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Abstract  

Chefs around the world strive to go beyond ordinary and garnish dishes with edible foams and 

emulsions, generally made using proteins derived from soy or animal sources. However, the 

increasing number of consumers following a vegan diet has led to a higher demand for novel 

foods formulated using plant-derived proteins. The current study evaluated the functional 

properties of proteins obtained by alkaline solubilisation from common pulses. Water- and oil-

holding capacities varied within the ranges 2.39–6.78 and 3.46–6.37 g of water or oil per g or 

protein concentrate, respectively. Emulsifying capacity and stability was higher at pH values 2.0 

and 10.0. A similar trend was observed for foaming capacity and stability. Proteins isolated from 

fava beans showed the highest foaming capacity, calculated as 56.7 ± 2.9 and 56.7 ± 2.7% when 

measured at pH 2.0 and 10.0, respectively (P < 0.05). Overall, studied proteins showed potential 

for their use in edible foams, emulsions and other innovative products. 
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Introduction 



The proportion of individuals choosing to follow a vegan diet, mainly because of concerns for 

animals and health, has increased in recent years – previous studies reported a 350% increase over 

the past decade (Hodson & Earle, 2018). This has led to the development and commercialisation 

of novel foods that mimic conventional products containing animal-derived proteins such as egg-

free mayonnaise, tofu or soya ‘milk’. 

Chefs around the world strive to go beyond ordinary and garnish dishes with edible foams and 

emulsions. Most common food dispersions include oil-in-water and water-in-oil emulsions, in 

which one liquid is dispersed into another liquid in the form of droplets, and foams, in which air 

bubbles are dispersed in a continuous liquid medium. Commercialisation and consumption of 

traditional foams such as whipped cream, meringue or mousse is not new. However, over the last 

two decades, foams have become a part of molecular gastronomy techniques and novel food 

garnishes such as espresso, beetroot or fish foams have been developed. 

Proteins play an important role as surfactants in both edible foams and emulsions. A large number 

of studies on protein-based emulsions have been published. Proteins derived from milk and egg 

are the most commonly used food emulsifying agents (Dickinson, 2009). However, protein-

stabilised foams are still an underdeveloped field (Jarpa-Parra, 2018). Common proteins used for 

making edible foams include egg proteins and soy lecithin (Dickinson, 2010). Over the last 

decade, some studies evaluated the technofunctional properties of non-animal-derived proteins 

including seaweed (Garcia-Vaquero et al., 2017) or vegetables (Khan et al., 2015). Pulses are 

excellent sources of numerous nutritional factors including bioaccessible polyphenols (Lafarga et 

al., 2019) and their consumption has been associated with cholesterol- and lipid-lowering effects 

in humans, among other positive health outcomes (Jarpa-Parra, 2018). Indeed, several authors 

highlighted the potential enrichment of foods using, for example, legume flours (Giubert & Gallo, 

2018). Legumes are also rich sources of proteins, which could be used to create innovative foams 

and emulsions. However, only a limited number of papers evaluated the functional properties of 

proteins isolated from legumes such as chickpeas, peas or lentils. These are of special interest 

mainly because of potential allergenicity to soy, which together with peanuts account for the most 

significant food allergies in the United States and Europe (Cabanillas et al., 2018). 



The aim of the current study was to evaluate the potential of proteins extracted from lentils, 

cowpeas, fava beans, chickpeas, soybeans, runner beans, beans and peas to be used as surfactants 

to create different emulsions and foams. Other functional properties studied included water-

holding capacity (WHC) and oil-holding capacity (OHC), all of them relevant to food processors 

and chefs. 

 

Materials and methods 

Protein extraction 

Proteins were extracted following an ultrasound-assisted isoelectric solubilisation-precipitation 

strategy described by Lafarga et al. (2018). The recovered proteins, shown in Fig. 1, were frozen, 

freeze-dried using a Cryodos-50 freeze-dryer (Telstar, Barcelona, Spain) and stored at -20 ºC until 

further analysis. Freezing temperature was -50 ± 2ºC, and drying temperature was kept at 25 ± 1 

ºC. 

 

Colour determination 

The colour of the freeze-dried proteins and of the generated emulsions was analysed using a 

Minolta CR-200 colorimeter (Minolta INC, Tokyo, Japan). The instrument was calibrated with a 

standard white tile provided by the manufacturer and the D65 illuminant. CIE values were 

recorded in terms of L*, a* and b*. The L* value represent lightness and varies between 0 (black) 

and 100 (white). The a* value indicates greenness (negative) or redness (positive) while the b* 

value quantifies blueness (negative) to yellowness (positive). The Chroma (Ch) and hue (hº) 

values were calculated as described by McLellan et al. (1995). 

 

Analysis of pH and water activity  

Freeze-dried proteins were resuspended in distilled water at a concentration of 1% (w/v), and the 

pH was measured using a Basic 20 pH-metre (Crison Instruments S.A., Barcelona, Spain). The 

water activity (aw) of was measured in triplicate using an AquaLab meter (Decagon Devices Inc., 

WA, USA) at 22.1 ± 0.3 ºC. 



 

Water- and oil-holding capacity 

WHC and OHC were determined following the methodology described by Garcia-Vaquero et al. 

(2017). Briefly, freeze-dried proteins were mixed with either water or olive oil at a protein to 

water or oil ratio of 1:10 (w/v) in a vortex mixer and centrifuged at 10 000 g for 10 min using a 

Sigma 3-18 KS centrifuge (Sigma Laborzentrifugen GmbH, Osterode am Harz, Germany). The 

supernatants obtained were discarded, and the sediments were weighed. WHC and OHC were 

expressed as g of water or oil held per g of protein. 

 

Emulsifying capacity and emulsion stability  

Two emulsions were prepared in triplicate per protein. One was used to evaluate the emulsifying 

capacity (EC) and the other was used to calculate colour attributes and to simulate a conventional 

emulsion preparation. The emulsions and the EC of the isolated proteins were 

prepared/determined according to the method described by Garcia-Vaquero et al. (2017). To 

determine the emulsion stability (ES), the prepared emulsions were heated at 85 ºC for 15 min in 

a water bath, cooled at room temperature for 10 min and centrifuged again at 1,100 g for 5 min. 

ES was calculated as the percentage of emulsion remaining after heating. The pH was adjusted 

using 1 M HCl or NaOH (0.1 M for fine adjustment). 

To measure colour parameters and to simulate a conventional preparation, proteins were 

resuspended in tap water (pH 7.66) at a concentration of 3% (w/v) and the protein solution was 

homogenised for 30 s at 1314 g. Olive oil was added to a protein solution to oil ratio of 1:4, and 

the mixture was homogenised for 120 s at 1314 g. 

 

Foaming capacity and foam stability 

Foams and the foaming capacity (FC) of the isolated proteins were prepared or determined as 

described by Lafarga et al. (2018). The FC was calculated as amount of foam generated as a 

percentage of the initial volume of solution. The pH was adjusted using 1 M HCl or NaOH (0.1 



M for fine adjustment). Foam stability (FS) was expressed as the percentage of decrease of foam 

volume over time. 

 

Statistical analysis 

Statistical differences were analysed using analysis of variance (ANOVA) with JMP 13 (SAS 

Institute Inc., Cary, USA), and results were expressed as the mean of three independent 

experiments ± standard deviation (SD). A Tukey pairwise comparison of the means was 

conducted to determine the differences of the mean values (P < 0.05). Bivariate Pearson’s 

correlation analysis was carried out to identify relationships between parameters. 

 

Results and discussion  

Proteins isolated from dried legumes: colour, pH and water activity 

The colour of mayonnaise generally varies between white to pale yellow because they are 

generally made using egg yolk (or whole egg). Consumers associate this colour range to 

mayonnaise, and therefore, proteins used to produce egg-free ‘mayonnaises’ should not affect the 

products’ colour. The L* parameter, which denotes lightness and varies from 0 (black) to 100 

(white) of the isolated proteins is shown in Table S1. Values ranged between 51.9 and 80.9 and 

demonstrate a lighter appearance of, for example, proteins derived from common beans or runner 

beans when compared to peas or lentils (P < 0.05). This can be clearly seen in Fig. 1, as proteins 

with lower L* values are clearly darker when compared to those with higher lightness. Overall, 

L*, a* and b* values were comparable to those previously reported for proteins derived from 

pulses including beans (Lafarga et al.,2018), peas (Shevkani & Singh, 2015), cowpea (Garcia-

Vaquero et al., 2017) and other pulses (Wani et al.,2015). The hº value represents the quality by 

which we distinguish one colour from another as red, yellow, green, blue or purple, and Ch values 

represent the degree of departure from grey towards pure chromatic colour and are a quantitative 

indicator of the intensity of a distinctive hue. In the current study, ºh and Ch values ranged 

between 72.3 and 99.6 and 11.5 and 22.1, respectively, suggesting a higher colour intensity in 

chickpea-derived proteins when compared to those extracted from common beans or peas (P < 



0.05). Similar Ch values were reported previously for proteins extracted from Ganxet common 

beans calculated as 11.1 ± 0.1 (Lafarga et al., 2018). Ch values were also comparable to those 

reported for other proteins such as seaweed (Garcia-Vaquero et al., 2017). 

The pH and aw values are important for the storage of the products before their industrial 

application (Table 1). Results obtained suggest that the generated protein-rich powders would be 

stable during storage as values within this range (0.180–0.190) do not enable microbial growth. 

In addition, aw values were comparable to those reported in previous studies (Lafarga et al., 2016) 

and to commercialised powders such as soluble coffee (Schmidt & Fontana, 2007). 

 

 
Figure 1. Selected legumes and generated protein isolates, emulsions, and foams. (a) Lentils 

(Lens culinaris L.); (b) Cowpeas (Vigna unguiculata L.); (c) fava beans (Vicia fava L.); (d) 

Chickpeas (Cicer arietinum L.); (e) Soybeans (Glycine max L.); (f) Runner beans (Phaseolus 

coccineus L.); (g) Beans (Phaseolus vulgaris L.); and (h) Peas (Pisum sativum L.).  

 

Water- and oil-holding capacities 

Interactions between proteins and both water and oil are important for the food industry because 

of their effects on flavour and texture (Garcia-Vaquero et al.,2017). Factors affecting WHC and 

OHC of proteins include their amino acid composition, protein conformation and surface 

polarity/hydrophobicity (Yu et al.,2007). High WHC values are important in viscous foods such 



as soups or custards because they allow to imbibe water without dissolution of the protein 

providing body, thickening and viscosity (Kumar et al.,2014). In turn, high OHC values are 

desirable for flavour retention and improving palatability of foods (Tiwari et al., 2008), as well 

as indicative of good emulsion ability. 

 

In the current study, WHC values ranged between 2.4 and 6.8 g g _1 (Table 1). Differences in 

WHC values can be attributed to different solubility, protein structures and availability of polar 

amino acids which have been shown to be primary sites for water interaction of proteins (Li et 

al., 2010). These values were higher than those reported for proteins derived from other seeds 

such as Ganxet beans (Lafarga et al., 2018), mung beans (Li et al., 2010) or hemp seeds 

(Hadnađev, et al., 2018). Lower WHC values were also reported for proteins derived from 

seaweed (Kumar et al., 2014) or peanut (Yu et al., 2007). However, results were comparable to 

those reported by Wani et al. (2015), who reported that the WHC of 16 varieties of mung beans 

ranged between 5.34 and 5.85 g g -1. In this study, OHC values ranged between 3.5 and 6.4 g g -1. 

Similar results were observed by Wani et al. (2015), who calculated the OHC of mung bean-

derived proteins within the range 5.8–6.9 g g -1 and by Adebowale et al. (2011), who observed 

OHC between 6.7 and 7.9 for Bambara groundnut protein isolates. When compared to egg white 

protein, commonly employed in traditional kitchen recipes, the values reported for WHC and 

OHC range from 0.90 to 4.5 g g -1 and from 0.92 to 4.22 g g -1, respectively (Segura-Campos et 

al., 2013). 

Emulsifying properties 

Good emulsifying properties are desired for the manufacture of vegetable-derived beverages or 

meat analogues, which are hot trends in the food industry (Tiwari et al., 2008). In addition, chefs 



could improve the presentation of dishes, suitable for vegans and vegetarian consumers, while 

adding different textures and flavours, by incorporating novel emulsions into their recipes. 

Emulsifying properties are shown in Fig. 2. Both EC and ES were significantly affected by the 

pH (P < 0.05). At pH 2.0 and 10.0, the EC of all the studied proteins was approximately 80%. 

Emulsions made at these pH values were also more stable, as higher ES values were observed at 

pH 2.0 and 10.0 (P < 0.05). Results were in line with those reported by Tirgar et al. (2017), who 

calculated the EC of flaxseed proteins, isolated by isoelectric precipitation, between 80% and 

90%. Results were also comparable with those observed by Garcia-Vaquero et al. (2017) using 

algae-derived proteins. When the pH value was shifted to 4.0 and 6.0, the EC values significantly 

decreased and ranged between 10% and 40%. This was probably caused by the extraction 

methodology followed, which could have led to low solubility at these pH values and to the 

formation of protein aggregates which hide the hydrophobic groups of the proteins, reducing their 

EC. Contrarily, at extreme pH’s the protein structure is unfolded, leading to an exposure of buried 

hydrophobic groups and protein disaggregation, which would facilitate establishing hydrophilic 

and lipophilic interactions between the aqueous and the lipid phases. 

This does not mean that these proteins cannot be used for creating emulsions, as for example, 

emulsions shown in Fig. 1 were made at pH 7.66 (with different water:oil ratio, homogenisation 

time and protein concentration). At pH 8.0, significant differences were observed between 

different proteins (P < 0.05). For example, no differences were observed between the EC of 

cowpea-derived proteins at pH values 8.0 and 10.0, while the EC of chickpea-derived proteins at 

pH 8.0 was significantly lower when compared to that measured at pH 10.0 (P < 0.05). Similar 

results were observed for soybean-, pea- and common bean-derived proteins (P < 0.05). Lafarga 

et al. (2018) recently reported a significant decrease in the EC of proteins derived from common 

beans at pH 4.0, when compared to that measured at pH 8.0. Tirgar et al. (2017) recently suggested 

that the protein extraction strategy greatly influences the composition and functional properties 

of protein concentrates. In this case, the extraction method employed enriches those proteins with 

a very low solubility at slightly acid pH values, since the precipitation step was carried out at a 

value of 5.5. Therefore, evaluating other extraction alternatives, such as controlled enzymatic 



extractions could lead to increased emulsifying properties. In addition, protein pre-treatments 

such as enzymatic hydrolysis, heating or high- pressure processing could also result in improved 

functional properties. For example, Chao et al. (2018) recently reported enhanced FC and 

emulsion formation when pea proteins were subjected to high hydrostatic pressure, since it 

mimics the effect of extreme pH values, leading to protein unfolding. 

 

 

Figure 2. (a) Emulsifying capacity, (b) emulsion stability, and (c) foaming capacity of selected 

legume-derived proteins. Emulsions or foams made using proteins extracted from: (a) Lentils; 

(b) Cowpeas; (c) Fava beans; (d) Chickpeas; (e) Soybeans; (f) Runner beans; (g) Beans; and (h) 

Peas. Values represent the mean of three independent studies ± SD. Different capital letters 

indicate significant differences in emulsifying/foaming capacity or stability for emulsions/foams 



made using different proteins at the same pH. Lower case letters indicate significant differences 

in emulsifying/foaming capacity or stability for emulsions/foams made using the same protein at 

different pH values. The criterion for statistical significance was P < 0.05.  

 

Figure 1 shows, as an example, the emulsions generated using the isolated proteins, olive oil, and tap water 

(pH 7.66). Colour attributes of the generated emulsions are listed in Table S1. The L* values of the 

emulsions ranged between 80 and 90 for all the studied proteins. The highest luminosity was observed for 

emulsions made using runner beans and common beans (P < 0.05). A positive correlation was observed 

between the luminosity of the dried protein powder and the emulsion luminosity (0.792; P < 0.001), as well 

as for the a* parameter of the emulsions and protein powders (0.724; P < 0.001). Protein a* values were 

also positively correlated with emulsion a* values (0.591, P < 0.001). Although differences were observed 

between the Ch values of the generated emulsions, all ranged between 9 and 15. Differences between the 

colour of the different emulsions can be seen in Fig. 1. 

 

Foaming capacity 

The capacity of proteins to form stable foams is important in the production of a variety of foods, 

as these contribute to the uniform distribution of fine air cells in the structure of foods. Foams are 

formed when proteins diffuse and adsorb the air–water interface, reducing the surface tension and 

forming an interfacial film around the air bubbles (Jarpa-Parra, 2018). The FC of the studied 

proteins at different pH values is shown in Fig. 2. Proteins isolated from fava beans showed the 

highest FC values which were calculated as 56.7 ± 2.9 and 56.7 ± 2.7% when measured at pH 2.0 

and 10.0, respectively (P < 0.05). FC values were in line with those obtained for other protein 

sources such as common beans (Lafarga et al.,2018), cowpeas (Ragab et al., 2004) and mung 

beans (Li et al., 2010). In the present study, FC was higher at pH values 2.0 and 10.0 (P < 0.05). 

Previous studies also observed higher FC values at extreme pH values such as 2.0 (Kumar et al., 

2014) and 10.0 (Garcia-Vaquero et al., 2017). The observed higher FC values at extreme pH 

values was attributed to solubility and the increased net charges on the protein, which could have 

weakened the hydrophobic interactions but increased the flexibility of the protein (Ragab et al., 



2004). Structural properties of proteins can also affect FC, and this could explain the higher FC 

values for proteins derived from fava beans and soybeans (P < 0.05). Moreover, the stability of 

the foams during a 30 min period is shown in Figure S1. The FS was significantly affected by 

time pH (P < 0.001), time (P < 0.001) and pH*time interactions (P < 0.001). Overall, the 

generated foams showed lower FS at pH values ranging from 4.0 to 8.0 (P < 0.05). Similar results 

were obtained previously at these same pH values (Khalid et al., 2003; Ragab et al., 2004; Garcia-

Vaquero et al., 2017; Lafarga et al., 2018). Results demonstrate that not only the FC but also the 

stability of the foams, made using legume-derived proteins extracted using alkaline solubilisation, 

are higher at extreme pH values. 

 

Conclusions 

The foam and emulsion stabilising properties of proteins isolated from pulses were investigated. 

The observed WHC and OHC values were in line with those reported in previous studies for plant- 

and animal-derived proteins suggesting the potential utilisation of pulse-derived proteins to 

improve thickening and viscosity of liquid foods. The EC and FC of the isolated proteins were 

higher at extreme pH values, which are not applicable for food formulations. However, at milder 

pH conditions, the isolated proteins still showed potential applications for developing novel foams 

and emulsions and results compared well with those reported for proteins derived from other 

foods. 

Studied proteins showed potential for their use in the manufacture of edible foams and emulsions, 

which could lead to the development of a large number of innovative products suitable for those 

who decide not to consume animal-derived foods. 
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