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36 Summary

37 Since 2001, Pyrenean chamois (Rupicapra pyrenaica pyrenaica) populations have been 

38 affected by border disease virus (BDV) causing mortalities of more than 80% in some areas. 

39 Field studies carried out in France, Andorra and Spain have shown different epidemiological 

40 scenarios in chamois populations. The present study was designed to confirm the presence of 

41 BDV strains of a high and low virulence in free-ranging chamois populations from Pyrenees 

42 and to understand the implications of these findings to the diverse epidemiological scenarios. 

43 An experimental infection of Pyrenean chamois with a high-virulence (Cadí-6) and low-

44 virulence (Freser-5) BDV strains was performed. Pregnant and non-pregnant animals with 

45 and without antibodies against BDV were included in each group. Cadí-6 BDV strain was 

46 confirmed to be of high virulence for seronegative adults and their foetuses. The antibody 

47 negative chamois infected with Freser-5 BDV strain did not show symptoms, presented less 

48 viral distribution and RNA load in tissues than Cadí-6 group, and cleared the virus from the 

49 serum. However, foetuses died before the end of the experiment and RNA virus was detected 

50 in sera and tissues although with lower RNA load than the Cadí-6 group. Chamois from both 

51 groups presented lesions in brain but the ones infected with the low-virulence Freser-5 BDV 

52 strain were mild and most likely transient. In both groups, seropositive pregnant females and 

53 all but one of their foetuses did not present viraemia or viral RNA in tissues. 

54 The existence of a low-virulence strain has been confirmed experimentally and related to 

55 chamois population infection dynamics in the area where it was isolated. Such strain may 

56 persist in the chamois population through PI animals and may induce cross-protection in 
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57 chamois against high-virulence strains. This study demonstrates that viral strain diversity is a 

58 significant factor in the heterogeneity of epidemiological scenarios in Pyrenean chamois 

59 populations. 

60

61 Introduction

62 Border disease virus (BDV) is one of the four traditionally recognized species of the genus 

63 Pestivirus (Fam. Flaviviridae). Bovine viral diarrhea virus type 1 (BVDV-1), BVDV-2 and 

64 classical swine fever virus (CSFV) are the most studied due to their economic impact on 

65 livestock industries (Tautz et al., 2015). BDV is also of importance as it is associated to 

66 economic losses mainly in sheep flocks and interfering BVDV eradication programs in cattle 

67 (Nettleton et al., 1998; Kaiser et al., 2017). Moreover, BDV is the only member of the 

68 Pestivirus genus that has caused epizootic mortalities in a wild ruminant species (Marco et 

69 al., 2007). 

70 Since 2001, Pyrenean chamois (Rupicapra pyrenaica pyrenaica) populations have been 

71 affected by BDV strains classified into the BDV-4 genogroup (Arnal et al., 2004), causing 

72 mortalities of more than 80% in some areas (Marco et al. 2009). Cabezón et al. (2011) 

73 performed an experimental infection in chamois demonstrating that a BDV-4 strain isolated 

74 from a diseased chamois causes long-lasting viraemia with pathological changes mainly 

75 characterized by non-suppurative meningoencephalitis. Martin et al. (2013) infected three 

76 pregnant Pyrenean chamois with the same BDV strain. All of the animals died before 

77 parturition, and foetal death, viral presence in foetuses and adult tissues with viraemia for at 

78 least 51 days were found.   

79

80 In both of the abovementioned experimental infections, viral shedding was confirmed 

81 through nasal, rectal, oral and vaginal routes. Viral excretion was present from day 2 post-

82 inoculation (p.i.) (Cabezón et al., 2011) and from day 12 p.i. (Martin et al., 2013) onwards, 

83 highlighting the importance of horizontally infected chamois in this virus spread. In domestic 

84 ruminants, a key role in pestivirus maintenance at a population level is played by persistently 

85 infected (PI) animals. Although this epidemiological figure has not been clearly demonstrated 

86 in the Pyrenean chamois, an experimental infection of one pregnant chamois inoculated at 
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87 day 90-100 of gestation showed an animal PCR pestivirus positive at birth and at the time of 

88 death 84 days later (Vautrain and Gibert, 2008). 

89

90 Field studies carried out in France, Andorra and Spain have shown different epidemiological 

91 scenarios in chamois populations (Pioz et al., 2007; Martin et al., 2011; Marco et al., 2015). 

92 Pestivirus infections in chamois populations from the Pyrenees mainly cause mortality 

93 outbreaks with different impacts at the population level. After these episodes, at least two 

94 scenarios have been described: constant BDV circulation with negative impacts on 

95 population dynamics in some areas, or a lack of virus circulation and rapid recovery of the 

96 chamois population in others (Fernández-Sirera et al., 2012). Strikingly, pestivirus circulation 

97 has been detected in an area of the eastern Pyrenees (Freser-Setcases National Hunting 

98 Reserve) since 1996 without a significant impact on the chamois population (Marco et al., 

99 2011). To date, no mass mortality, and only one clinical case has been found in this area 

100 where more than a half of the chamois population have neutralizing antibodies against 

101 pestivirus (Marco et al., 2015). Different hypotheses may explain the persistence of the 

102 pestivirus in this population, related to BDV strain variability, genetic diversity of chamois 

103 and/or environmental factors. In fact, all the 5’ UTR sequences of BDV strains that have been 

104 isolated in the last fifteen years from Pyrenean chamois have clustered into the BDV-4 

105 genogroup with low phylogenetic divergence, but geographical patterns of distribution have 

106 been proposed (Luzzago et al., 2016).     

107

108 To shed light on the epidemiological diversity of pestivirus infections and to contribute to the 

109 knowledge of pathological implications of different strains from the same viral genogroup, 

110 we challenged experimentally Pyrenean chamois with both previously reported high-

111 virulence and a presumptive low-virulence BDV strains. The main objectives of the study 

112 were: 1) To describe clinical, virological and pathological differences between infection with 

113 different strains; 2) To assess the impact of these strains on pregnant chamois and their 

114 foetuses; and 3) To evaluate the mechanisms of transmission and cross-protection to 

115 understand their implications on pestivirus epidemiology. 
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117 Materials and methods

118 Animals: Capture and management

119 Fifteen free-ranging Pyrenean chamois (11 females and 4 males between 3 and 16 years old) 

120 were captured by drive net (López-Olvera et al., 2009) in Freser-Setcases National Hunting 

121 Reserve (FS-NHR; northeastern Iberian Peninsula, 42º22’N, 2º09’E). This reserve covers 

122 20,200 hectares of alpine ecosystem in the Pyrenees mountains, where about 300 Pyrenean 

123 chamois are legally hunted per year. The captured animals were named Rp and consecutively 

124 numbered (ie. Rp 1 to Rp 15). Acepromazine maleate (0.1 mg/kg; Calmivet 5 mg/ml; 

125 Vétoquinol S.A., Lure Cedex, France) was administered to all chamois to reduce stress after 

126 capture (López-Olvera et al., 2007). In order to mitigate the adverse effects of stress in 

127 captivity, 1 mg/Kg Zuclopenthixol acetate (Clopixol Acuphase 50 mg/ml; Lundbeck Limited, 

128 Valby, Denmark) was intramuscularly administered every three days. In addition, all the 

129 chamois were treated with a single intramuscular dose of 2.5 mg/Kg tulathromycin (Draxxin; 

130 Pfizer Animal Health, New York, USA), a single oral dose of 2.5 mg/Kg toltrazuril (Baycox 

131 5%; Bayer Animal Health Leverkusen, Germany) and a single subcutaneous dose of 0.2 

132 mg/Kg ivermectine (Ivomec 1%; Merial Laboratorios S.A., Lyon, France), to prevent 

133 opportunistic bacterial and parasitic infections.

134 Before the challenge, all animals were tested for BDV and BVDV presence in sera by means 

135 of RT-PCR. Antibodies against BDV were assayed by a Virus Neutralization Test (VNT) to 

136 establish their immunological status for the challenge groups, as described below. Four out of 

137 fifteen animals (Rp 6, 7, 14 and 15) showed antibodies and were included in the study as 

138 seropositive inoculated animals. Pregnancy of the females was confirmed by trans-rectal 

139 echography. The image test showed that 8 out of 11 females were pregnant. Although the 

140 time of gestation could not be determined accurately, it was estimated to be between 70 and 

141 100 days based on the natural history of Pyrenean chamois and the capture date.

142 Inoculum

143 Two non-cytopathogenic BDV-4 strains where used as inoculum. The first virus, BDV Cadí-

144 6 (5’-UTR region; GenBank accession number AM905923), was isolated from a diseased 

145 chamois found in the Pyrenees (Cadí NHR) during an outbreak of disease and mortality in 

146 2005. This virus was demonstrated as a highly virulent BDV-4 strain in a previous 

147 experimental infection (Cabezón et al., 2011).  The second virus, BDV Freser-5 (5’-UTR 

148 region; GenBank accession number LT966297), was isolated from the spleen of an 
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149 apparently viable foetus belonging to a healthy hunted female chamois from FS-NHR in 

150 2014. As it was isolated from a healthy antibody-positive chamois from an area where no 

151 outbreaks had been recorded, we hypothesized that this could be a low-virulence BDV strain. 

152 Both BDV-4 strains were cultured in single and double passages in the SFT-R cell line 

153 (provided by the Friedrich-Loeffler Institute, Island of Riems, Germany). The virus titre of 

154 the inoculum was determined by end-point titration in the SFT-R cell line, obtaining a 

155 measurement of 106 TCID50/ml of virus. 

156 Study design

157 The fifteen animals were divided into two groups – group A (GA) and group B (GB) – and 

158 placed in two isolated boxes in a level-3 biosafety area of the Centre de Recerca en Sanitat 

159 Animal (CReSA-IRTA, Universitat Autònoma de Barcelona, Spain) facilities for 26 days 

160 (Table-1). Within each group there were antibody negative animals (GA-1 and GB-1, five 

161 and six chamois, respectively) and antibody positive animals (GA-2 and GB-2, two chamois 

162 in each group). Two pregnant females were present in each group (Table 1). GA and GB 

163 were challenged with 106 TCID50/ml of Cadí-6 and Freser-5 strains, respectively. The whole 

164 virus dose was thawed immediately before inoculation and administered by a combination of 

165 nasal catheter (0.5 ml in each nostril) and orally (1 ml). The duration of the challenge was 26 

166 days. Chamois displaying any or combinations of the following signs during the challenge 

167 were euthanized: complete anorexia, recumbence with inability to rise, or signs of severe 

168 dehydration. Animal care activities and study procedures were conducted in accordance with 

169 the guidelines of Good Experimental Practices, with the approval of the Ethical and Animal 

170 Welfare Committee of the Universitat Autònoma of Barcelona. 

171 Sampling procedure

172 The animals were observed daily to evaluate clinical signs. Blood samples were obtained by 

173 venipuncture of the jugular vein (days 0, 2, 4, 8, 15, 19, 26 p.i.) and centrifuged at 1200 g for 

174 15 minutes to obtain serum. Sera were stored at -80ºC until analysis. Blood from foetuses 

175 was obtained during necropsy. Nasal and rectal swabs were obtained on same days as blood 

176 samples. Swabs were mixed with 1ml of sterile PBS (pH 7.2) and stored at -80ºC until 

177 analysis. After necropsy, tissues for virological studies were weighed with a 0.1g precision 

178 scale, homogenized in 0.9ml Eagle's Minimum Essential Medium (EMEM) and stored at -

179 80ºC. Those samples were spleen, liver, bone marrow, kidney, Peyer patch, urine, lungs, 

180 brain and two lymph nodes (submandibular and retropharyngeal) for adult chamois, and 

181 thymus, spleen, brain, and placentome for foetuses.
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182 Virus Neutralization Test

183 Sera were tested for the presence of neutralizing antibodies against the homologous BDV 

184 strains CADI-6 (GA) and Freser-5 (GB) with the Virus Neutralization Test (VNT) (OIE, 

185 2014). Briefly, serum samples were diluted 1:10 with sterile EMEM, heat-inactivated (56 ºC 

186 for 30 min) and distributed in a twofold dilution series in 96-well plates (50 l per well). 

187 After adding a volume of 50 l containing 100 TCID50 of the homologous BDV, the plates 

188 were incubated at 37 ºC for an hour. Finally, 2.8x104 Madin–Darby bovine kidney (MDBK) 

189 cells (100 l) were added to each well. Replication was monitored using the 

190 immunoperoxidase monolayer assay (IPMA) (OIE, 2014) with a polyclonal pestivirus 

191 antibody produced in-house. Twelve dilutions from 1:10 to 1:20,480 were assessed by each 

192 serum sample (animal and sampling time). One well per dilution was used as a simplification 

193 of the standard instructions to get an approach of antibody dynamics in the two groups of 

194 infected animals. Titres were expressed as the reciprocal of the highest dilution that 

195 neutralized 100 TCID50 in all cultures.

196 Real-time Reverse Transcriptase-PCR

197 Total viral RNA was extracted directly from 200 l of sera, swabs, urine and tissue samples 

198 using MagAttract 96 cador Pathogen Kit (Qiagen, Venlo, Netherlands) as per the 

199 manufacturer’s instructions. A one-step reverse transcription-PCR kit was used for SYBR® 

200 Green-based real-time RT-PCR (Thermo-fisher Scientific, Waltham, Massachsetts, USA). 

201 Positive results were considered for threshold cycle values (Ct) less than 40.  Differences in 

202 3.3 Ct units were estimated to be a ten-fold increase in viral load (Nolan et al., 2006). 

203 Samples in which fluorescence was undetectable were considered negative.

204

205 Panpestivirus pimers 324 and 326 were used for the amplification reaction (Vilcek et al., 

206 1994). . Analysis of the sequence of the 243 base pair 5’UTR fragment generated by RT-PCR 

207 was performed on positive samples from foetuses. Amplified DNA was purified and 

208 sequenced. The phylogenetic tree was made by the neighbour-joining method using an 

209 automatic root location. To test the reliability of the branches in the tree, a bootstrap analysis 

210 of 1,000 replicates was performed by creating a series of bootstrap samples.

211 Pathological examination

212 Necropsies and tissue sampling were performed according to standard protocols. The 

213 chamois were euthanized on day 19 p.i. (Rp 2), 22 p.i. (GA-2/GB-2) and 26 p.i. (GA-1/GB-1) 
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214 with a lethal barbiturate injection. At necropsy, tissue samples (the same samples above-

215 mentioned for virological studies) collected for the histopathological examination were fixed 

216 in 10% neutral buffered formalin, embedded in paraffin, cut into 4 µm sections and stained 

217 with haematoxylin and eosin according to standard procedures. 

218 Statistical analysis

219 To assess statistically significant differences in mean Ct in sera, nasal and rectal swabs 

220 between GA and GB, or between GA-1/GB-1 and GA-2/GB-2 animals, a non-parametric 

221 unpaired Wilcoxon test (Mann-Whitney test) was used. Differences between Group A and B 

222 in median titres obtained by VNT were statistically assessed by the Mood’s median test. The 

223 limit of significance was defined as P ≤ 0.05. All the analyses were carried out with the 

224 statistical software R version 3.4.0 (R Development Core Team, 2016). 

225 Results

226 Clinical findings and pathological examination

227 The main clinical observation in chamois from GA-1 was apathy, present in all but one 

228 animal from this subgroup. Three out of these five animals were found dead or were 

229 euthanized before the end of the experiment. Rp 2 was euthanized on 19 dpi because of 

230 severe apathy, prostration and dyspnea. Rp 4 and 5 were found dead at 15 dpi and 26 dpi, 

231 respectively. In GB-1, all animals remained active and apparently healthy with the exception 

232 of the two pregnant females (Rp 8 and 10) who presented mild apathy between 12 dpi and 17 

233 dpi. Chamois from subgroups GA-2 and GB-2 remained active throughout the experimental 

234 period. 

235

236 The three animals of GA-1 that died before the end of the experiment had lesions consistent 

237 with haemorrhagic diathesis. Petechial to ecchymotic haemorrhages were present in the 

238 subcutaneous tissue, in the serosa and mucosa along the gastrointestinal tract, lungs, 

239 epicardium and endocardium, mucosa of the urinary bladder and in the pregnant females in 

240 the placentomes. Despite neurological signs (ie. mainly apathy) were recorded in GA-1, 

241 lesions of different severity were seen in the brain not only in animals from GA-1, but also 

242 from GB-1. In GA-1, three out of five animals (Rp 1, Rp 2 and Rp 5) had moderately severe 

243 non-suppurative meningoencephalitis with diffuse gliosis, glial nodules, perivascular oedema 

244 and inflammatory perivascular lymphohistiocytic infiltrates. Rp 3 presented similar lesions in 
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245 a milder form, with only few scattered glial nodules and mild perivascular infiltrates and Rp 4 

246 had only occasional area of microglial activation. Similarly to Rp 3, all animals from GB-1 

247 presented mild non-suppurative meningoencephalitis with few small glial nodules and 

248 occasional lymphohistiocytic perivascular infiltrates. None of the seropositive animals from 

249 each group (GA-2 and GB-2) presented histopathological lesions in the brain at 26 dpi. 

250 Changes in lymph nodes and tonsils in GA-1 consisted mainly in moderate lymphoid 

251 depletion with loss of lymphoid follicles and decreased lymphoid density in interfollicular 

252 and paracortical areas except for Rp 3, where only small haemorrhages were seen. Lymphoid 

253 depletion or increase tingible body macrophages were not seen in GA-2, GB-1 and GB-2.

254     

255 Serology

256 Neutralizing antibody titres were detected by VNT in chamois from GA-1 and GB-1 from 15 

257 dpi until the end of the experiment (Fig. 1a; Supplementary table 1). In GB-1, antibody titres 

258 increased until 26 dpi reaching median titres of 1/1280 (range 1/640-1/2560). These titres 

259 were not statistically different from those of GA-1. Chamois from GA-2/GB-2 presented 

260 neutralizing antibodies before the experiment, as stated before, until the end of it. 

261

262 Viral RNA in sera and tissues

263 A higher mean RNA load was found in sera samples of GA-1 from 4 dpi onwards, 

264 maintaining a difference between 4.3 and 8.9 Ct – equivalent to a 10 to 100-fold increase in 

265 viral load – from animals of GB-1 (Fig. 1a). Interestingly, Rp 3 from GA-1 only presented 

266 viral RNA at 8 dpi (Ct=26.63) and 26 dpi (Ct=34.37). At the end of the challenge, all the 

267 chamois from GB-1 have cleared the BDV as no viral RNA was detected in sera (Fig. 1b; 

268 Supplementary table 2) and tissues. Chamois from GA-2/GB-2 did not present viral RNA in 

269 sera during all the experiment.   

270

271 BDV was found widely distributed in tissue samples in chamois without antibodies at the 

272 beginning of the experiment (GA-1) (Table 1). Interestingly, Rp 3 (GA-1) only presented 

273 viral RNA in the submandibular lymph node, tonsil and spleen, with a lower RNA load than 

274 the other GA-1 animals. In GB-1, viral RNA was found in lower quantities and less 

275 distributed than in GA-1. Differences (8 Ct mean) were found in all tissues between GA-1 

276 and GB-1 chamois, equivalent to more than a 100-fold increase in viral load. No GA-2 and 

277 GB-2 animals presented BDV RNA in tissues. 
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278 Viral shedding 

279 From 12 dpi onwards, all animals from GA-1 presented viral excretion in nasal fluids, with 

280 the exception of chamois Rp 3, which only presented viral RNA on 12 dpi with high Ct 

281 (32.684) (Fig. 2a). Differences from 3 Ct to more than 10 Ct were found in nasal swabs 

282 between GA-1 and GB-1 chamois. Regarding GA-2/GB-2 chamois, only animal Rp 7 

283 presented low viral excretion (Ct=33.36) by the nasal route at 12 dpi. 

284

285 RT-qPCR detected less viral shedding in rectal swabs than in nasal swabs and only in GA-1 

286 (Fig. 2b). In the chamois Rp 3 rectal swabs, viral RNA was detected only at 12 dpi 

287 (Ct=33.79). Neither the GA-2, GB-1 nor GB-2 chamois presented the BDV genome in any of 

288 the rectal swab samples.

289

290 Regarding BDV presence in the urine collected at necropsy, four out of five chamois in GA-1 

291 presented positive RT-qPCR results (Ct mean=24.59, sd=3.6). GA-2, GB-1, and GB-2 

292 animals did not present viral RNA in urine samples (Table 1). 

293

294 Effects on pregnancy and foetus

295 Clinical findings in pregnant females of GA-1 were characterized by apathy as with the other 

296 chamois in the same group. GB-1 pregnant females were the only animals in this group that 

297 presented mild and temporary apathy and Rp 10 aborted on 25 dpi. GA-2 and GB-2 pregnant 

298 females were apparently active and healthy throughout the experiment. 

299

300 The post-mortem examination showed that the two foetuses from GA-1 died during the 

301 challenge (Fig. 3A-B). Severe placentitis was seen in both, with abundant clear haemorrhagic 

302 amniotic fluid, oedematous placenta and haemorrhagic caruncles. Foetuses had diffuse 

303 subcutaneous gelatinous fluid and fluid-filled cavities. The foetuses from GB-1 also died 

304 during the experiment. Rp 8 had necrotic placentomes and a mummified foetus of about 7-8 

305 cm. Rp 10 aborted on 25 dpi. In this case, a malformation of the head was evident with 

306 marked shortening of the maxilla and the mandible (Fig. 3C-D). Subcutaneous gelatinous 

307 fluid in the foetus and necrotizing placentitis were also noted. In all cases of foetal death, the 

308 brain was soft and difficult to evaluate but no obvious malformation was seen. 

309
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310 Regarding the development of foetus, hair distribution, Crown-Rump Length (CRL), and 

311 weight, seem to indicate that GA-1 animals were in an earlier phase of development when 

312 compared with the aborted foetus from GB-1 (Table 2). Foetal ages based on CRL 

313 (Sivachelvan et al., 1996) were estimated at 70-100 days as suggested above. 

314

315 Histopathological examination of brains from GA-1 and GB-1 foetuses showed similar 

316 lesions. There was a moderate to severe multifocal necrosis with mild gliosis and occasional 

317 and mild lymphohistiocitic perivascular infiltrates (Fig. 3G-H). The foetus from Rp 2 also 

318 had multifocal haemorrhages in both grey and white matter and the foetus from Rp 1 had 

319 mild multifocal deposits of basophilic granular extracellular material (calcium deposits). The 

320 mummified foetus was not examined histologically. The foetuses from GA-2/GB-2 animals 

321 did not present histopathological lesions. Histopathological lesions in the placentomes were 

322 seen in all GA-1/GB-1 pregnant chamois (Fig. 3E-F). The lesions ranged from oedema of the 

323 chorioallantoid membrane and multifocal cryptal dilation (Rp 2) to multifocal epithelial 

324 cryptal fibrinohaemorrhagic necrosis (Rp 1) to diffuse necrosis of the placentome (Rp 10) 

325 with multifocal mineralization (Rp 8). 

326

327 Foetal tissues were also assessed for viral presence (Table 2). Foetuses from GA-1 presented 

328 the highest RNA load in the experiment. In one foetus from GB-1, viral RNA was widely 

329 distributed (placenta, brain and thymus) but with a difference of 10 Ct (equivalent to more 

330 than a 1000-fold decrease in viral load) from foetuses of GA-1. Interestingly, a foetus from 

331 GA-2 presented viral RNA in the sera (Ct=35.24) and brain (Ct=36.19). The analysis of the 

332 5’UTR region revealed that all foetuses except one were infected with the homologous virus 

333 inoculated in each group. The heterologous virus was detected in a foetus from GA-2 (Foetus 

334 Rp 6) and 243pb of the 5’UTR region showed 100% identity with the same region of Freser-5 

335 virus. This result strongly suggests that the foetus was already transplacentary infected before 

336 capture. All sera samples from foetuses were negative by VNT. 

337 Discussion

338 After 17 years since the first outbreak of border disease (BD) in Pyrenean chamois and at 

339 least since 28 years of pestivirus presence in Pyrenean chamois populations, several studies 

340 have investigated the factors that rule the diversity of the epidemiological scenarios (Pioz et 

341 al., 2007; Martin et al., 2011; Fernández-Sirera et al., 2012; Marco et al., 2015). The present 
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342 study unravel that pathogen virulence is most probably the main factor driving disease 

343 presentation and impact on chamois populations. BDV circulating strains in a certain 

344 geographic range is relevant to predicting the outbreak appearance and impact on the 

345 population and thus, to decide which management strategies to perform. 

346 In previous BDV experimental infections in chamois with high-virulence strains, like BDV 

347 Cadí-6, the animals developed a long-lasting viraemia (Cabezón et al., 2011; Martin et al., 

348 2013). The epidemiological consequences of these high-virulence strains have been 

349 exemplified in field studies by the reports of high mortality outbreaks in free-ranging 

350 populations. The highest mortality was recorded in 2005, when a BDV Cadí-like strain 

351 caused a drop of about 86% in the chamois population in the Cerdanya-Alt Urgell NHR 

352 (Marco et al., 2009). The present research demonstrates that, in horizontally-infected 

353 chamois, high RNA loads are excreted by nasal route and to a lower extent by rectal route, 

354 for at least 18 days. This, together with the findings of previous reports demonstrating these 

355 and vaginal and oral routes as a source of virus excretion (Cabezón et al., 2010a; 2011; 

356 Martin et al., 2013), strongly suggests that horizontal transmission has been the key factor in 

357 the reported severe epidemics in the Pyrenees. Moreover, the exceptionally long viraemia of 

358 high-virulence BDV strains in chamois may have been also of importance for the 

359 epidemiology of the disease. The acuteness and extreme severity of some of the epizootics 

360 may have been related to secondary infections, such as pneumonia, due to the 

361 immunosuppressive effects of coincident BDV infection, as suggested before (Marco et al., 

362 2015).

363 The present research points-out some of the differences in clinical presentations observed 

364 between naturally and experimentally infected chamois. The main clinical alterations seen in 

365 chronic cases of naturally-infected chamois are neurological signs and alopecia (Marco et al., 

366 2007). However, in this study no neurological signs were observed because the use of long-

367 acting tranquillizers may have masked the neurological clinical manifestations. A clinical 

368 presentation of BDV infection seen exclusively in experimental infections in chamois to date 

369 is the haemorrhagic diathesis. The suspected cause is a severe thrombocytopenia (Cabezón et 

370 al. 2011; Martin et al., 2013). This haemorrhagic diathesis has been reported in other 

371 pestiviruses such as BVDV-2 and CSFV, also associated with thrombocytopenia (Walz et al., 

372 1999; 2001; Bautista et al., 2002). The fact that these lesions have not been found in 

373 naturally-infected chamois may be due to the acute course and death of affected chamois. In 

374 the wild, those animals may die in isolated places or be scavenged after death, making it very 
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375 difficult to locate. In contrast, chamois with a more chronic and progressive disease develop 

376 encephalitis and the neurological signs that facilitate their sight and detection.

377 In contrast to the high-virulence BDV strains, the present study demonstrates the existence of 

378 low-virulent strains (i.e., the Freser-5 strain) in the Pyrenees, which is in accordance with the 

379 epidemiological scenario observed in some chamois populations from Pyrenees, such as FS- 

380 NHR. In this area no mortality outbreaks have been observed although BDV has been present 

381 at least since 1996 (Marco et al., 2011). In our experiment, this presumptive low-virulence 

382 BDV strain, isolated from a healthy chamois in FS-NHR, caused a transient viraemia and was 

383 cleared after the development of a specific humoral immune response. The longest viraemia 

384 in these chamois was of 7 days, corresponding to the results seen previously in subclinical 

385 BDV infections in postnatal sheep and pig (Nettleton et al., 1998; Thabti et al., 2002; García-

386 Pérez et al., 2009; Cabezón et al., 2010b,c). Also, a lower RNA load in lymphoid organs was 

387 observed when compared with infected chamois with high virulent strain. Although the lower 

388 virulent nature of this strain, the existence of few glial nodes in the brain of all infected 

389 chamois demonstrates its neurotropism. Regarding viral shedding, only in five nasal swab 

390 samples from three GB-1 chamois was viral genome detected and in much lower RNA loads 

391 than in GA-1. These differences were observed also in urine RT-qPCR analysis, where four 

392 out of five chamois of GA-1 presented viral shedding and none of the GB-1 chamois showed 

393 viral presence. Although RNA loads are based in Ct values as a semi-quantitative approach, 

394 differences between groups are in evidence. 

395 The low virus excretion observed in chamois infected with low-virulence strains is in contrast 

396 with the previous experimental infections with high virulent strains (Cabezón et al., 2011; 

397 Martin et al., 2013), and may be of relevance for viral transmission in the field. The 

398 aforementioned epidemiological situation of Freser-Setcases NHR, together with the 

399 experimental infection, suggests that viral maintenance is through vertical transmission, most 

400 probably by PI animals. This fact is in contrast with the areas were high mortality outbreaks 

401 occurred, where horizontally-infected chamois exhibiting long-lasting viraemia and high 

402 virus excretion may play a key role in the epidemiology. 

403 The existence of PI animals in Pyrenean chamois has not been demonstrated in the wild, but 

404 has been suggested in some studies and demonstrated in an experimental infection with a 

405 single chamois (Vautrain and Gibert, 2008; Cabezón et al., 2010a; Marco et al., 2011, 2015; 

406 Beauneé et al., 2015). Interestingly, the finding of a natural-infected foetus without 
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407 antibodies, previous to the experimental infection, strongly suggests that it was a PI chamois.  

408 Although the onset of foetal immunocompetence in chamois is unknown and the time of 

409 infection cannot be determined, a parallelism with ewes may shed light. Fahey and Morris 

410 (1978) showed that foetal immunocompetence in sheep could be between 64-82 days of 

411 gestation. On the assumption that thissituation is similar in chamois, the fact that the foetus 

412 could be 70 days old and that neutralizing antibodies in the mother appear after 15 days of 

413 pestivirus infection, the foetus from the present work could have been naturally infected 

414 before the foetal immuncompetence.  

415

416 In addition with the abortions of pregnant females inoculated with high-virulence strains, two 

417 pregnant females inoculated with the low-virulence strain aborted. Interestingly, foetal 

418 mortality in all pregnant females occurred during the first two weeks of infection. This can be 

419 expected since all high and low-virulence pestiviruses can cause abortions, stillbirth, 

420 mummifications and malformations, mainly during early stages of gestation (Loken, 1995; 

421 Nettleton et al., 1998). Macroscopic and histopathological lesions were seen in the 

422 placentomes and the aborted fetuses. Hemorrhagic and necrotizing lesions in the placentomes 

423 and the brain of the fetuses predominate over the inflammatory changes which consist only in 

424 the occasional perivascular lymphohistiocytic infiltrate. Multifocal to full band necrosis of 

425 the placentomes are consistent with those lesions described in BDV infection in sheep and 

426 goats (Maxie et al., 2007). While the infection in our study probably occurred between days 

427 70 and 100 of pregnancy, the experimental infection with direct inoculation of a high 

428 infective viral dose may have increased the severity of the infection in the foetuses, as 

429 reported in ewes (Richardson et al., 1990). However, BDV strain Cadí-6 infecting GA-1 was 

430 detected in higher RNA loads in the foetal sera and tissues when compared to the lower load 

431 in low-virulence infected fetuses. Female pregnant chamois infected with high-virulence 

432 BDV often die before giving birth (Martin et al., 2013, Marco et al., 2015), but in low-

433 virulence BDV infections, despite the mortality of the foetus, pregnant females survive and 

434 overcome the infection, produce antibodies and eliminate the virus.     

435

436 One chamois infected with the high-virulence strain seemed to clear the virus in sera, 

437 presented a low RNA load in tissues and shedding routes, and had mild lesions in the brain. 

438 The evolution of infection seen in this chamois was similar to that previously described in an 
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439 experimentally-infected chamois that was able to clear the virus (Cabezón et al., 2011) and 

440 highlights the possibility that some chamois may overcome highly virulent BDV infection. 

441

442 The antibody cross-protection between pestivirus species infections has been previously 

443 reported (Paton, 1995). The seropositive chamois naturally infected in the field (GA-2 and 

444 GB-2) did not present viral replication during the experimental infection. In addition, no 

445 abortions occurred and the foetuses were protected since they were vironegative at the end of 

446 the study. Interestingly, those animals were captured in Freser-Setcases NHR where the low-

447 virulence strains that are circulating may be hindering the entrance of more virulent strains. 

448 This is a situation of competition between virulence-differentiated strains in which the 

449 circulation of a low-virulence BDV could be beneficial. Nevertheless, it should be taken into 

450 account that the epidemiological scenario could rapidly change due to the high mutagenic 

451 rate of RNA viruses. The low-pathogenic strain circulating in FS-NHR may be a consequence 

452 of virulence attenuation. Studies of BVDV genetic diversity have underlined the fact that the 

453 low-virulence strains are better adapted to the host and are thus more prone to persist in 

454 natural conditions. However, periodic emergence of virulent pestiviruses occurs. A selection 

455 of viral mutants, that replicate more than the parent virus, would facilitate the emergence of 

456 more virulent strains causing extensive tissue damage and a burst of viral shedding (Bolin 

457 and Grooms, 2004). Despite the differences between BVDV and BDV, these cited works 

458 could guide us when trying to comprehend the first outbreaks in 2001 and their absence until 

459 that date and in other chamois populations. 

460

461 To understand virulence, more studies are needed to analyse viral genetic diversity. As has 

462 been described for other pestiviruses (Risatti et al., 2005; Leifer et al., 2013; Wang et al., 

463 2015), the identification of virulence-related viral genome regions could be essential for the 

464 prevention and management of infections. Continuing with this approach, the genetic 

465 relationships of different strains such as the recent BDV from the genogroup 8 that was 

466 reported to cause mortality in chamois (Caruso et al. 2017), may be of concern. Luzzago et al. 

467 (2016) demonstrated that the isolated BDV chamois strains are distributed in a geographical 

468 pattern. This pattern seems to be partially related to virulence in both strains assessed in the 

469 present study. The importance of genetic diversity in regions such as E2 may clarify the 

470 phylogenetic relationships between strains within a pathogenic perspective. 
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471

472 Conclusions

473 The present study highlights the pathological and epidemiological implications of two close 

474 phylogenetically-related BDV strains in the Pyrenean chamois. The existence of a low-

475 virulence strain has been confirmed experimentally and related to chamois population 

476 infection dynamics in the area where it was isolated. Such strain, despite inducing foetal 

477 death, may persist in the chamois population through PI animals and may induce cross-

478 protection against the entrance and disease associated to high-virulence strains. The present 

479 study highlights that BDV strain virulence plays a key role in disease presentation and 

480 epidemiology in chamois populations.

481
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623

624 Figure 1. BDV-4 RNA load obtained by Real-time RT-PCR and neutralizing antibody titres 

625 by Virus Neutralization Test (VNT) in sera samples. PCR results are presented in threshold 

626 cycle (Ct). A) Mean Ct values of positive samples and median VNT titres; B) individual Ct 

627 values in each chamois and time of sampling. The limit of detection was established on Ct 

628 value ≥ 40. GA: Group infected with Cadí-6 BDV strain; GB: Group infected with Freser-5 

629 BDV strain. Subgroups according to antibody presence at the beginning of the experiment: 

630 without antibodies (numbered as 1) or with antibodies (numbered as 2).

631

632 Figure 2. BDV-4 RNA load obtained by Real-time RT-PCR in nasal and rectal swabs. 

633 Results are presented in threshold cycle (Ct). A) Mean Ct values of positive samples in nasal 

634 fluids; B) individual Ct values in each chamois and time of sampling in nasal fluids; C) Mean 

635 Ct values of positive samples in rectal swabs; D) individual Ct values in each chamois and 

636 time of sampling in rectal swabs. The limit of detection was established at Ct value ≥ 40. GA: 

637 1-7; Group infected with Cadí-6 BDV strain; GB: 8-15; Group infected with Freser-5 BDV 

638 strain. Subgroups according to antibody presence at the beginning of the experiment: without 

639 antibodies (numbered as 1) or with antibodies (numbered as 2).
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640 Figure 3. Failure of pregnancy in female adult chamois experimentally infected with border 

641 disease virus-4. (A, B) Opened uterus with haemorrhagic contents, placental oedema and 

642 dead foetus, Rp 2. (C, D) Opened uterus with necrotic placentomes, foetal death and 

643 malformation – brachygnathia superior and inferior, Rp 10. (E, F) Histopathologic findings 

644 in placentomes, oedema and haemorhages of chorioallantoid membrane and multifocal 

645 haemorrhagic necrosis at the base of caruncles with epithelial attenuation and cryptal dilation, 

646 Rp 2. (G) Brain foetus, with focal haemorrhages and mild lymphohistiocytic perivascular 

647 infiltrates, Rp 2. (H) Brain foetus, multifocal necrotizing encephalitis and gliosis, Rp 10. 

648
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649 Table 1 Challenge groups, GA: Group infected with Cadí-6 BDV strain; GB: Group infected with Freser-5 BDV strain and Real-time reverse 

650 transcriptase-PCR results in tissue samples at time of necropsy. Real-time RT-PCR results are presented in threshold cycle (Ct). The limit of 

Real-time RT-PCR (Ct)

Group ID Sex Pregnancy Subm. LN Retrofa. LN Tonsil Peyer patch Spleen Liver Lungs Kidney Bone marrow Brain Urine

Rp 1 F Yes 19.64 19.60 19.00 21.80 27.27 24.88 20.57 27.31 20.56 21.25 22.66

Rp 2 F Yes 22.08 22.83 ns u u u 20.90 u 22.88 21.59 20.48

Rp 3 M 29.32 u 30.35 u 29.90 u u u u u u

Rp 4 F No 22.89 26.04 ns u u 31.95 25.61 u 28.30 u 27.16G
ro

up
 A

-1

Rp 5 F No 19.85 21.00 22.21 24.64 u 32.24 21.16 u 23.18 21.94 28.08

Rp 6 F Yes u u ns u u u u u u u u
Group A-2

Rp 7 F Yes u u ns u u u u u u u u

Rp 8 F Yes u u 31.01 u u u u u u u u

Rp 9 M 27.42 25.60 27.18 34.51 u 38.12 35.58 u u u u

Rp 10 F Yes u u 34.42 u u u u u u u u

Rp 11 M u 32.18 u u u u 38.20 u u u u

Rp 12 F No 33.67 33.22 u u u u u u u u u

G
ro

up
 B

-1

Rp 13 M 31.57 31.59 u u u u u u u u u

Rp 14 F Yes u u ns u u u u u u u u
Group B-2

Rp 15 F Yes u u ns u u u u u u u u

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



This article is protected by copyright. All rights reserved

651 detection was established at Ct value ≥ 40. u=undetected, no viral RNA was found; ns=not sampled; Subm.=submandibular; 

652 Retrofa.=retropharyngeal.

653 Table 2 Foetus information, GA: Group infected with Cadí-6 BDV strain; GB: Group infected with Freser-5 BDV strain.  CRL (Crown-rump 

654 length). Neutralizing antibody titres obtained by Virus Neutralization Test (VNT) and real-time RT-PCR results in tissue samples at time of 

655 necropsy. Real-time RT-PCR Results are presented in threshold cycle (Ct). The limit of detection was established at Ct value ≥ 40. 

656 u=undetected, no viral RNA was found; ns=not sampled.

657

Real-time RT-PCR (Ct)

Group ID Sex Viability CRL (cm) Weight Hair distribution Hoof formation VNT titres Sera Placentome Brain Thymus Spleen

Foetus Rp 1 F Dead 23 515 Lips, chin Initial 0 14.92 16.74 24.57 19.45 25.84
Group A-1

Foetus Rp 2 F Dead 24 609 Lips, chin Initial 0 14.49 17.75 23.01 29.13 u

Foetus Rp 6 M Yes 30 882 Whole body Complete 0 35.24 u 36.19 u u
Group A-2

Foetus Rp 7 F Yes 27 597 Head Complete 0 ns u u u u

Foetus Rp 8 ND Mummified ND ND ND ND 0 ns 25.40 u ns u
Group B-1

Foetus Rp 10 M Aborted 30 877 Whole body Complete 0 u 27.49 34.53 31.92 u

Foetus Rp 14 F Yes 26.5 587 Whole body Complete 0 u u u u u
Group B-2
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