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Summary: The genus of benthic dinoflagellates Ostreopsis is of particular interest because some species negatively impact 
human health and coastal marine ecosystems. Ostreopsis populations from a remote area, such as the Galapagos Marine Re-
serve with its unique biodiversity, can provide significant data. Samples of epibionthic dinoflagellates were collected from 
two islands (Santa Cruz and Santa Fé) in 2017. Species of the genera Gambierdiscus, Amphidinium, Coolia and Ostreopsis 
were found. Ostreopsis strains were isolated to characterize their morphology, molecular biology and toxicity. Three dif-
ferent morphotypes of Ostreopsis based on dorsoventral and width diameters (n=369) were distinguished. The small cell 
morphotype was dominant in ten samples, with abundances of up to 33405 cells g-1 fresh weight of macroalgae. A total of 
16 strains were isolated from field samples with subsequent polymerase chain reaction amplifications of rDNA, 5.8S rDNA 
and internal transcribed space regions; 13 strains (small cell morphotype) clustered in the O. cf. ovata Atlantic/Indian/Pacific 
clade; and 3 strains (large cell morphotype) clustered in the Ostreopsis lenticularis genotype from the type locality. The 
strains proved to be non-toxic. The presence of these genera/species represents a potential threat to marine ecosystems, and 
it is thus important to consider benthic species in the surveillance of harmful algae blooms in the reserve.

Keywords: dinoflagellates; harmful algal blooms; molecular phylogeny; Ostreopsis cf. ovata; Ostreopsis lenticularis; SEM; 
taxonomy; toxicity.

Ostreopsis cf. ovata y Ostreopsis lenticularis (Dinophyceae: Gonyaulacales) en la Reserva Marina de Galápagos

Resumen: El género de los dinoflagelados bentónicos Ostreopsis es de particular interés, porque algunas especies afectan 
negativamente a la salud humana y a los ecosistemas marinos costeros. Las poblaciones de Ostreopsis en áreas remotas, 
como la Reserva Marina de Galápagos con su biodiversidad única, pueden proporcionar datos significativos a su estudio. Se 
recolectaron muestras de dinoflagelados epibentónicos de dos islas (Santa Cruz y Santa Fé) en 2017. Se encontraron espe-
cies de los géneros Gambierdiscus, Amphidinium, Coolia y Ostreopsis. Las cepas de Ostreopsis se aislaron para caracterizar 
su morfología, biología molecular y toxicidad. Se distinguieron tres morfotipos diferentes de Ostreopsis basados en tamaño 
(n=369). El morfotipo de células pequeñas fue dominante en diez muestras, con abundancias de hasta 33405 células g–1 de 
peso fresco de macroalgas. Se aisló un total de 16 cepas y se secuenciaron las regiones de rDNA, 5.8S y ITS para el estudio 
filogenético. Trece cepas pertenecieron al morfotipo de células pequeñas agrupadas en el clado O. cf. ovata Atlántico/Índio/
Pacífico y tres cepas al morfotipo de células grandes agrupadas en el clado Ostreopsis lenticularis. Ninguna de las cepas 
aisladas resultó ser tóxica. La presencia de estos géneros/especies representa una amenaza potencial para los ecosistemas 
marinos, por lo que es importante tener en cuenta las especies bentónicas en la vigilancia de la proliferación de algas nocivas 
en la reserva.

Palabras clave: dinoflagelados; proliferación de algas nocivas; filogenia; Ostreopsis cf. ovata; Ostreopsis lenticularis; 
MEB; taxonomía; toxicidad.
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INTRODUCTION

Toxic benthic dinoflagellates have been related to 
seafood poisoning in humans and negative impacts on 
some marine organisms (Berdalet et al. 2017). Several 
toxic genera frequently co-exist in epiphytic microal-
gal assemblages: Gambierdiscus Adachi and Fukuyo, 
1979, which produce the toxins responsible for cigu-
atera fish poisoning (Litaker et al. 2017, Munday et al. 
2017, Larsson et al. 2018); Fukuyoa F. Gómez, D.X. 
Qiu, R.M. Lopes et Senjie Lin, 2015, which produce 
haemolytic substances and a maitotoxin-like compound 
(Holmes 1998, Holland et al. 2013, Laza-Martinez et 
al. 2016); Ostreopsis Schmidt, 1901, associated with 
clupeotoxicity (Randall 2005), skin irritations and res-
piratory disorders (Tichadou et al. 2010, Del Favero 
et al. 2012, Vila et al. 2016); and some toxic species 
of Amphidinium Claparède et Lachmann, 1859, Coolia 
Meunier, 1919, and Prorocentrum Ehrenberg, 1834, 
which may cause human health issues (Laza-Martinez 
et al. 2011).

In the last two decades, the geographical area of 
the study of potentially toxic benthic dinoflagellates 
has increased considerably (Hachani et al. 2018, 
Irola-Sansores et al. 2018, Durán-Riveroll et al. 2019 
and references therein). However, observations on 
marine diversity are still lacking from low latitudes, 
which have hitherto been overlooked by the scientific 
community (Menegotto and Rangel 2018). Sampling 
efforts should thus be intensified in tropical areas, 
such as the Galapagos Marine Reserve (GMR), where 
epiphytic dinoflagellate occurrence has only been 
reported as preliminary results of the present study 
(Yépez Rendón et al. 2018). Furthermore, the GMR 
is known worldwide for its unique biodiversity, influ-
enced by currents, local upwellings and other oceano-
graphic features, representing biodiversity hotspots 
(Liu et al. 2014). There is little information about mi-
croalgae diversity in the Archipelago, and the risk of 
harmful algal blooms (HAB) in the area has not been 
assessed. A recent study on the southern islands of the 
GMR reported 18 harmful taxa (Carnicer et al. 2019), 
representing an ecological threat for coastal marine 
ecosystems and for human health that may result in 
negative economic and social impacts in the GMR 
(Kislik et al. 2017).

Ostreopsis is of particular interest because some 
species of this genus are known to negatively impact 
human health (causing fever, dyspnoea, bronchoc-
onstriction, conjunctivitis and skin irritations) and to 
cause mortality in marine benthic organisms in temper-
ate regions (reviewed in Accoroni and Totti 2016). Os-

treopsis cf. ovata is the most widely distributed species 
of the genus; it has been studied in detail, mostly be-
cause of its recurrent blooms in the Mediterranean Sea, 
which pose a health risk to bathers (Vila et al. 2016).

It has been demonstrated, in some cases by bioas-
say and in others by analytical techniques, that several 
species/genetic clades of the genus Ostreopsis pro-
duce palytoxin (PLTX)-like compounds: O cf. ovata 
(García-Altares et al. 2014, Tartaglione et al. 2016), 
O. siamensis Schmidt, 1901 (Terajima et al. 2018), O. 
mascarenensis Quod, 1994 (Lenoir et al. 2004), Ostre-
opsis sp. 1 and Ostreopsis sp. 6 (Sato et al. 2011, Suzu-
ki et al. 2012), and O. fattorussoi Accoroni, Romagnoli 
et Totti, 2016. Ostreopsis lenticularis Fukuyo, 1981 
(Ashton et al. 2003), O. heptagona Norris, Bomber 
et Balech, 1985 and Ostreopsis sp. 7 (Tawong et al. 
2014) have been reported as toxic by mouse bioassay. 
However, within the O. cf. ovata strains there is a high 
infraspecific variability concerning toxin production 
(Carnicer et al. 2016a), as has been reported in other 
dinoflagellates such as the Alexandrium tamarense 
species complex (John et al. 2014).

The taxonomic status of the genus Ostreopsis 
is presently in flux and requires extensive revision 
(Berdalet et al. 2017). Eleven Ostreopsis species have 
been identified on the basis of morphological features, 
but the characteristics used to delineate those species 
have proven that unambiguous species identification 
based on morphology is difficult or even impossible. 
Instead, molecular characters, particularly the internal 
transcribed spacer (ITS) region and the D1-D3 large 
subunit (LSU) ribosomal genes, have proven to be 
more efficient and consistent for discriminating be-
tween dinoflagellate species (Litaker et al. 2007, Penna 
et al. 2014). For this reason, the two recently described 
species O. fattorussoi (Accoroni et al. 2016) and O. 
rhodesiae Verma, Hoppenrath et Murray, 2016 were 
defined on the basis of both molecular and morpho-
logical criteria.

Morphologically, six species have a tear-drop cell 
shape: O. cf. siamensis, O. cf. ovata, O. heptagona, 
O. belizeana Faust, 1999, O. caribbeana Faust, 1999, 
O. fattorussoi and O. rhodesiae. The other four spe-
cies of the genus are characterized by a broadly oval, 
lenticular-shaped cell: O. lenticularis, O. mascarenen-
sis, O. labens Faust et Morton, 1995 and O. marina 
Faust, 1999. All the species share a similar plate pat-
tern, which complicates their identification based on 
morphology (Penna et al. 2005). Only O. heptagona 
is easily distinguishable under a light microscope be-
cause the 2′′′′ plate narrows toward the centre of the 
hypotheca. Moreover, cell sizes overlap among spe-
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cies, and considerable infraspecific variability in cell 
diameter has been observed both in field samples and 
in cultures (Aligizaki and Nikolaidis 2006, David et al. 
2013, Carnicer et al. 2016b).

In addition, ITS phylogenies based on sequenc-
ing the ITS region from numerous Ostreopsis isolates 
indicate the existence of an additional seven genetic 
clades (Ostreopsis spp. 1-7), designated numerically, 
pending formal taxonomic assignation (Sato et al. 
2011, Tawong et al. 2014), apart from an unidentified 
phylotype (proposed as Ostreopsis sp. 8 in Tibiriçá et 
al. 2019) reported from Reunion Island in the Indian 
Ocean (Carnicer et al. 2015). Without genetic mate-
rial from the originally described species location, it is 
impossible to determine whether the newly sequenced 
isolates belong to a previously described species. For-
tunately, a recent study performed in French Polynesia 
has associated Ostreopsis sp. 5 with O. lenticularis 
(Chomérat et al. 2019) on the basis of the morpho-
logical features of the original description of the cells 
from the same location (Fukuyo 1981). Most recently, 
Ostreopsis mascarenensis has been reinvestigated by 
morphological and molecular phylogenetic methods 
using specimens collected from the type locality of the 
species by Chomérat et al. (2020).

New characterizations of Ostreopsis species from 
unexplored areas, including the study of morphology, 
phylogeny and toxin profiles, may be helpful in consol-
idating the original species described in the last century 
solely by morphology. In addition, reporting existing 
species will provide valuable data on their geographic 
distribution and support for current molecularly de-
fined species. The present study aimed to identify the 
associated epibionthic dinoflagellate assemblage in the 
GMR and describe the morphology, molecular biology 
and toxicity of Ostreopsis strains found in the area.

MATERIALS AND METHODS

Sampling

Sampling occurred at two southern islands in 
the GMR. One site was sampled on Santa Fé Island 
(0°48′16.36″S; 90°5′7.522″W) on 29 March 2017, 
and two sites were sampled on Santa Cruz Island: 
Tortuga Bay (0°45′58.43″S; 90°20′42.373″W) on 
30 March 2017 and Venecia Bay (0°302′5.755″S; 
90°30′56.646″W) on 6 April 2017 (Fig. 1). The surface 
water temperature was 28.25°C to 28.80°C, salinity 
was 34.24-34.68, pH was 7.78-7.84 and dissolved oxy-
gen was 5.11-6.34 mL L–1 (94.3%-100.6%). Macroal-
gae and scrapings on the surface of sessile benthic in-
vertebrates, Tetraclita sp. (Crustacea: Cirripedia), were 
collected for analysis of the epibenthic dinoflagellates 
growing on them. Samples were taken by hand at 1 
to 2 m depth and placed in a plastic bag immediately; 
the volume of the surrounding water was subsequently 
measured with a plastic graduated cylinder.

Macroalgae and the surrounding water were trans-
ferred to a 500 mL plastic bottle, vigorously shaken for 
one minute and then filtered through a 300 µm mesh. 
For invertebrates, the surface was scraped off using a 

razor blade and resuspended in the surrounding water 
sample for filtration through a 300 µm mesh to collect 
the epibionthic microalgal community. The resulting 
water with suspended microalgae was fixed in 3% acid 
Lugol’s solution for cell counting. Aliquots of the wa-
ter samples from Tortuga Bay were kept unfixed for 
cell isolation. Macroalgae were placed in plastic bags 
and transported in coolers to the laboratory for weigh-
ing (Mettler Toledo SB32001 DeltaRange).

Cell isolation and culture conditions

Cells were isolated by the capillary method (Hoshaw 
and Rosowski 1973), grown in a 24-well microplate 
containing f/10 medium (Guillard 1975) for a week and 
then inoculated in 50 mL flat plastic flasks containing 
30 mL f/10 medium. Cultures were transferred during 
the exponential phase to 500 mL non-treated, sterile 
polystyrene flat flasks (Thermo Scientific™ Nunc™) 
and grown at a constant temperature of 24°C. Salinity 
was adjusted to 36 by adding autoclaved Milli-Q wa-
ter, and illumination was provided by fluorescent tubes 
with a photon irradiance of 100 mmol photons m–2 s–1 

under a 12:12-h light:dark photoperiod. Cultures were 
acclimated to laboratory conditions for at least ten gen-
erations (three weeks). The exponential phase lasted 
for five days, and at the stationary phase (three weeks, 
density > 104 cells L–1) cells were collected on a 0.45 
µm nylon filter (Whatman®, GE). Filters were stored 
at –20ºC until toxin extraction.

Cell counting and measurements

For cell counting, fixed field water samples were 
settled in 3 mL Utermöhl chambers for three hours 
before observation with an inverted Nikon Eclipse 
TE2000-S microscope. The entire bottom of the cham-
ber was examined at 200x magnification to enumerate 
the larger organisms, and one/two transects at 200x or 
five/ten fields at 400x magnification were examined 
to count the small and more abundant organisms. 
Dinoflagellates were identified to genus except for 
Prorocentrum lima, O. cf. ovata and O. lenticularis. 
Epiphytic samples were expressed as cells per gram of 
fresh weight of macroalgae (cells g–1 fw) and as cells 

Fig. 1. – Sampling sites: Santa Fé Island (0°48′16.36″S; 
90°5′7.522″W), Tortuga Bay (0°45′58.43″S; 90°20′42.373″W) and 
Venecia Bay (0°302′5.755″S; 90°30′56.646″W) in the Galapagos 

Marine Reserve.
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per cone surface area (cells cm–2) for conical shaped 
invertebrates, using the following equation:

 = ≠ +surface r h r2 2  

where r is base radius, and h is height.
Ostreopsis cells were measured from fixed water 

samples obtained from macroalgae in Tortuga Bay. 
In addition, Ostreopsis cells from laboratory cultures 
were measured during the exponential phase (5 days); 
dorsoventral (DV) and width (W) diameters were 
recorded using an image capture system (MCDITM 
Analysis) with an Olympus DP70 camera connected 
to an inverted microscope (Nikon Eclipse 80i) at 400× 
magnification.

Morphological identification

Cultured cells were fixed at the exponential phase 
with a stock formaldehyde solution (37%) to a final 
concentration of 4%, examined and photographed in a 
Hitachi S-3500N scanning electron microscope (SEM) 
at a working distance of 5 to 6 mm and a voltage of 
5.0 kV after a preliminary wash in distilled water fol-
lowed by dehydration in a series of ethanol solutions 
of increasing concentration (30, 50, 70, 90 and 100%), 
critical point drying with pin-type stubs and sputter 
coating with gold-palladium using a Quarum Q150RS 
(Quorum Technologies, Newhaven, East Sussex, 
U.K.). Some strains were analysed under the inverted 
microscope (Nikon Eclipse 80i) after staining with 
fluorescent Calcofluor White M2R, based on the Fritz 
and Triemer (1985) technique.

Molecular identification

For DNA analysis, 15 mL of culture were transferred 
to plastic Eppendorf vials and centrifuged for 10 min at 
2500 rpm. Resulting pellets were stored at –20°C until 
DNA extraction, following Andree et al. (2011). Prim-
ers used for the polymerase chain reaction (PCR) were 
ITSA (5′ - GTA ACA AGG THT CCG TAG GT - 3′) 
and ITSB (5′ - AKA TGC TTA ART TCA GCR GG - 
3′), previously described by Sato et al. (2011), and the 
Taq DNA polymerase was from Invitrogen. ITS and 
5.8S ribosomal DNA (rDNA) regions were amplified 
in an Applied Biosytems 2720 Thermal cycler (initial 5 
min heating step at 94°C, 30 cycles at 94°C for 1 min, 
at 55°C for 2 min, and at 72°C for 3 min, and a final 
extension at 72°C for 10 min. Resulting fragments of ap-
proximately 400-base pair (bp) rRNA were evaluated by 
electrophoresis in agarose gel (1.5% wt/vol) stained with 
GelRed™ (Biotium Inc., Hayward, CA, USA) and were 
sent to be sequenced (GENOSCREEN, Paris, France). 
Amplicons were read by direct sequencing using the 
same primers as those applied for the initial amplifica-
tion. Each amplicon was sequenced bi-directionally to 
resolve any ambiguities in the electropherograms that 
might have been attributed to polymorphisms.

Sequences were aligned using the CLUSTAL W 
utility built into MEGA X, and small adjustments were 
subsequently made to correct the alignment where 

needed, using the more conserved 5.8S rDNA sequence 
as an anchor guide to align sequences from all taxa.

The evolutionary history was inferred using the 
maximum likelihood method and Tamura 3-param-
eter model+G (Tamura 1992), conducted in MEGA X 
(Kumar et al. 2018). The least complex phylogenetic 
model was chosen as that with the lowest BIC score as 
indicated in the model test utility built into MEGA X. 
Initial tree(s) for the heuristic search were obtained au-
tomatically by applying neighbour-joining and BioNJ 
algorithms to a matrix of pairwise distances estimated 
using the maximum composite likelihood approach. 
The final dataset analysed included 73 nucleotide se-
quences, each containing 291 positions.

Toxin extraction

Nylon filters from the 16 clonal Ostreopsis cultures 
described above were added to methanol:water (80:20) 
and sonicated (Vibra-Cell™ Ultrasonic Liquid Proces-
sor VCX 750) in pulse mode for 10 min while being 
cooled in an ice bath before centrifugation (600 × g 
for 10 min). The supernatant was filtered through 0.22 
µm polytetrafluorothylene membrane syringe filters 
(Kinesis Ltd.). This procedure was repeated twice, and 
the final volume was adjusted to 10 mL.

Hemolytic assay

The hemolytic assay protocol given in Riobó et al. 
(2008) was followed. A calibration curve was made us-
ing PLTX standard (extracted from Palythoa tubercu-
losa) from Wako Chemicals GmbH, (Neuss, Germany) 
dissolved in methanol:water (1:1) to a concentration of 
25 ng PLTX mL–1. Toxin extracts and PLTX standard 
were evaporated and refilled with phosphate buffered 
saline solution (PBS) to eliminate methanol and water 
from the extraction. A calibration curve was performed 
with 12 concentrations of standard from 12.5 to 1250 
pg PLTX mL–1 adjusted to an exponential regression. 
The working solution was prepared with washed sheep 
blood (OXOID), centrifuged (4000 × g, 10°C, 10 min) 
twice and diluted with PBS 0.01 M, pH 7.4 (Sigma), 
0.1% bovine serum albumin (BSA), 1 mM calcium 
chloride (CaCl2·2H2O) and 1 mM boric acid (H3BO3) 
to a final concentration of 1.5 106 cells mL–1. The as-
say for PLTX specificity was verified by a blank assay 
with ouabain (1 mM final concentration). The assay 
was performed in two non-treated 96 well microplates, 
and samples were analysed in triplicate. After 22 h of 
incubation at 24°C, microplates were centrifuged (416 
× g, 10 min), and 200 µL of the supernatant was trans-
ferred to another microplate for absorbance reading 
by a KC4 microplate reader from BioTec Instruments, 
Inc. (Winooski, VT, USA) at 405 nm absorbance.

LC-HRMS toxin analysis

The liquid chromatography–high-resolution mass 
spectrometry (LC-HRMS) conditions were those of Ci-
miniello et al. (2015). The analyses were performed us-
ing a Q-Exactive Orbitrap mass spectrometer coupled to 
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an Accela AS LC system (Thermo Fisher, San José, CA, 
USA). The organic solvents (LC-MS grade) and reagents 
used for LC-MS analysis were purchased from Sigma 
Aldrich. An Accucore C18 column (2.6 µm, 100×2.1 
mm; Thermo Fisher) was eluted at 0.2 mL/min with wa-
ter (eluent A) and acetonitrile (eluent B), both containing 
0.1% formic acid. The gradient elution used was 26% 
to 29% B over 15 min, 29% to 99% B in 1 min, hold 3 
min, 99% to 26% B in 0.5 min, and hold 10.5 min. The 
injection volume was 10 µl, and the oven temperature 
was 30°C. HR full MS experiments (positive ionization) 
were acquired in the range of m/z 700-2000. The follow-
ing source settings were used: spray voltage = 3200 V; 
capillary temperature = 250ºC; sheath gas flow = 49; and 
auxiliary gas flow = 10 arbitrary units. Resolving power 
was set at 70000 (FWHM at m/z 400).

Palytoxin standard (from Palythoa tuberculosa) 
and strain IRTASMM-11-10 of Ostreopsis cf. ovata 
from the northwestern Mediterranean Sea (García-Al-
tares et al. 2014), extracted as described above, were 
used as references to check for retention times and 
ionization behaviour of PLTX, isobaric PLTX and 
ovatoxin (OVTX)-a to -g. The instrumental limit of 
quantification was estimated to be comparable to that 
of the method reported in García-Altares et al. (2014), 
which was 6 ng mL–1. The presence of both known 
and unknown PLTX-like compounds was investigated 
using their characteristic ionization profile of PLTXs, 
typically containing triply charged ions in the region 
m/z 830-950 and doubly charged ions in the region m/z 
1250-1400 (Ciminiello et al. 2011).

RESULTS

Epiphytic dinoflagellate assemblage

Benthic dinoflagellate abundances were estimated 
in 18 samples: two samples of sessile benthic inverte-
brates and 16 of macroalgae. Invertebrate samples of 
Tetraclita sp. were collected at Santa Fé Island, and 
macroalgae were taken from the two other sampling 
sites at Santa Cruz Island; 11 samples were from Tor-
tuga Bay and five were from Venecia Bay (Table 1).

The “small cell morphotype” of Ostreopsis was 
the dominant species among the benthic dinoflagel-
late assemblage in 10 out of 18 samples, representing 
more than 90% of the dinoflagellate assemblage in 
five samples (Table 1). The maximum abundance of 
the “small cell morphotype” of Ostreopsis (33405 cells 
g–1 fw) was found on Dictyopteris sp. (Phaeophyceae: 
Dictyotales), where a brownish mucilage was easily 
observed. The “large cell morphotype” of Ostreopsis 
was only found on this macroalgal species (maximum 
abundance of 4995 cells g–1 fw). Prorocentrum spp. 
dominated in three samples, with a maximum abun-
dance of 5300 cells g–1 fw on Pterocladia sp. (Floride-
ophyceae: Gelidiales). Amphidinium spp. showed the 
highest abundance in three samples, with a maximum 
of 4344 cells g–1 fw on Gracilaria sp. (Florideophy-
ceae: Gracilariales). Gambierdiscus spp. was present 
in four samples, two from each site, in low abundances 
(maximum of 588 cells g–1 fw) (Table 1).
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Field morphology of Ostreopsis

A total of 369 Ostreopsis cells were measured from 
the epiphytic dinoflagellate samples obtained from 
macroalgae in Tortuga Bay, Santa Cruz Island. Three 
different morphotypes based on DV and W diameters 
were distinguished (Fig. 2). The small-cell morphotype 

corresponded to cells with a tear-drop shaped small 
size (mean±standard deviation; DV=54.48±7.12 µm; 
W=38.01±5.11 µm; DV/W=1.43). The group with the 
largest size had a more broadly oval shape, the large-
cell morphotype (DV=98.13±7.59 µm; W=77.74±7.35 
µm; DV/W=1.26), with a maximum of DV of 109.86 
µm and W of 96.75 µm. An intermediate-cell morpho-
type was observed, having an elongated conical shape 
compared with the large-cell morphotype, and was 
larger than the small-cell morphotype (DV=80.14±1.59 
µm; W=61.27±4.24 µm; DV/W=1.31) (Fig. 2).

Isolated strains

A total of 16 strains were isolated, 13 from the 
“small-cell morphotype” and three from the “large-cell 
morphotype” from field samples in Tortuga Bay. No 
isolates of the intermediate size were successfully es-
tablished in culture.

Phylogenetic analysis

The PCR amplifications of 5.8S rDNA and ITS 
regions obtained from the 16 isolates were aligned to-

Fig. 2. – Dorsoventral (DV) and width (W) diameters of Ostreopsis 
cells from field samples, n=369.

Fig. 3. – Evolutionary relationships of Ostreopsis spp. 5.8S rDNA and ITS regions. Bootstrap values (1000 replicates) are shown next to the 
branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic 
tree. The tree with the highest log likelihood (-3268.95) is shown and is drawn to scale, with branch lengths measured in the number of 

substitutions per site. The percentage of trees in which the associated taxa clustered together is shown next to the branches.
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gether with other sequences from GenBank. Thirteen 
strains that shared identical sequences corresponding 
to the “small-cell morphotype” clustered in the Atlan-
tic/Indian/Pacific clade of O. cf ovata (GenBank acces-
sion number MH844087 for the strain 1G), and three 
strains with identical sequences corresponded to the 
“large-cell morphotype” in O. lenticularis (= Ostreop-
sis sp. 5) (GenBank accession number MH844088 for 
the strain 17G) (Fig. 3). The same tree topology was 
obtained using Bayesian inference (data not shown), 
with one caveat being that the Atlantic/Indian/Pacific 

clade was bifurcated into two clades, one group more 
distal to the Indian Pacific clade and one group con-
taining the isolates from the Galapagos Islands in the 
more proximal clade.

Morphological descriptions

Small-cell morphotype – Ostreopsis cf. ovata

Cells were oval-pointed and tear-drop shaped, 
tapering ventrally in apical/antapical view and anter-

Fig. 4. – Thecal morphology of Ostreopsis cf. ovata (strain 1G) viewed with scanning electron microscopy. A, apical (epithecal) view; B, 
antapical (hypothecal) view; C, anterior-dorsal-left-side view; D, the apical pore plate and adjacent epithecal plates in left-side view; E, a 
fragment of the 1 plate with irregularly scattered trichocyst pores; F, a fragment of the hypotheca and the sulcal area. Plate labels: 1′-3′, the 
apical plates; 1″-7″ the precingular plates; 1′′′-5′′′, the postcingular plates; 1′′′′ and 2′′′′, the antapical plates; Po, the apical pore plate; Vo, the 

ventral opening. The plates are named according to Hoppenrath et al. (2014). Scale bars: 20 µm in A-C, 5 µm in D-F.
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oposteriorly compressed. Cells were measured from 
five different O. cf. ovata strains (1G, 3G, 5G, 10G 
and 11G), a total of 477 cells, DV=44.73±5.62 µm 
(max=57.92 µm; min=28.26 µm); W=32.32±5.35 µm 
(max=48.71 µm; min=18.57 µm); DV/W=1.39±0.12. 
Plate 1′ is large, elongated, subhexagonal, slightly 
shifted to the left side of the cell, about 3.5 to 4 times 
long as it is wide (Fig. 4A, C). Plate 2′ is as narrow as 
the latter, contacts plate 4″ (Fig. 4D), and plate 3′ is 

small and hexagonal. The Po plate is moderately long, 
slightly shorter than plate 2′ (Fig. 4D). Plate 2′′′′ is pen-
tagonal, relatively short, about half the DV diameter, 
slightly shifted to the right side of the cell, with almost 
straight longitudinal sides parallel to each other, of 
the same width in its anterior and posterior parts, its 
contact with 4′′′ about 1.5-2 times longer than with 3′′′ 
(Fig. 4B). Thecal pores are of one type: 0.19-0.23 µm 
in diameter (Fig. 4D, E).

Fig. 5. – Thecal morphology of Ostreopsis lenticularis (strain 17G) (A and B, cells stained with Calcofluor White M2R viewed with epifluo-
rescence microscopy; C-F, cells viewed with scanning electron microscopy). A and C, apical (epithecal) view; B and D, antapical (hypothecal) 
view; E, a fragment of a thecal plate, with the irregularly scattered trichocyst pores and small pores; F, a fragment of the hypotheca and the 
sulcal area. Plate labels: 1′-3′, the apical plates; 1″–7″, the precingular plates; 1′′′-5′′′, the postcingular plates; 1′′′′ and 2′′′′, the antapical plates; 
Po, the apical pore plate; Sa, the anterior sulcal plate; Sda, the right sulcal plate; stp, small thecal pores; Sp, the posterior sulcal plate; Ssa, 
the left sulcal plate; tp, the trichocyst pores; Vo, the ventral opening (also known as the ventral pore). The plates are named according to 

Hoppenrath et al. (2014). Scale bars: 20 µm in A and B; 50 µm in C; 30 µm in D; 5 µm in E; 10 µm in F.
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Large-cell morphotype – Ostreopsis lenticularis

Cells were broadly oval-pointed and lenticular, 
tapering ventrally in apical/antapical view, anteropos-
teriorly compressed. Cells were measured from one 
O. lenticularis (=Ostreopsis sp. 5) strain (17G), a total 
of 61 cells; DV=88.49±7.22 µm (max=105.36 µm; 
min=70.94 µm); W=67.29±6.11 µm (max=82.69 µm; 
min=55.5 µm); DV/W=1.32 ±0.06. Plate 1′ large, elon-
gated, subhexagonal, slightly shifted to the left side 
of the cell, more than twice as long as wide (Fig. 5A, 
C). Plate 3′ is small, hexagonal. Plate 2′′′′ is somewhat 
curved longitudinally with its convex side to the right, 
slightly wider in its posterior part; its contact with 4′′′ is 
frequently about 1.5 to 2 times longer than with 3′′′ or 
its contacting sides are about equal (Fig. 5B, D). The-
cal pores are of two types, large (the trichocyst pores) 
and small (Fig. 5E). Large pores (min=0.20 µm; rarely) 
0.28 to 0.35 µm, and small thecal pores (min=0.04 µm; 
rarely) 0.07 to 0.12 µm. The ventral opening (the ven-
tral pore) is 2 µm in diameter (Fig. 5F).

Toxin profile

The 16 toxin extracts analysed (13 from O. cf. ovata 
and 3 from O. lenticularis) were below the limit of de-
tection of the haemolytic assay (25 pg PLTX mL–1) and 
proved to be non-toxic. This result was supported by 
the absence of PLTX-like compounds, both known and 
unknown, in the analysis by LC-HRMS. Figure 6 shows 
the total ion chromatograms and full scan MS spectra 
of reference materials (PLTX standard and O. cf. ovata 

IRTASMM-11-10), showing the characteristic clusters 
of triply charged ions in the region m/z 830–950 and 
doubly charged ions in the region m/z 1250–1400 (Ci-
miniello et al. 2011). Mass errors between theoretical 
and experimental accurate mass of the monoisotopic 
peak of [M+3H-H2O]3+ions of PLTX and OVTXs (-a 
to -e and -g) were below 3 ppm.

The LC-HRMS conditions applied in this study 
were those of Ciminiello et al. (2015), which have 
been used to report the detection of PLTXs in several 
studies (García-Altares et al. 2014, Tartaglione et al. 
2016, 2017). The instrumental limit of quantitation 
was estimated to be of the same order of magnitude as 
in other studies that reported the detection of PLTXs 
(6 ng PLTX mL–1). Moreover, chromatograms and 
mass spectra were manually explored to look for the 
characteristic ionization pattern of palytoxins to find 
potentially unknown analogues. It is therefore unlikely 
that the lack of toxicity was due to the insensitivity of 
the detection methods used.

DISCUSSION

This study is the first accurate report of O. cf. ovata 
and O. lenticularis in the GMR and confirms the pres-
ence of potentially toxic benthic dinoflagellate species. 
Since the early 20th century, species of the genera 
Gambierdiscus, Ostreopsis, Prorocentrum, Coolia and 
Amphidinium have been reported in tropical and sub-
tropical regions such as the eastern (Vargas-Montero 
et al. 2012, Maciel-Baltazar 2015) and western Pacific 
Ocean (Rhodes et al. 2017), the Indian Ocean (Car-

Fig. 6. – LC-HRMS analysis (total ion chromatograms and full scan MS) of PLTX standard (25 ng mL–1 from Palythoa tuberculosa) and 
methanolic extracts of Ostreopsis cf. ovata strain IRTA-SMM-11-10 (toxin profile described in García-Altares et al. 2014), used as a reference 

sample in the present study for the detection of PLTX-like compounds.
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nicer et al. 2015), the west Atlantic Ocean (Mendes et 
al. 2017) and the Caribbean Sea (Irola-Sansores et al. 
2018, Boisnoir et al. 2019). A recent study highlights 
the potential ecological and sanitary risks to Mexican 
coasts associated with the presence of Gambierdiscus, 
Ostreopsis and Prorocentrum, with special attention 
to the importance of an accurate genetic and toxic 
identification of these species of these genera (Núñez-
Vázquez et al. 2019). The absence of these specific data 
prevents accurate determination of the potential im-
pacts on marine ecosystems and human health because 
morphological features are not sufficient to describe a 
species, and toxin production is unevenly distributed 
among species and even among strains of the same spe-
cies (Litaker et al. 2010, Suzuki et al. 2012, Carnicer 
et al. 2016a).

This is the case for the eastern tropical Pacific 
(ETP), where there is little information on toxic 
benthic dinoflagellates (Durán-Riveroll et al. 2019). 
This area of the globe is of special concern because 
the marine ecosystem is sensitive to climate change 
and to El Niño-Southern Oscillation events (Edgar 
et al. 2010), affecting biodiversity due to changing 
temperatures and rainfall that, in turn, can influence 
the distribution of certain species that can adapt to 
new conditions (Keith et al. 2016). The studies from 
the ETP are limited to Colombia (Quintana-Manotas 
and Mercado-Gómez, 2017), where Coolia sp., O. 
lenticularis, O. ovata, P. emarginatum and P. lima 
were recorded, and Costa Rica (Coco Island) (Vargas-
Montero et al. 2012), with the presence of Gambierdis-
cus spp., C. tropicalis, C. cf. areolota, P. concavum, P. 
compressum, Amphidinium carterae and O. siamensis. 
Unfortunately, none of these studies included nucleic 
acid sequencing or toxicity analysis, making the cor-
rect identification of species difficult. A third study 
was performed along the northern and central coasts of 
Ecuador (Esmeraldas and Manta provinces), where the 
Padina sp. epiphytic community was sampled in 2015 
(Carnicer et al. 2016a). O. cf. ovata, Atlantic/Indian/
Pacific clade, non-toxic, P. lima and Coolia spp were 
present, but Gambierdiscus species were not observed 
(O. Carnicer, pers. comm.).

In the GMR, investigations have focused on plank-
tonic species during several cruises undertaken by the 
Naval Oceanographic Institute of Ecuador (INOCAR). 
The first record of a benthic dinoflagellate was of the 
genus Ostreopsis, reported by the institution’s journal 
(Torres and Andrade 2014). They identified O. siamen-
sis on Baltra Island (located north of Santa Cruz Island) 
from surface seawater samples collected in shallow 
areas in 2005. However, samples were only observed 
with a light microscope, so a misidentification may 
have occurred. For example, small tear-drop shaped 
cells such as O. cf. ovata, O. cf. siamensis, O. fatto-
russoi and O. rhodesiae are not distinguishable solely 
by light microscopy (Accoroni et al. 2016, Verma et 
al. 2016), and molecular techniques are mandatory for 
correct identification. In 2017, during the study period 
in the GMR, Ostreopsis cf. ovata and Ostreopsis cf. 
lenticularis (based on light microscopy observations) 
were reported from 2 to 10 miles from Santa Cruz Is-

land and islands nearby. Their presence in the water 
column and the high epibionthic abundances suggest 
that there may be proliferations in some areas of the 
GMR that have not been reported. A brownish muci-
lage has been observed previously in the Archipelago 
(I. Keith, pers. comm.), but there is no confirmation of 
the species involved in those events. Further monitor-
ing should be performed covering a larger area of the 
GMR to evaluate the presence of benthic HAB.

O. cf. ovata has been extensively studied, and there 
are many sequences from different regions around the 
world, because it is the most widely distributed species 
of the genus (Accoroni and Totti 2016). According to 
Hoppenrath et al. (2014), without a genetic characteri-
zation of O. ovata from the type locality, it is presently 
not possible to conclude which genotype corresponds 
to this species; therefore, most authors have reported 
O. cf. ovata. Phylogenetically, the O. cf. ovata species 
complex has been divided into three clades (Penna et 
al. 2014). These include the: i) Atlantic/Mediterranean/
Pacific, ii) Indian/Pacific, and iii) Atlantic/Indian/Pa-
cific clades. In clade i) all strains produce PLTX-like 
compounds such as isobaric PLTX and OVTX ana-
logues (e.g., Ciminiello et al. 2013), with the exception 
of three strains from Japan reported as non-toxic by 
Suzuki et al. (2012). Clade ii) includes OVTX produc-
ing strains (Suzuki et al. 2012, Uchida et al. 2013), os-
treol-A producers (a non-PLTX derivative compound) 
(Hwang et al. 2013) and non-toxic strains (Suzuki et al. 
2012, Carnicer et al. 2015). In clade iii) some strains 
displayed toxicity in mouse bioassays (Tawong et al. 
2014) and hemolytic assays (Penna et al. 2010), but the 
clade also includes non-toxic strains (Carnicer et al. 
2016a). The present study contributes additional physi-
ological information on the characterization of the O. 
cf. ovata species complex by adding a strain from a 
geographical area not previously sampled. The O. cf. 
ovata strain from the GMR belongs to clade iii), as do 
the strains sequenced to date from the coasts of Ecua-
dor (Carnicer et al. 2016a), Belize (Penna et al. 2014), 
Indonesia (Penna et al. 2010), Thailand (Tawong et 
al. 2014) and Malaysia (Leaw et al. 2001). As for the 
strains isolated from Ecuador and Belize, O. cf. ovata 
strains from the GMR are non-toxic.

The GMR is influenced by the convergence of 
three major currents that contribute to its unique en-
vironmental conditions favouring its high biodiversity 
(Muromtsev 1963, Banks, 2002, Hickman 2009). The 
South Equatorial Current flows westward and shows 
a marked seasonality. More intense cold-salty waters 
come during the dry season (June-November) with the 
Humboldt Current influenced by southern winds, while 
during the wet season (December-May) warmer waters 
come with the Panama Current. Eastward flowing, the 
Equatorial Undercurrent upwells in the western islands 
of the GMR, increasing primary production (Schaef-
fer et al. 2008). Thus, microalgal colonization from 
the western Pacific Ocean, as well as from Central 
America to the Archipelago, may have occurred. It is 
suspected that O. cf. ovata populations were separated 
by the Isthmus of Panama, and subsequent genetic 
differentiation took place (Penna et al. 2010). This 
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hypothesis is supported by O. cf. ovata strains from 
the western Atlantic (Brazil), which are genetically 
clustered with the eastern Atlantic and Mediterranean 
strains (Nascimento et al. 2012) and produce OVTX 
analogues. However, strains from the Caribbean Sea 
are genetically clustered with the eastern Pacific and 
Galapagos strains. Further molecular studies need to be 
undertaken in the Caribbean Sea and along the eastern 
Pacific coast to validate the assumption of an introduc-
tion of cells through the Panama Chanel with ballast 
waters (Carnicer et al. 2016a).

At least one other species of Ostreopsis has been 
identified in this study. This species fell in Ostreopsis 
sp. 5 (Sato et al. 2011). Morphologically, it resembles 
the original description of O. lenticularis, but until re-
cently (Chomérat et al. 2019) its known genetic clade 
assignment could not be used to unambiguously es-
tablish these isolates as O. lenticularis because it was 
described by Fukuyo (1981) prior to routine molecular 
characterization. The absence of the undulation of the 
cingulum in side view was not verified, although, ac-
cording to Fukuyo (1981), it is a morphological fea-
ture that distinguishes O. lenticularis, which possesses 
additional minute thecal pores, from O. siamensis, 
which does not. This is in agreement with Hoppenrath 
et al. (2014), who suggested that the species under 
the name of O. lenticularis in Faust et al. (1996) with 
only one type of pore belongs to another species. In 
addition, the species illustrated under the name of O. 
siamensis in Faust et al. (1996: Figs 2-8) is described 
with the two types of pores consistent with the original 
O. lenticularis description. Cortés-Lara et al. (2005) 
illustrated two pore size classes in O. siamensis from 
the Mexican Pacific and Penna et al. (2005) in O. 
ovata from the western Mediterranean. Aligizaki and 
Nikolaidis (2006) also reported two types of pores in 
O. ovata and O. cf. siamensis, which makes delimi-
tation of O. lenticularis even more complicated. The 
terms used in the literature in the description of the 
cell shape are vague and rather confusing, especially 
when the dorsoventral diameter/width (DV/W) ratio, 
which can be a useful feature for separating Ostreopsis 
spp. (Hoppenrath et al. 2014), is not given. The mor-
phology of the sulcal plates in Ostreopsis spp. remains 
poorly examined. Similarly, in our study only close-
ups of the sulcal area viewed ventrally-antapically are 
presented (Figs 4F and 5F), revealing some details that 
we were unable to compare with the published data on 
the same plates.

The strains of O. lenticularis recently isolated by 
Chomérat et al. (2019) from the type locality (Tahiti Is-
land) cluster with the sequences previously ascribed to 
Ostreopsis sp. 5. The morphological features of the O. 
lenticularis strains isolated by Chomérat et al. (2019), 
such as the presence of two types of thecal pores on the 
theca, are in agreement with the original description, 
and those authors suggest that this character be used 
to distinguish O. lenticularis from other large species. 
To confirm the findings obtained by Chomérat et al. 
(2019), all the known morphological, morphometrical, 
molecular and toxicity data for O. lenticularis and 
related species are assembled in Table 2 to determine 

how strongly the preponderance of data supports Os-
treopsis sp. 5 compared with the closely related Ostre-
opsis sp. 6 being O. lenticularis. Comparing cell sizes, 
strains of Ostreopsis sp. 5 (references in Table 2) fit 
better with the original description of O. lenticularis in 
Fukuyo (1981) (60-100 (DV); 45-85 (W) µm), whereas 
Ostreopsis sp. 6 (references in Table 2) are, in general, 
smaller cells that do not exceed 85 µm in DV diam-
eter and correspond better to the original description 
of O. labens: 60-86 µm (DV), 70-80 µm (W) (Faust 
and Morton 1995). The presence of the two types of 
thecal pores has been considered the main diagnostic 
feature of O. lenticularis, which differentiates it from 
other Ostreopsis spp. From the morphological descrip-
tions available for Ostreopsis sp. 5, there are at least 
two different types of pores, whereas only one type of 
pore was observed in Ostreopsis sp. 6 (Table 2).

The first ribosomal sequences for a strain from 
Malaysia identified as O. lenticularis were presented 
by Leaw et al. (2001), but the study lacks the neces-
sary morphological description to confirm whether it 
corresponds to the original description of the species. 
In subsequent publications, O. labens was clustered in 
the same genetic clade (Penna et al. 2010), and after 
the addition of three new sequences to the clade it 
was then called Ostreopsis sp. 6 (Sato et al. 2011). 
However, in a recent study conducted in the China 
Sea (Zhang et al. 2018), O. lenticularis was clustered 
in another genetic clade, Ostreopsis sp. 5, together 
with the strains from Reunion Island (Carnicer et al. 
2015) and three strains isolated from Japan (Sato et al. 
2011), posing a new taxonomic question of whether 
Ostreopsis sp. 5 or Ostreopsis sp. 6 corresponds to 
O. lenticularis. This was resolved by Chomérat et al. 
(2019), who found that Ostreopsis sp. 5, a non-toxic 
species, is O. lenticularis, and Ostreopsis sp. 6 cor-
responds to a different species.

Another interesting pattern observed is related to 
toxin content. There is a homogeneity for Ostreopsis 
sp. 5 strains from Japan (Suzuki et al. 2012), Reunion 
Island (Carnicer et al. 2015) and the Galapagos (this 
study), which are non-toxic (Table 2). Within Ostreopsis 
sp. 6, there is higher variability in cell toxicity, includ-
ing observations of toxic strains detected by hemolytic 
and mouse bioassays (Penna et al. 2010, Tawong et al. 
2014), producers of ostreocin-d (Suzuki et al. 2012) and 
PLTX analogues (Moreira et al. 2012), as well as non-
toxic strains (Suzuki et al. 2012) (Table 2).

In summary, the present study provides a descrip-
tion of epibionthic dinoflagellate assemblages from 
three sites of two southern islands in the GMR (Santa 
Cruz and Santa Fé) in March and April 2017. The po-
tentially toxic genera of Amphidinium, Coolia, Gam-
bierdiscus and Ostreopsis were found, the latter with 
abundances up to 38400 cells g–1 fw. The presence of 
these genera represents a potential threat to humans 
and to marine ecosystems. Thus, it is important to con-
sider benthic dinoflagellate species in the surveillance 
of HAB in the GMR. This study also provides the first 
correct characterization of Ostreopsis strains based on 
molecular, morphological and toxicological data, cor-
responding to O. cf. ovata and O. lenticularis in the 
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GMR. The PCR amplifications of rDNA, 5.8S and ITS 
regions clustered the isolates obtained from 16 strains 
of the O. cf. ovata Atlantic/Indian/Pacific clade, and 
Ostreopsis sp. 5 (= O. lenticularis). The strains proved 
to be non-toxic according to the haemolytic assay and 
LC-HRMS. Morphological characters of Ostreopsis 
sp. 5 are similar to those of O. lenticularis according 
to the original description by Fukuyo (1981) as well 
as by Chomérat el al. (2019) regarding cell size and 
type of pores. Furthermore, in our study all the strains 
of Ostreopsis sp. 5 (=O. lenticularis) were non-toxic, 
revealing a possible discriminating character.
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