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ABSTRACT

Automated software tools are required to undertake the routine tasks and decision-making involved in sche-
duling irrigation. A key issue in this topic is how to integrate sensors in the scheduling approach. The objectives
of this research were to test, in the context of drip-irrigated orchards: (a) the suitability of FAO’s water balance
method, locally adjusted by sensors, as the basis for the scheduling algorithm, (b) the suitability of capacitance-
type soil moisture sensors, and an approach for their automated interpretation, for providing feedback to the
scheduling algorithm, and (c) the performance of these combined approaches in the autonomous scheduling of
irrigation in an apple orchard with heterogeneous vigour. The trial consisted of applying for two years the
proposed approaches using an experimental web application, IRRIX, which scheduled irrigation of two irrigation
sectors, which differed in tree size. The automated system was compared with manual scheduling by a classical
water balance and with the actual evapotranspiration determined by a weighing lysimeter located in the same
orchard. Results show that the irrigation applied by the automated approach in the sector of larger trees agreed
with the ET determined by the lysimeter and, overall, with the scheduling by an experienced irrigator using a
classical water balance. Meanwhile, as a result of a different feedback from soil moisture sensors, the same
system reduced irrigation in the sector of smaller trees by a similar amount to that expected from the differences
between the two sectors in the fraction of photosynthetically active radiation. This study illustrates that the
method of water balance complemented with capacitance-type soil moisture sensors provides a sound basis for

automated irrigation scheduling in orchards.

1. Introduction

At the plot level, an appropriate irrigation scheduling promote
benefits such as saving water, decreasing environmental impacts and
generating sustainable agriculture (Smith et al., 1996). In this context,
the paradigm of precision irrigation emphasizes the variable-rate ap-
plication of water according with the variability in weather, soil, crop
properties and topography (Daccache et al., 2015). In practice, the
variety of factors to take into account, together with the sequence of
routine steps involved in scheduling irrigation, requires of farmers too
much dedication, perseverance and expertise for conducting an opti-
mized irrigation strategy. Consequently, digital tools are required to
alleviate those requirements and enable commercial orchards apply
precision irrigation with a feasible effort.

As a basis for determining the irrigation schedules, the most
common method for calculating irrigation requirements follows the
approach of FAO’s soil water balance, where the water inputs in the

soil-plant system are compared with the outputs (Doorenbos and Pruitt,
1977). The major output is the evapotranspiration by the crop (ET¢),
which, under non-stress conditions, can be predicted from ETc = ETo
X K¢, where the evapotranspiration of a reference crop (ETp) is esti-
mated by the Penman-Monteith method and K is the crop coefficient
characteristic of each crop (Allen et all., 1998). However, in horti-
cultural crops, this approach can be quite uncertain since for a given
crop species its K¢ may vary with factors such as spacing and orienta-
tion of the rows (Intrieri et al., 1998), the plant variety (Higgins et al.,
1992), crop load (Wiinsche et al., 2000; Naor et al., 2008) and the size
and shape of the canopy (Wiinsche et al., 1995; Ayars et al., 2003;
Girona et al., 2011; Marsal et al., 2014). In particular, the dependence
of K¢ on the solar radiation intercepted by the canopy has previously
being studied in apple orchards (Girona et al., 2011; Auzmendi et al.,
2011; Marsal et al., 2013). Furthermore, automated dosing of irrigation
proportional to the daily amount of solar radiation intercepted by the
canopy has experimentally been tested in apple (Casadests et al.,
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2011). On the other hand, given the practical difficulties for a precise
parameterization of the water balance, sensors can be used for an em-
pirical site-specific adjustment. A simple approach is to set in the irri-
gation automata a general irrigation program, based on a conservative
water balance and then, an automated system suppresses irrigation
when the soil moisture exceeds a determined threshold (Mufoz-
Carpena et al., 2005; Céceres et al., 2008). A more elaborated approach
is to determine irrigation doses by water balance but using the feedback
from sensors for the empirical adjustment of Kc (Bacci et al., 2008;
Casadests et al., 2012). This combination of water balance and sensors
sums up the ability to calculate irrigation volumes by water balance
with the site-specific adaptive response to sensors.

The choice of the sensing method for providing feedback must
trade-off its reliability with the feasibility of its usage in farms. One of
the most widely used types of sensors for irrigation management are
soil water sensors of capacitance type (Kojima et al., 2016; Bogena
et al., 2017; Dominguez-Nifno et al., 2019). Their functioning relies on
the determination of the dielectric permittivity of the soil around the
sensor, which mostly depends on the soil water content. Capacitance
sensors have the advantage of being low cost and require little main-
tenance (Campbell, 1990; Kizito et al., 2008; Visconti et al., 2014).
However, the response of these sensors varies with soil texture, pre-
sence of coarse elements, macropores, roots and soil compaction
(Hignett and Evett, 2008). Furthermore, the dielectric permittivity is
influenced by the temperature and by the electrical conductivity of the
medium (Kizito et al., 2008; Kargas and Soulis, 2019). An additional
complication in scenarios of localized irrigation is the heterogeneous
distribution of soil water. In contrast with flood and sprinkler irrigation,
where the water infiltrates on the most or all soil surface, in localized
irrigation infiltration takes place directly in the area around the emitter
(Cote et al., 2003; Irmak et al., 2016). This creates wet bulbs in the soil
whose size and shape depend on many factors such as the soil hydraulic
characteristics, the absorption by the roots, the evaporation from the
soil surface, as well as the irrigation depth, relative position of the
dripper, drip line sources spacing and quantity and frequency of the
irrigation (Lazarovitch et al., 2007; Nafchi et al., 2011; Elmaloglou
et al., 2013; Hao et al., 2007). All of these factors lead to one of the
major difficulties in using capacitance sensors, which is the high
variability between sensors even if installed at equivalent positions in
the soil (Intrigliolo and Castel, 2004). Nevertheless, once a sensor has
been installed, the effects associated with its exact position, including
the properties of the soil around it, will be nearly constant (Rolston
et al., 1991). Hence, one approach to deal with the variability between
sensors is to field calibrate each individual sensor after installation
(Evett et al., 2008, 2009; Mittelbach et al., 2012; Singh et al., 2018). A
simplified field calibration approach for practical use in irrigation is to
rescale the measurements by each sensor as relative to the measure-
ments recorded by the same sensor under conditions of soil water at
field capacity. In addition, to simplify dealing with the daily pattern of
soil water content, the interpretation can focus in the driest measure-
ment recorded each day (Casadests et al., 2012). The trend of this
value, between consecutive days, has been proposed as an indicator of
the resulting water balance in that period and has been used for tuning
the water balance in an algorithm of automated irrigation scheduling
(Casadesus et al., 2012).

The overall goal of this research was to demonstrate the feasibility
of automated scheduling irrigation in orchards, where, in practice, size
and structure of the canopy can be a common source of variation. In
particular, this study focused at testing: (a) the suitability of water
balance locally tuned by sensors as the basis for irrigation scheduling in
drip-irrigated orchards, (b) the unmanned interpretation of soil
moisture measured by capacitance sensors as a source of feedback for
the scheduling algorithm, and (c) the performance of these combined
approaches in the autonomous scheduling of irrigation in an apple
orchard with heterogeneous vigour. The study was conducted with an
experimental web application, IRRIX, which implements the proposed
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algorithms and the methods for unmanned interpretation of capaci-
tance sensors. On an apple orchard with heterogeneous vigour, sectors
with larger and smaller trees were scheduled during two seasons by the
automated system using capacitance sensors. The trial looked at how
the automated system behaved on sectors with different tree vigour and
whether, with identical configuration, it was able to provide differential
irrigation according to the differences in tree vigour. Additionally, the
automated system was compared with manual scheduling by a classical
water balance and with the actual evapotranspiration determined by a
weighing lysimeter located in the same orchard.

2. Materials and methods
2.1. Experimental design and irrigation treatments

The apple orchard (Malus domestica Borkh. cv ‘Golden Reinders’)
was located at the IRTA-Lleida Experimental Station in Mollerussa
(41.6°N, 0.8 °E, 260 m above sea level), Lleida, Spain, with a dry con-
tinental mediterranean climate. Apple trees had been planted in 2011,
spaced at 3.63mx 1.2 m oriented north-south. Irrigation was provided
by means of a single pipe with drippers every 0.6 m, whose delivery
rate was 3.5 dm®>h 1. Some properties of the soil are shown in Table 1.
One fraction of this plantation had been replanted after a previous
apple plantation and, in this area, the trees were homogeneously
smaller than in the rest of the orchard because of the apple tree replant
disease (Laurent et al., 2010; Singh et al., 2017). The average Trunk
Cross Sectional Area (TCSA) in the unaffected area was 40.55 cm? while
in the affected area it was 27.94 cm?. The trial consisted of the auto-
mated scheduling of two independent irrigation sectors, one in the area
of larger trees (AUTO-L) and the other in an area with smaller trees
(AUTO-S). These were compared with two sectors scheduled manually
following a classical water balance, one with larger trees (MANUAL-L)
and the other with smaller trees (MANUAL-S).

Manual irrigation scheduling consisted of the application of the
FAOQ’s water balance (Allen et al., 1998), on a weekly basis, by an ex-
perienced irrigator, using ETo from the previous week recorded by a
weather station located in the same farm and crop coefficients (K¢)
determined in previous years by the weighing lysimeter included in the
same orchard. In these sectors, irrigation was controlled by solenoid
valves operated by a commercial automata, Agronic 4000 (Sistemes
Electronics Progrés, Palau d’Anglesola, Lleida, Spain) which was pro-
grammed remotely, every Monday, through the desktop application
provided by the manufacturer. All irrigation sectors were equipped with
the same model of water meter, CZ3000 (Contazara, Zaragoza, Spain),
that were recorded at least twice per week, apart from the scheduling
application. The manual scheduling made no distinction between
MANUAL-L and MANUAL-S and applied a homogeneous irrigation
program to the whole orchard, based on the estimated requirements of
the larger trees, which mirrors the expected practice in a commercial
farm.

2.2. Deployment and management of the automated scheduling

One datalogger, model CR800 (Campbell Scientific, INC., Logan,

Table 1

Soil properties sampled in the experimental site at two depths.
Depth (m) 0-0.2 0.2-04
Silt (0.002 < d < 0.05mm) % 40.70 40.60
Clay (d < 0.002mm) % 23.50 23.90
Sand (0.05 < d < 2mm) % 35.80 35.50
USDA Soil Classification Loamy Loamy
Soil Water content at field capacity (33 KPa) m*m™3 0.38 0.37
Soil water content at wilting point (-1500 KPa) m®m~3 0.17 0.17
Apparent density (Kg m™3) 1480 1500




J.M. Dominguez-Nirio, et al.

750

Agricultural Water Management 228 (2020) 105880

E 600 -
€
<
2
§ 450 |
=
]
3
,_‘; 300 +
3
£
3
g 150 -
[}
20
(b)
€ 10
5
o
o
c
8
80
[
3
=
0)
s
1
= -10
em— min. —MaX.
-20
1.0
— o]
os \
0.6 1
%]
3
(%}
2
0.4
0.2 -
— N, — MaX.
0.0 T T T T T T T T T T T
1-Mar 26-Mar 20-Apr 15-Mav 9-Jun 4-jul 29-Jul 23-Aug 17-Sep 12-Oct 6-Nov 1-Dec

Fig. 1. Seasonal plan configured in IRRIX for AUTO-L and AUTO-S. The plan specifies (a) acceptable range of irrigation, (b) acceptable weekly water unbalance and
(c) crop’s water comfort in terms of the Normalized Soil Water Content (NSWC) recorded by sensors.

UT, USA) was used in the automated sectors for both recording sensors
and commanding irrigation valves. The datalogger was equipped with a
multiplexer AM16/32 (Campbell Scientific, INC., Logan, UT, USA), to
increase the number of sensor channels, which were measured every
15 s and the average of 5 min was stored. A 3 G modem MTX-3 G-JAVA
(MTX, Flexitron Group, Madrid, Spain), allowed remote communication
through Internet Protocol. In addition, a four-channel latching relay
LR4 (Campbell Scientific, INC., Logan, UT, USA) enabled the datalogger
open and close the irrigation valves of the AUTO sectors, model %”
AquaNet Plus (Netafim). The program in the datalogger, written in CR
Basic (Campbell Scientific, INC., Logan, UT, USA), implemented the
functionalities of an irrigation automata. Four times per day, the web
application polled the datalogger for new sensor data and once per day,
typically at 02:30 GMT, IRRIX sent to the datalogger the irrigation
doses of each sector, in mm, for the new day. Communication between
the IRRIX server and the datalogger used the API PackBus SDK
(Campbell Scientific, INC., Logan, UT, USA). During the day, in-
dependently for each sector, at the appointed time, 8:00 AM, the da-
talogger started irrigation and ended it when it had measured the
scheduled dose.

Each automated sector was equipped with six capacitance-type soil
moisture sensors, 10HS (METER Group, Pullman, WA, USA), which
were recorded by the datalogger in units of soil water content (m®m ™)
using the general calibration for mineral soils proposed by the manu-
facturer. These sensors have one body with two 14.5cm long prong,
spaced 3.3 cm, which gives an apparent permittivity measurement vo-
lume of around 1 dm? (Sakaki et al., 2008). All soil sensors were in-
stalled at 30 cm depth, three of them centered 15 cm from the vertical
of the dripper, perpendicular to the irrigation pipe, and the other three
at the mid-point between two drippers. Each automated sector was

equipped with a water meter with a resolution of one pulse per litter,
model Multijet M15 (Arad Group, Dalia, Israel), which were used by the
datalogger for controlling the delivery of the appointed doses. In ad-
dition, a temperature sensor, model VP3 (METER Group, Pullman, WA,
USA), provided a continuous measurement of air temperature that was
used by IRRIX for the estimation of ET, using Hargreaves equation
(Hargreaves and Samani, 1985).

The settings of AUTO-L and AUTO-S in the automated scheduling
application were exactly the same, while they were equipped with se-
parate sets of soil moisture sensors which would provide independent
feedback to the scheduling algorithm.

2.3. Web platform for irrigation control: IRRIX

IRRIX is a custom-made software for research on sensor-based irri-
gation scheduling. It can operate autonomously during the whole irri-
gation season, with a daily routine that includes uploading sensor data
from the field, analysing those data, updating the water balance, de-
ciding the next irrigation doses at each plot and transmitting them to
the automata in the field. The scheduling approach used by IRRIX
consists of estimating the crop water requirements by the method of
water balance (Allen et al., 1998) and use the feedback from sensors for
adjusting empirically the irrigation doses of each sector (Casadestis
et al., 2012). Basically, the daily irrigation doses (DID), in mm, were
determined on a daily basis as:

DID = ET, XKy @
Where ETo was the reference evapotranspiration estimated by the

Hargreaves equation using as input the air temperature recorded by the
datalogger. Kx was initialized as a crop coefficient and, later on,
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independently for each sector, it was iteratively adjusted on a daily
basis from feedback by the sensors.

In order to provide a seasonal vision of irrigation, and to enable in
other studies the application of certain types of irrigation strategies,
IRRIX requires the definition of a seasonal plan. The seasonal plans of
IRRIX specify, for every day of the irrigation season, the acceptable
ranges for (a) the accumulated irrigation; (b) the weekly water un-
balance; and (c) the range of crop’s water comfort in terms of the
monitored Normalized Soil Water Content (NSWC). In the seasonal plan
for this trial, the range of accumulated irrigation and the weekly bal-
ance were set sufficiently wide to avoid limiting the response to sensors
(Fig. 1). Sectors AUTO-L and AUTO-S were configured exactly with the
same seasonal plan, which was also the same for 2017 and 2018.

Interpretation of the soil moisture sensors by IRRIX focused at the
trend, between consecutive days, of the driest measurement of each
day, SWCq. In order to manage the variability between sensors, IRRIX
normalized those values between the measurable range of each in-
dividual sensor as defined by its actual reading at field capacity and the
presumed wilting point for that soil textural class. Hence, the NSWC,
dimensionless, was calculated as:

(SWCq — SWCyp)
(SWCgc — SWCyp) 2

NSWC =

Where SWCq4 was the driest soil water content measured by the sensor
at given day (m>®m ™), SWCgc was the highest daily minimum of the
soil water content (SWCy) recorded by a sensor in a period of reference
at the start of the season, under conditions near field capacity. In this
context, the purpose of SWCrc is just to provide an empirical reference
for that sensor near its high end of scale. Fig. 2 shows an example of the
empirical setting of SWCgc for one sensor. Since normal growing con-
ditions were far from wilting point, SWCyp was not empirically based
but set at the typical SWC at wilting point for that soil textural class.
Table 2 shows the references set to the different sensors involved in this
study.

In order to enforce its tolerance to sensor failures, the daily analysis
of sensor data by IRRIX included rating the reliability of each sensor.
These automated ratings started assigning to each sensor a reliability of
1.0 and when IRRIX detected values out of range, noise or abnormal
patterns, the reliability of the sensor was penalized, which could de-
crease its value down to 0.0. The advantage of this method is that, if a
sensor is broken or disconnected for any reason, IRRIX can auto-
matically detect this situation, assign it a reliability of 0.0 and keep the
aggregated value safe from its influence. To obtain a single value to
summarize the state of an irrigation sector, IRRIX aggregated the NSWC
obtained by the six sensors installed on a sector through a weighted
average. In this trial, the weight of each sensor was its current rating of
reliability, updated with the same set of data being summarized.

In order to provide feedback to the scheduling algorithm, IRRIX
evaluates every day the state of an irrigation sector as either “to dry”,

0.37
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Table 2

References used by IRRIX for normalizing the daily driest measurements to the
span between SWCyp and SWCgc for each sensor. The values of SWCgc were
assigned empirically in March 2017 as shown in Fig. 3. The values for SWCyp
were set to the presumed soil water content at wilting point for this soil texture.

sensor AUTO-L AUTO-S
SWCwp SWCkc SWCwp SWCkgc

1A 0.15 0.363 0.15 0.356
1B 0.15 0.364 0.15 0.347
2A 0.15 0.368 0.15 0.318
2B 0.15 0.360 0.15 0.338
3A 0.15 0.392 0.15 0.324
3B 0.15 0.384 0.15 0.345

“to wet” or “fitted”. From the current value of aggregated NSWC and its
trend in the last 3 days, it calculates the projected value after 3 days,
NSWC, 34. If NSWC 34 is below the comfort zone specified in the
seasonal plan, then the state of that sector is evaluated as “too dry” and
the response of IRRIX consists of increasing Kx by the estimated amount
to fill in three days the soil wet bulbs up to the water content corre-
sponding to the midst of the comfort zone. If NSWC, 34 is above the
comfort zone, it is evaluated as “too wet” and the response aims at
reaching the midst of the comfort zone at the wet bulbs in 7 days. In
either case, the change in Ky is conditioned to fulfil the conditions of
accumulated irrigation and water unbalance specified in the seasonal
plan.

2.4. Measurement of ET¢ by weighing lysimeter

The same orchard where this trial was conducted is equipped with
two weighing lysimeters that provide a continuous measurement of
crop evapotranspiration (Girona et al., 2004). These lysimeters contain
four apple trees each, grown in equivalent conditions than the rest of
the plantation. The ET¢ used in the lysimeter was the Penman-Monteith
evapotranspiration, determined by an automated meteorological sta-
tion, located next to the orchard, operated by the Catalan Meteor-
ological Service. Due to maintenance operations, in the period from
March to July 2017 the lysimeters were not operative and the daily ET
values for that period were estimated from the K¢ values determined in
2018 corrected by the ratio between K measured in August of both
years, as:

KCAugus12017

ETu2017= ET0d2017 X KCa2018 X
KCAugustZOlS (3)

— Sensor P.3A ® SWCd e ===SWCFC

o

W

@
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Fig. 2. Example of setting the reference of a sensor at field capacity, SWCyc. Following rainfall (33 mm) on March 24™, the daily driest measurement on March 28®
was taken as the SWC for this sensor. Irrigation started in April 20, The continuous line is the data recorded by the sensor. Dots are the driest measurement each

day, SWCd
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2.5. Physiological and agronomical measurements

Stem water potential (SWP) was determined once a week using a
pressure chamber (3005-series portable plant water status console, Soil
Moisture Equipment Corp., Model 3005, Santa Barbara, CA, USA) fol-
lowing the method described by McCutchan and Shackel (1992) pro-
cedure. Measurements were made at solar noon on shaded leaves lo-
cated close to the main trunk. Previously, leaves were covered with
plastic sheathes with aluminium foil bags to minimize transpiration and
keep in balance with the xylem of the tree.

The differences in vigour between the large and small trees were
quantified in terms of fraction of photosynthetically active radiation
intercepted by the canopies (FIPAR) along the whole day. The mea-
surement method was similar to the Fisheye Photography described by
Wiinsche et al. (1995) and consisted on taking hemispheric photos from
below the tree, following a pattern that covered the entire planting
space. The photographs were taken with a digital camera Nikon D70
and a 10-17 mm AT-X Tokina fish-eye lens on a self-leveling support
that held the camera 10 cm above ground. The photographs were pro-
cessed to calculate the daily solar path on each picture and analyse the
fraction between treetop pixels and background -i.e. blue sky- at the
different sun positions along the day.

To determine yield and its components, the central five apple trees
of each plot were individually harvested and the collected fruits
counted and weighted to determine total yield (kg of fruits per tree)
(Yield) and after passing the fruits for a grade, and removing fruits
smaller than 70 mm, the remaining ones were used to determine
Commercial Yield (kg~tree71 and tha™1!) (CY). Yield Index (YI) (kg of
total yield-CTSA™ 1) (kg-em™) and Commercial Yield Index (CYI) (kg of
commercial yield~CTSA_1) (kg~cm'2) were also determined to compare
the effects of treatments in fruit production. Because of the location and
distribution of the different plots within the orchard, each individual
tree was used as a repetition resulting a strip plot design. Statistical
analyses were carried out with SAS (SAS Institute, Cary, NC, USA,
version 9.4).The effects of treatments were analysed by means of the
general linear model (GLM) procedure, and differences among means
were compared with the LSmeans followed by Tukey-Kramer adjust-
ment, with the statistical significance established at P < 0.05.

3. Results and discussion
3.1. IRRIX performance and interpretation of sensor data

The trees in sectors AUTO-S and MANUAL-S had, through the
duration of the trial, a visually lower vigour than those in the rest of the
plot, including AUTO-L, MANUAL-L and the lysimeter. The ratio be-
tween FIPARayro.s and FIPARayro. was persistently around 0.88
during the whole period of study (Fig. 3).

Interaction of the research team with the web application IRRIX
concentrated in 2017 before season, when the seasonal plan was

0.8
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established and the references for each sensor were set. During the ir-
rigation seasons of 2017 and 2018 IRRIX operated autonomously and
the participation of the research team consisted in supervising the
normal development of the irrigation plan, by connecting once/twice
per week to IRRIX and checking for common anomalies that would
require a physical repair, such as malfunction of the irrigation system or
the sensors.

Data recorded by soil moisture sensors used to show clear responses
to irrigation, rain and water uptake by the crop, as illustrated in Fig. 4,
which shows a period that includes rain events and an interruption in
water supply. As shown in Fig. 4a, at the daily scale the timing of ir-
rigation was programmed to concur with ET,. However, irrigation did
not necessarily fluctuate between days with ETo, because the control
algorithm may vary at any time the proportionality between irrigation
and ETo. The soil water content recorded by sensors showed a clear
daily pattern, with a peak during irrigation, followed by a decrease that
may be attributed to the redistribution of water in soil plus uptake by
roots. In days without irrigation, sensors showed a clear decrease in
water content during transpiration hours and still values at night. Most
rain events could be observed as a rise in soil water content unaligned
with irrigation.

Despite the coherent responses of individual sensors to irrigation,
rain and water uptake by the crop, a large variation was observed be-
tween sensors, which fluctuated with similar patterns but shifted at
different positions in the scale of soil water content (SWC). As shown in
Fig. 4b, the scatter between sensors in SWC was twice as large as the
typical fluctuation of a sensor in a daily cycle and, also, larger than the
effect of suppressing irrigation for several days. Sensor-to-sensor
variability in the soil moisture recorded by capacitance-type sensors has
frequently been reported (Intrigliolo and Castel, 2004; Hignett and
Evett, 2008; Kizito et al., 2008; Kargas and Soulis, 2011). Such varia-
tion could partially be explained by the small volume of soil perceived
by a capacitance sensor, around 1 dm? in sensor 10HS (Sakaki et al.,
2008), whereas the soil electrical permittivity at that scale of ob-
servation may vary at different spots as affected by macropores, soil
density or stones (Hignett and Evett, 2008). In addition, under condi-
tions of localized irrigation wet bulbs develop below the emitters, de-
termining a very heterogeneous pattern of soil moisture (Samadianfard
et al., 2012). To cope with such variability, some authors recommend
installing sensors at two or more depths or positions (Dursun and
Ozden, 2011; Casadests et al., 2012; Lea-Cox et al., 2013; Soulis et al.,
2015; Dominguez-Nino et al., 2019).

Regarding the interpretation of sensor data, an approach for hand-
ling the variability between sensors is to look at the dynamics rather
than the absolute readings. IRRIX focuses on the trend of SWCq
(Fig. 4b), with the assumption that the driest situation after a cycle of
irrigation, redistribution and uptake by roots summarizes the aggregate
outcome of those processes. Moreover, the trends of SWCq4 in con-
secutive days may follow the soil water balance and be used for rating
the fit between irrigation and the crop water requirements (Casadests

=@ AUTO-L 2017 =@ AUTO-S 2017

0.7 A
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Fig. 3. Fraction of intercepted photosynthetically active radiation (FIPAR) in the irrigation sectors with large (AUTO-L) and smaller (AUTO-S) trees during the years

2017 and 2018.
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et al., 2012). Besides its dynamics, another informative trait of SWCyq is
its relative position within the particular span of measurements by that
sensor, which can be specified by normalizing the value of SWCy be-
tween the readings of that sensor at wilting point and field capacity
(Fig. 4c). Hence, one normalized, the dataset including different sensors
can offer a more straightforward view of the soil water dynamics than
the original readings, whose overall pattern may be partly obscured by
the variability in the baseline of each sensor. Additionally, as it can be
observed in this example, variability between sensors was highest when
the average soil moisture was lowest, and that the variability was re-
duced at higher soil moisture, specially following rain. This observation
may endorse the interpretation that, under localized irrigation, short
irrigation doses can cause larger variability because while some spots
can still be wetted, the shrunk wet bulbs leave some spots outside the
wetted volume. Swelled bulbs may re-include those spots and the sen-
sors there and, hence, reduce their variability. Accordingly, aggregation
of the different sensors once normalized may offer a sounder basis for
decision making compared with the direct readings.

3.2. Applied irrigation

Overall, the seasonal amount of irrigation applied in AUTO-L was
similar to that applied by an expert using water balance in the MANUAL
treatment, and similar also to the ET¢ measured by the lysimeter, while
AUTO-S applied 24% less irrigation (Fig. 5). In 2017, AUTO-L applied a
total irrigation volume of 666.0 mm, similar to MANUAL (only differed
by a 1.0%), while in 2018, AUTO-L irrigated 724.7 mm, 4.9% more
than MANUAL. In both years, AUTO-S applied lower doses than AUTO-
L (23.7% and 27.2% less in 2017 and 2018, respectively) and MANUAL
(24.5% and 23.4% less in the year 2017 and 2018, respectively). The
seasonal amount of irrigation applied in AUTO-L was in agreement with
the ET¢ measured by the lysimeter (differences of 6.1% and 0.9% in the
years 2017 and 2018 respectively), while the irrigation in AUTO-S was
considerably lower than the ET¢ at the lysimeter (-18.7% and -27.9%
for the year 2017 and 2018 respectively). Fig. 5 shows how those vo-
lumes accumulated along the season.

3.3. Response of the automated irrigation scheduling

With a greater detail, the functioning of the automated scheduling is
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illustrated in Fig. 6. The span of time shown in the figure corresponds to
the part of the season in 2018 where the irrigation requirements were
highest. In that period, the measured ETq fluctuated between 3.4 and
6.1 mm and ET measured by the lysimeter was slightly higher than ETo,
with an average K¢ of 1.03. In both AUTO-L and AUTO-S, IRRIX tried to
keep the soil moisture, here expressed as NSWC, within the comfort
zone specified in the seasonal plan. However, the observed pattern of
soil moisture response to irrigation by these two sectors was different,
which caused that they required different adjustments to maintain the
comfort zone. AUTO-L used to remain in the lower part of the comfort
zone and several times it decreased below the lower limit of comfort.
Hence, IRRIX often evaluated that the state of the soil, or its projection
for the next days, was “too dry” and it adjusted the irrigation coefficient
of AUTO-L upwards. On the other hand, AUTO-S used to remain easily
in the upper part of the comfort zone and several times its moisture
level surpassed the upper limit of comfort. Consequently, in those oc-
casions where IRRIX evaluated that the state of the soil, or its projection
in the next days, were “too wet”, IRRIX adjusted the irrigation coeffi-
cient downwards. As a result, within that period, the average irrigation
coefficient for AUTO-L was 0.97, and 47.2% of the time it was above
the presumed K¢ value. Meanwhile, the irrigation coefficient for AUTO-
S was on average 0.75, and most of the time below 1.0, which was the
presumed K¢ at the time of preparing the seasonal plan. All those ad-
justments of the irrigation coefficients produced different irrigation
doses in the two automated sectors, with average daily doses of 5.6 mm
and 4.4mm in AUTO-L and AUTO-S, respectively, and 73.6% of the
time AUTO-S with a lower irrigation dose than AUTO-L.

Incidentally, within the period shown in Fig. 6, a power cut fol-
lowing a small storm in July 20" produced an interruption of irrigation
for two days, which triggered different responses in the two automated
sectors. In AUTO-L, the lack of irrigation immediately produced a de-
crease in soil moisture, which stimulated the irrigation coefficient and
helped in approaching the comfort zone after the incident. In contrast,
in AUTO-S, the soil moisture was maintained probably because the
rainfall could compensate the missing irrigation and, furthermore, the
next irrigation after this event raised the soil moisture above the
comfort zone, causing a decrease in the irrigation coefficient some days
later.

These results show how the control algorithm of IRRIX, without

using information of tree vigour, applied a differential irrigation be-
cause the moisture sensors perceived that soil water was depleted faster
in AUTO-L than in AUTO-S. Previous studies at the same site had looked
at the effect of tree canopy on irrigation requirements. In particular,
lysimeter data from a previous apple plantation showed a strong re-
lationship between FIPAR and K (Girona et al., 2011). Using the re-
lationship described in Girona et al. (2011) with the FIPAR measured in
this trial, we estimate that K at AUTO-S would be 21% below the K at
AUTO-L. This value fits closely with the response of the automated
algorithm in the present study, where the amount of irrigation applied
to AUTO-S was 23% lower than the amount applied to AUTO-L.

3.4. Physiological and agronomical results

Measurements of stem water potential were aligned with the values
obtained by Girona et al., 2010 (between -0.8 MPa and-1.3 MPa). The
measured stem water potential showed slightly more negative values in
the smaller trees, regardless of whether irrigation was scheduled au-
tomatically or manually (Fig. 7). More precisely, during the year 2017,
in MANUAL-L and AUTO-L, the stem water potential remained between
-1.3MPaand-0.7 MPa and in MANUAL-S and AUTO-S they were be-
tween -1.5 MPa and-0.7 MPa. During the year 2018, in MANUAL-L and
AUTO-L, the stem water potential remained between -1.2 MPa and-
0.7MPa and in MANUAL-S and AUTO-S they were between
-1.3 MPa and-0.7 MPa. In the manual treatment, it can be noticed that,
even though MANUAL-S received the same irrigation than MANUAL-L,
their stem water potential used to be lower. This may be explained by
the diagnosed cause of their smaller size, the apple replant disease. That
disease affects the root system (Laurent et al., 2010; Singh et al., 2017)
and the lower SWP may be a consequence of the limited hydraulic
conductance of their root system. Therefore, taking into account the
measured SWP and the effect of this disease, the data suggests that trees
in AUTO-S were not water-limited by irrigation.

The yield of this apple orchard (Table 3) showed a large variation
between the two years of the study, mainly attributed to a poor fruit set
in 2017, which was also clearly identified in the whole area. However,
no statistical differences were found between treatments for the main
productivity indicators when analysing the harvest data for the whole
experimental period (Table 3). Because of the commercial thinning
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practices, no differences were observed on yield between large and
small tress, and more important no statistical significant differences
were found on CYI (commercial yield index) and YI (yield index).
Therefore, it can be stated that no negative effects of the automated
management were observed on yield, either in the larger trees, which
were irrigated a similar amount to classical water balance, or in smaller
trees, where the automated algorithm saved 23% of irrigation volume.

3.5. Irrigation scheduling approach

Overall, this study tested the performance of scheduling irrigation
through an automated water balance approach tuned by capacitance-
type soil moisture sensors. Here, we observed how the adaptive re-
sponse allowed spontaneous adjustment to a component of the water
balance, in this case the low ET associated to low vigour, that had not
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Table 3 coefficients. That uncertainty was solved here through feedback from

Analysis of Variance and Mean Separation summary for the orchard yield
parameters whole experiment (two years).

Variables
df CYy FL FFW YI CYI TCSA
Signification (Pr > F)
Model 12 0.0386 0.0461 0.1388 0.0343 0.0856 0.0059
Treatments 3 0.5544 0.0876  0.0077 0.6764 0.1537 0.0001
REP 4 0.9400 0.9855  0.9446 0.5946 0.4044 0.2255
Year 1 0.0001 0.0003  0.3956 0.0001 0.0018 -
Rep * Year 4 0.9034 0.9029  0.4846 0.9889 0.9554 -
TRT Mean Separation
MANUAL-L 41826 163 176.6 b  0.648 0.445 40.93 a
AUTO-L 39771 105 213.3a 0.560 0.435 40.17 a
MANUAL-S 37496 112 177.4a 0.692 0.588 28.50 b
AUTO-S 34089 96 173.9b 0.709 0.628 27.38 b
Year Mean Separation
2017 28815b 79b 181.6 0.431b 0.401b -
2018 47763 a 160 a 188.9 0.873a 0648a -

CY = Commercial yield (kgha™'); FL = Fruit Load (fruitstree '); FFW =
Fruit Fresh Weight; YI = Yield Index (Total production-CTSA ~')(kg-cm™); CYI
= Commercial Yield Index (YICTSA™!) (kgiem™); TCSA = Trunk Cross
Sectional Area (cm?); df = degrees of freedom; Means within column (within
treatments or years) followed by different letters were significantly different at
P < 0.05 using Tukey-Kramer adjustment.

been considered in the original configuration of the water balance. This
experience may exemplify the capacity of this approach to confront site-
specific conditions that would be difficult to parameterize in a de-
terministic model. As another example, a previous version of the al-
gorithm showed a spontaneous adaptation to the presence of ground-
water (Casadests et al., 2014), which would otherwise be omitted in
the management of irrigation.

Regarding the choice for a base scheduling method, the water bal-
ance approach provides an effective method for fitting irrigation to the
encountered weather conditions (Allen et al., 1998). While irrigation
controllers based on water balance are commercially available for
turfgrass (Davis and Dukes, 2014), their application to orchards would
be more complicated because of the much larger uncertainty of crop

sensors, which provided an empirical site-specific adjustment of the
ratio of irrigation to ETo. Other alternative sensor-based approaches use
predefined thresholds either to trigger irrigation when the soil is too dry
(Dukes and Scholberg, 2005; Osroosh et al., 2016; Vera et al., 2019)
and/or to bypass a timer-triggered irrigation when the soil is too wet
(Smajstrla and Locascio, 1996; Caceres et al., 2007; Mufoz-Carpena
et al., 2008). Some advantages of water balance tuned by sensors are
that its response is smoother and more predictable than occasional
switching on/off valves. Additionally, it allows modulating the daily
irrigation depth of each sector without disturbing the hydraulic scheme
for the whole farm, while irrigation triggered directly by sensors can
switch valves on at arbitrary times, complicating the operation of the
farm’s hydraulic system.

4. Conclusions

The results of this trial show the feasibility of automated sensor-
based scheduling of irrigation in orchards. The algorithm, based on the
approach of water balance and tuned locally through feedback from
sensors, provided precise irrigation doses along the season, adapting
itself to weather conditions and to the seasonal vegetation cycle of the
crop.

Capacitance sensors have successfully been used to provide auto-
mated feedback to the scheduling algorithm. In spite of the observed
sensor-to-sensor variability — comparable with that reported by other
authors — the approach followed here allows a consistent mechanism for
their unmanned interpretation and integration with decision-making.
First, the summarization of the daily fluctuation of soil water content on
the daily driest measurement focuses the analysis on a simple para-
meter whose day-to-day dynamics retains much of the information on
the fit between irrigation and the crop water demand. Second, the
sensor-specific normalization of those daily values reduces the scatter
between sensors and brings a more intelligible dataset on which to base
automate control. This trial shows how the irrigation doses determined
by the algorithm are aligned with the ET measured on the same orchard
by a weighing lysimeter. The irrigation doses applied by the automated
approach are also comparable with those by a skilled irrigation
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technician though requiring less labour effort. Furthermore, the tested
algorithm adapts itself to heterogeneous tree vigour, applying less ir-
rigation to sectors with smaller trees in a proportion that fits previous
lysimeter studies on the relationship between K¢ and FIPAR. Therefore,
this indicates that the algorithm could be suitable for horticultural
application, where adaptation to site-specific vigour are a common
concern.
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