of net radiation flux considering 

shadows and ignoring shadows (a), histogram of net radiation considering/ignoring shadows 

(b), CDF of net radiation flux considering/ignoring shadows (c)
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Fig. 15. 
Flight, August 2014; Bowen Ratio ignoring shadows (a), Bowen ratio involving shadows 

(b), histogram of Bowen ratio ignoring/involving shadows (c)
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Fig. 16. 
Flight, August 2014; a Bowen ratio of the vine canopy ignoring shadows, b Bowen ratio of 

the vine canopy involving shadows, c histogram of Bowen ratio of the vine canopy ignoring/

involving shadows
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Table 2

Dates, optical, DSM and thermal resolution, point cloud density and phenological stages of the vineyard when 

the images are captured by the UAV

Dates Optical and
DSM resolu-
tion

Thermal
resolu-
tion

Point cloud
density
(points/m2)

Phenological
stage

9-Aug-14 15 cm 60 cm   37 Near harvest

2-June-15 10 cm 60 cm 118 Near veraison

11-Jul-15 10 cm 60 cm 108 Veraison to harvest

2-May-16 10 cm 60 cm   77 Bloom to veraison
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