

This is the peer reviewed version of the following article: Sevilla-Navarro, Sandra, Marta Cerdà-Cuéllar, Teresa Ayats, Jaume Jordá, Clara Marin, and Santiago Vega. 2020. "Characterization Of Salmonella Frintrop Isolated From Dromedary Camels (Camelus Dromedarius)". Transboundary And Emerging Diseases. doi:10.1111/tbed.13737, which has been published in final form at https://doi.org/10.1111/tbed.13737. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions http://www.wileyauthors.com/self-archiving.

Document downloaded from:

1 2	Characterisation of Salmonella Frintrop isolated from dromedary camels (Camelus dromedarius).				
3	Sandra Sevilla-Navarro ^{1,2} , Marta Cerdà-Cuéllar ³ , Teresa Ayats ³ , Jaume Jordá ¹ , Clara Marin ^{1*} and				
4	Santiago Vega ¹				
5					
6 7 8 9 10 11 12	 Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Avenida Seminario s/n, 46113 Moncada, Spain Centro de Calidad Avícola y Alimentación de la Comunidad Valenciana, CECAV, C/Nules, 16, 12539 Alquerías del Niño Perdido, Castellón, Spain IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. 				
14	*Corresponding author: Clara Marin Orenga				
15	E-mail address: clara.marin@uchceu.es				
16	Telephone number: +34 657 506 085				
17	Postal address: Avenida Seminario s/n, 46113 Moncada, Spain				
18					
19					
20					

А	h	CT.	ra	c	t

Different studies have reported the prevalence and antibiotic resistance of *Salmonella* in dromedary camels and its role in camelid-associated salmonellosis in humans, but little is known about the epidemiology of *Campylobacter* in dromedaries. Here, we investigate the prevalence, genetic diversity and antibiotic resistance of *Campylobacter* and *Salmonella* in dromedary camels (*Camelus dromedarius*). A total of 54 individuals were sampled from two different dromedary farms located in Tenerife (Canary Islands, Spain). While all the samples were *Campylobacter*-negative, *Salmonella* prevalence was 5.5% (3/54) and the only serovar isolated was *S.* Frintrop. Pulsed-field gel electrophoresis analysis revealed a low genetic diversity, with all isolates showing a nearly identical pulsotype (similarity > 95%). Our results indicate that dromedary camels could not be a risk factor for *Campylobacter* human infection, but seems to be a reservoir for *Salmonella* transmission. Since camel riding has become one of the main touristic attractions in several countries and its popularity has increased considerably in recent years, a mandatory control, especially for zoonotic pathogens such as *Campylobacter* and *Salmonella*, should be implemented.

- **Keywords:** Antimicrobial resistance; *Campylobacter*; dromedary; genetic diversity; PFGE;
- 38 Salmonella

1. Introduction

41	Campylobacter and Salmonella are widely recognised as one of the most important zoonotic
42	pathogens with economic impact in animals and humans. There are roughly 5.5 million
43	gastrointestinal cases worldwide, with Campylobacter and Salmonella as the main pathogens
44	of these disease outbreaks. In the United States, both pathogens are a significant public health
45	concern, and cause around 1.2 million illnesses and 450 deaths every year (WHO, 2018b).
46	In Europe, campylobacteriosis and salmonellosis are responsible for 246,571 and 91,857
47	confirmed cases of illnesses in humans, respectively (EFSA and ECDC, 2019). These
48	pathogens constitute an important government concern, and monitoring the disease has
49	become one of the main challenges in most European countries (EFSA and ECDC, 2019;
50	FAO/WHO, 2009). To our best knowledge, no previous studies on Campylobacter in
51	dromedary camels have been carried out in Europe. Even so, dromedaries have been
52	identified as reservoirs of Salmonella and other zoonotic infections, forming a potential
53	hazard for public health, especially in vulnerable patients such as infants, young children, the
54	elderly or immunocompromised adults (Münch et al., 2012; Raufu et al., 2015).
55	In recent years, dromedary camel riding has become one of the main tourist attractions in
56	several countries, and its popularity has increased considerably in recent years (Fernández,
57	2015). The most important dromedary population in the EU is in the Canary Isles (Spain)
58	(Mentaberre et al., 2013). After Spain joined the European Union (EU) and adopted the same
59	animal health legislation, the imports of dromedary camels from Africa stopped completely.
60	Since 1989, the Canary Isles is the only region that provides dromedary camels in the EU
61	(Mentaberre et al., 2013; Fernández, 2015;). These animals could constitute a source of
62	zoonotic agents, such as Campylobacter and Salmonella, to the rest of the EU. The risk of

transmission might be particularly high during stressful long-term movements and

64	recreational activities, when the bacterial shedding in faeces increases.
65	The emergence of antimicrobial resistant bacteria (AMR), including Campylobacter and
66	Salmonella, in animals represents an important risk to public health. This is largely due to
67	the potential for such microorganisms to contribute to antimicrobial therapy failure and the
68	increased severity of associated infections (Tejedor-Junco et al., 2010). Some authors have
69	reported Salmonella infection in camels in different parts of the world with a resistant strain
70	of Salmonella ser. Newport from an abscess occurring in a camel used for recreational
71	purposes (Wernery, 1992; Moore et al., 2002; Molla et al., 2004).
72	Considering the potential public health risks associated with Campylobacter and Salmonella,
73	the aims of this work were to investigate Campylobacter and Salmonella presence in
74	dromedary camels (Camelus dromedarius) in the Canary Isles and determine the genetic
75	diversity and antibiotic susceptibilities of the isolates.
76	2. Material and Methods
77	All animals were handled according to the principles of animal care published by Spanish
78	Royal Decree 53/2013 (BOE, 2013; BOE = Official Spanish State Gazette).
79	
80	2.1 Study location
81	The dromedary camels (Camelus dromedarius) investigated in this study belonged to the
82	only two dromedary farms located in Tenerife (Canary Is., Spain). Each individual was
83	randomly selected from each farm.
84	

2.2 Sample collection

Rectal samples from each individual were collected using sterile swabs (Cary Blair sterile transport swabs, DELTALAB®, Barcelona, Spain,) for *Campylobacter* isolation. In addition, faeces from each individual were collected directly from the rectum and placed into sterile plastic pots for *Campylobacter* and *Salmonella* isolation. To determine the sanitary status of the animals, blood samples were taken from the jugular vein (about 5mL) and the levels of lymphocytes, basophils, eosinophils, monocytes, and leucocytes were analysed. All samples were transported to the laboratory under refrigerated conditions and analysed within 24 h of collection.

2.3 Campylobacter spp isolation and identification

Campylobacter isolation and confirmation was performed following the ISO 10272:2006 recommendations (Annex E). Faecal samples were pre-enriched in 1:10 vol/vol Bolton broth (CM0983, Oxoid, Dardilly, France) and then preincubated at $37 \pm 1^{\circ}$ C for 5 ± 1 h, followed by incubation at $41.5 \pm 1^{\circ}$ C for 43 ± 1 h. Afterwards, 100μ L sample was cultured on two selective agar plates mCCDA, (mCCDA, Oxoid, Dardilly, France) and Preston agar, (AES laboratories®, Bruz Cedex, France) and incubated at $41.5 \pm 1^{\circ}$ C for 44 ± 4 h. However, rectal swabs were harvested onto mCCDA and Preston, and incubated under the same conditions as faecal samples. All samples were incubated under microaerophilic conditions (84% N_2 , 10% CO₂ and 6% O₂) (CampyGen, Oxoid). *Campylobacter*-like colonies were purified on blood agar and identified to species level on the basis of standard procedures comprising tests for hippurate and indoxyl acetate hydrolysis, catalase production, and susceptibility to

107	cephalothin and nalidixic acid.
108	
109	2.4 Salmonella spp isolation and characterisation
110	Samples were analysed according to ISO 6579-1:2017. Firstly, faeces samples were pre-
111	enriched 1:10 (vol/vol) in buffered peptone water 2.5% (BPW, Scharlau®, Barcelona, Spain)
112	and incubated at 37 \pm 1°C for 18 \pm 2 h. After incubation, the pre-enriched samples were
113	transferred onto Semi-Solid Modification Rappaport Vassiliadis agar plate (MSRV, Difco®)
114	Valencia, Spain), and incubated at 41.5 ± 1 °C for 24-48 h. The resulting culture was used to
115	streak Xylose-Lysine-Desoxycholate (XLD, Liofilchem, Valencia, Spain) and ASAP
116	(ASAP, bioMérieux, Madrid, Spain) agar plates, and incubated at 37 ± 1 °C for 24 h. Next,
117	five typical colonies were streaked onto pre-dried nutrient agar plates (Scharlab®, Barcelona,
118	Spain) at 37 ± 1 °C for 24 ± 3 h and confirmed as <i>Salmonella</i> spp. using the API (API-20®)
119	bioMérieux, Madrid, Spain) biochemical test. All confirmed isolates were serotyped
120	according to the Kauffman-White scheme (Grimont & Weill, 2007) at the Laboratori
121	Agroalimentari (Cabrils, Spain) of the Departament d'Agricultura, Ramaderia, Pesca
122	Alimentació.
123	
124	2.5 Molecular typing
125	Genotyping of Salmonella isolates was performed by pulsed-field gel electrophoresis (PGFE)
126	according to the PulseNet standardised protocol (www.pulsenetinternational.org). Genomic
127	DNA of the isolates was digested with Xbal restriction enzyme (Roche Applied Science,

Indianapolis, IN), and the resulting PFGE band patterns were analysed using Fingerprinting

II v3.0 software (Bio-Rad, Hercules, CA, USA). Similarity matrices were calculated using

128

130	the Dice coefficient and cluster analysis was performed by the unweighted-pair group method				
131	with arithmetic mean (UPGMA). A cut-off of 90% was used for determination of the				
132	different profiles.				
133					
134	2.6 Antimicrobial susceptibility testing				
135	AMR susceptibility of Salmonella isolates was tested according to the European Committee				
136	on Antimicrobial Susceptibility Testing guidelines (Matuschek, Brown, & Kahlmeter, 2014).				
137	The source for zone diameters used for interpretation of the test was				
138	http://www.eucast.org/clinical_breakpoints/. Salmonella strains were inoculated onto				
139	Mueller-Hinton agar (Scharlab, S.L., Barcelona, Spain) to form a bacterial lawn, the				
140	antibiotic discs were added and plates were incubated at $37 \pm 1^{\circ}\text{C}$ for 24 h. The antibiotics				
141	selected were those set forth in Decision 2013/653 (EU, 2013), including two quinolones:				
142	ciprofloxacin (CIP, 5 mg) and nalidixic acid (NAL, 30 mg); three b-lactams: ampicillin (AMP,				
143	10 mg), cefotaxime (CTX, 30 mg), and ceftazidime (CAZ, 30 mg); one phenicol:				
144	chloramphenicol (CHL, 5 mg); one potentiated sulfonamide: trimethoprim-sulfamethoxazole				
145	(SXT, 1.25/23.75 mg); one polymyxin: colistin (CST, 10 mg); one macrolide: azithromycin				
146	(AZM, 15 mg); one glycylcycline: tigecycline (TGC, 15 mg); one aminoglycoside:				
147	gentamycin (GEN, 10 mg); and one pyrimidine: trimethoprim (TMP, 5 mg).				
148					
149	2.7 Statistical analysis				
150	A generalised linear model with a binomial probability distribution and a logit link function				
151	was used to compare the isolation of Campylobacter and Salmonella in dromedary samples				
152	(faces and swabs). For this analysis, the error was designated as having a binomial				

153	distribution and the probit link function was used. Binomial data for each sample were
154	assigned as 1 if Campylobacter and Salmonella were isolated or as 0 if not. A P value < 0.05
155	was considered statistically significant. Data are presented as least squares means \pm standard
156	error of the least squares means. All statistical analyses were carried out using a commercially
157	available software program (SPSS 16.0 software package; SPSS Inc., Chicago, IL, 2002).
158	
159	3. Results
160	A total of 54 individuals were sampled in this study. According to the blood parameters
161	obtained, all dromedary camels tested were within the reference parameters (Farooq, Samad,
162	Khurshid, & Sajjad, 2011). The results are shown in Table 1.
163	None of the 54 swabs and faeces samples analysed were positive for <i>Campylobacter</i> spp. On
164	the contrary, Salmonella was isolated from 5.5% (3/54) of the samples collected and all
165	isolates were identified as serovar Frintrop.
166	Regarding antimicrobial susceptibility, all Salmonella isolates were pansusceptible to the
167	antimicrobials tested. Moreover, the PFGE analysis revealed a low genetic diversity among
168	isolates, with a single pulsotype identified with a similarity > 95% (Figure 1).
169	
170	4. Discussion
171	Since Spain joined the EU and established the same health legislation, Canary Is. is the only
172	region that provides dromedary camels within the EU (Mentaberre et al., 2013; Fernández,
173	2015). Moreover, dromedary camel riding has become one of the most important tourist
174	attractions in several countries, and its popularity has increased considerably in recent years

(Fernández, 2015). Therefore, the sanitary status of these animals should be assessed,
especially for zoonotic pathogens such as Campylobacter and Salmonella. This study
demonstrates dromedaries as Salmonella reservoirs and a potential risk factor for Salmonella
infection, but not for Campylobacter.
Campylobacter is a leading foodborne zoonosis worldwide, widespread in nature. It
colonises the intestinal mucosa of most warm-blooded hosts, including all food-producing
animals and humans (Facciolà et al., 2017). However, few studies identify Campylobacter
spp in dromedary camels as a potential zoonosis (Rahimi et al., 2017; Gwida et al., 2019). In
the present study, Campylobacter was not detected in any of the samples collected. One
reason that could explain this fact is that Campylobacter detection is highly dependent on the
sampling and culture method procedure (Marin et al., 2013). This could be due to a lack of
appreciable faecal material from rectal swabs. Nevertheless, in our study both samples
analysed (rectal swabs and faeces) were negative for Campylobacter detection. Even though
molecular techniques have demonstrated advantages over classical microbiological
Campylobacter isolation, both methods showed a high level of agreement, especially faecal
samples (Ugarte-Ruiz et al., 2012). Therefore, if the bacteria had been present in the samples
collected, it is unlikely that we would not have been able to isolate it from any of the samples
analysed. Thus, results of this study show that dromedary camels do not seem to be a reservoir
for Campylobacter.
The frequency of Salmonella among Canarian dromedaries in this study was moderate (5,5%)
and consistent with that noted by other authors (Mohamed and Suelam, 2010; Raufu et al.,
2015), who reported a Salmonella prevalence of 5,6% and 6%, respectively. Nevertheless,
diverse occurrence of this pathogen has been reported in camels in the literature; some

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

authors showed a low presence of Salmonella (Wernery, 1992), while others reported a medium or high prevalence in captive dromedaries (Moore et al., 2002; Molla et al., 2004; Tejedor-Junco et al., 2010; Münch et al., 2012). As in this study, salmonellosis in dromedaries is generally asymptomatic, although clinical Salmonella infections have been reported with symptoms that included epiphora, anorexia, muscle twitching and lateral recumbency (Nour-Mohammadzadeh et al., 2010). In addition, controlling Salmonella infections in camels should be taken into account, as it has been shown that Salmonella could be the cause of co-infections such as clostridia or theileriosis diseases (Abdelwahab et al., 2019). Regarding Salmonella serovars isolated, ser. Frintrop, was identified in all positive camels. This is one of the main Salmonella serovars described in dromedaries and may be host adapted to camels (Wernery, 1992; Molla et al., 2004; Tejedor-Junco et al., 2010; Münch et al., 2012). Although this is an uncommon serovar in other animal species, it may constitute a threat to camels and other animal species that are in contact with humans. The isolation of a single Salmonella serovar and all isolates belonging to the same genotype suggests a single source of infection. Emergence of antibiotic resistance is of worldwide concern, as it reduces the therapy options in human and veterinary medicine. Thus, the increasing trends of resistance to critical antimicrobials (WHO, 2018a) that have been reported in the last decade for Salmonella and other zoonotic bacteria is of concern (EFSA & ECDC, 2015). It is believed that antibiotic resistance is promoted by the use of antimicrobial drugs in livestock animals (Landers, Cohen, Wittum, & Larson, 2012). However, in this study, none of the Salmonella isolates were resistant to any antimicrobial drug tested. This result is consistent with those published by Münch et al. (2012), where all S. Frintrop serovars were susceptible to all antimicrobial

221	agents tested. Antimicrobial resistant Salmonella seems to be more prevalent in other
222	livestock animals such as pigs or poultry (Tejedor-Junco et al., 2010).
223	Animal movements through European countries, and in this case particularly of dromedaries,
224	could pose a serious threat, as they could contribute to the spread of Salmonella resistant
225	strains and therefore increase the risk of human infection. Hence, biosecurity safety protocols
226	should be applied for the movement of dromedaries and other animals among different
227	countries. In particular, care must be taken during recreational activities, where animals could
228	come into close contact with children, elderly and immunocompromised people (Wright et
229	al., 2005; Tejedor-Junco et al., 2010).
230	
231	Acknowledgements
232	We are grateful to Banco Santander and University CEU-Cardenal Herrera for funding this
233	project (INDI 17/25, 18/28, 19/32). In addition, we would like to thank Servando Duarte,
234	Natalia Benet and the members of the microbiology research group "Improvement of Food
235	Safety related with the Production System and Final Products" (Veterinary Faculty,
236	University CEU-Cardenal Herrera) for their technical support. The CERCA Programme from
237	the Generalitat de Catalunya is also acknowledged. English text version revised by N.
238	Macowan English Language Service.
239	
240	
241	Conflicts of interest
242	The authors declare no conflicts of interest.
243	

244	Ethical Statement
245	All animals were handled according to the principles of animal care published by Spanish
246	Royal Decree 53/2013 (BOE, 2013; BOE = Official Spanish State Gazette).
247	
248	Data availability statement
249	All data relevant to the study are included in the article or uploaded as supplementary
250	information. All individual data that underline the results reported in this article have been
251	shared.
252	

253	References					
254	Abdelwahab, G. E., Tigani-Asil, E., Yusof, M. F., Abdullah, Z. S., Rifat, J. F., Al Hosani, M. A.,					
255	Khalafalla, A. I. (2019). Salmonella enterica and theileria co-infection in dromedary camels					
256	(Camelus dromedarius) in UAE. Open Veterinary Journal, 9(3), 263–268.					
257	https://doi.org/10.4314/ovj.v9i3.12					
258	BOE. (2013). Real Decreto 53/2013, de 1 de febrero, por el que se establecen las normas básicas					
259	aplicables para la protección de los animales utilizados en experimentación y otros fines					
260	científicos, incluyendo la docencia. Boletín Oficial Del Estado, 11370-11421.					
261	EFSA and ECDC. (2019). The European Union One Health 2018 Zoonoses Report. EFSA Journal					
262	17(12). https://doi.org/10.2903/j.efsa.2019.5926					
263	EFSA, & ECDC. (2015). The European Union summary report on trends and sources of zoonoses,					
264	zoonotic agents and food-borne outbreaks in 2014. EFSA Journal (Vol. 13).					
265	https://doi.org/10.2903/j.efsa.2015.4329					
266	Facciolà, A., Riso, R., Avventuroso, E., Visalli, G., Delia, S. A., & Laganà, P. (2017). Campylobacter:					
267	From microbiology to prevention. Journal of Preventive Medicine and Hygiene. Pacini Editore					
268	S.p.A. https://doi.org/10.15167/2421-4248/jpmh2017.58.2.672					
269	FAO/WHO. (2009). In Chicken Meat. Salmonella and Campylobacter in chicken meat. Retrieved					
270	from http://www.fao.org/3/a-i1133e.pdf					
271	Farooq, U., Samad, H. A., Khurshid, A., & Sajjad, S. (2011). Normal Reference Hematological					
272	Values of One-Humped camels (Camelus Dromedarius) kept in cholistan desert. Journal of					
273	Animal and Plant Sciences, 21(2), 157-160. Retrieved from					
274	https://www.researchgate.net/publication/235622732 NORMAL REFERENCE HEMATOL					

275	OGICAL_VALUES_OF_ONE-HUMPED_CAMELS					
276	Fernández,	G.	(2015).	Plan-para-la-conservación-del-camello-canario2015-		
277	20190816	6142503428	8camello-canari	o.pdf.		
278	Grimont, P. A.	. D., & We	ill, FX. (2007)). WHO Collaborating Centre for Reference and Research		
279	on Salmonella ANTIGENIC FORMULAE OF THE SALMONELLA SEROVARS 2007 9th					
280	edition.					
281	Gwida, M., Zakaria, A., El-Sherbiny, H., Elkenany, R., & Elsayed, M. (2019). Prevalence of					
282	Campylo	bacter, Ent	erococcus and	Staphylococcus aureus in slaughtered camels. Veterinarni		
283	Medicina, 64(12), 521–530. https://doi.org/10.17221/104/2019-VETMED					
284	Landers, T. F.,	Cohen, B.,	, Wittum, T. E.,	& Larson, E. L. (2012). A review of antibiotic use in food		
285	animals: Perspective, policy, and potential. Public Health Reports. Association of Schools of					
286	Public Health. https://doi.org/10.1177/003335491212700103					
287	Marin, C., Ingi	resa-Capaco	cioni, S., Gonzá	alez-Bodi, S., Marco-Jiménez, F., & Vega, S. (2013). Free-		
288	Living Turtles Are a Reservoir for Salmonella but Not for Campylobacter. PLoS ONE, 8(8).					
289	https://doi.org/10.1371/journal.pone.0072350					
290	Matuschek, E.,	Brown, D.	F. J., & Kahlme	eter, G. (2014). Development of the EUCAST disk diffusion		
291	antimicro	bial suscep	otibility testing	method and its implementation in routine microbiology		
292	laborator	ies. Clinic	al Microbiolog	gy and Infection, 20(4). https://doi.org/10.1111/1469-		
293	0691.12373					
294	Mentaberre, G	., Gutiérrez	z, C., Rodríguez	z, N. F., Joseph, S., González-Barrio, D., Cabezón, O.,		
295	Boadella, M. (2013). A transversal study on antibodies against selected pathogens in dromeda					

296	camels in the Canary Islands, Spain. Veterinary Microbiology, 167(3-4), 468-473.						
297	https://doi.org/10.1016/j.vetmic.2013.07.029						
298	Mohamed, M. E. M., & Suelam, I. (2010). Isolation of Non-Typhoid Salmonella from humans and						
299	camels with reference to its survival in abattoir effluents. Global Veterinaria, 5(6), 356-361.						
300	Molla, B., Mohammed, A., & Salah, W. (2004). Salmonella prevalence and distribution of serotypes						
301	in apparently healthy slaughtered camels (Camelus dromedarius) in Eastern Ethiopia. Tropical						
302	Animal Health and Production, 36(5), 451–458.						
303	https://doi.org/10.1023/B:TROP.0000035013.01459.c9						
304	Moore, J. E., McCalmont, M., Xu, J., Nation, G., Tinson, A. H., Crothers, L., & Harron, D. W. G.						
305	(2002). Prevalence of faecal pathogens in calves of racing camels (Camelus dromedarius) in the						
306	United Arab Emirates. Tropical Animal Health and Production, 34(4), 283–287.						
307	https://doi.org/10.1023/A:1015626601014						
308	Münch, S., Braun, P., Wernery, U., Kinne, J., Pees, M., Flieger, A., Rabsch, W. (2012). Prevalence,						
309	serovars, phage types, and antibiotic susceptibilities of Salmonella strains isolated from animals						
310	in the United Arab Emirates from 1996 to 2009. Tropical Animal Health and Production, 44(7),						
311	1725–1738. https://doi.org/10.1007/s11250-012-0130-4						
312	Nour-Mohammadzadeh, F., Seyed, Z. B., Hesaraki, S., Yedegari, Z., Alidadi, N., & Tabrizi, S. S.						
313	(2010). Septicemic salmonellosis in a two-humped camel calf (Camelus bactrianus) saeed						
314	hesaraki - Academia.edu. Tropical Animal Health and Production, 42(8), 1601–1604. Retrieved						
315	from https://www.academia.edu/41670826/Septicemic_salmonellosis_in_a_two-						
316	humped_camel_calf_Camelus_bactrianus_						
317	Rahimi, E., Alipoor-Amroabadi, M., & Khamesipour, F. (2017). Investigation of prevalence of						

318	thermotolerant Campylobacter spp. in livestock feces. Canadian Journal of Animal Science,							
319	97(2), 207–213. https://doi.org/10.1139/cjas-2015-0166							
320	Raufu, I. A., Odetokun, I. A., Oladunni, F. S., Adam, M., Kolapo, U. T., Akorede, G. J., Ambali, A.							
321	(2015). Serotypes, antimicrobial profiles, and public health significance of Salmonella from							
322	camels slaughtered in Maiduguri central abattoir, Nigeria. Veterinary World, 8(9), 1068–1072.							
323	https://doi.org/10.14202/vetworld.2015.1068-1072							
324	Tejedor-Junco, M. T., Gonzalez, M., Francisco Rodriguez, N., & Gutierrez, C. (2010). Prevalence,							
325	serotypes and antimicrobial resistance patterns of Salmonella isolates from apparently healthy							
326	camels in Canary Islands (Spain). Journal of Camelid Science; 2010.3:44-48, 3(Journal Article),							
327	44–48.							
328	Ugarte-Ruiz, M., Gómez-Barrero, S., Porrero, M. C., Álvarez, J., García, M., Comerón, M. C.,							
329	Domínguez, L. (2012). Evaluation of four protocols for the detection and isolation of							
330	thermophilic Campylobacter from different matrices. Journal of Applied Microbiology, 113(1),							
331	200–208. https://doi.org/10.1111/j.1365-2672.2012.05323.x							
332	Wernery, U. (1992). The prevalence of Salmonella infections in camels (Camelus dromedarius) in							
333	the United Arab Emirates. British Veterinary Journal, 148(5), 445–450.							
334	https://doi.org/10.1016/0007-1935(92)90031-U							
335	WHO. (2018a). Campylobacter. Retrieved April 26, 2020, from https://www.who.int/en/news-							
336	room/fact-sheets/detail/campylobacter							
337	WHO. (2018b). Salmonella (non-typhoidal). Retrieved April 26, 2020, from							
338	https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal)							

339	Wright, J. G., Tengelsen, L. A., Smith, K. E., Bender, J. B., Frank, R. K., Grendon, J. H., Angulo,
340	F. J. (2005). Multidrug-resistant Salmonella typhimurium in four animal facilities. Emerging
341	Infectious Diseases, 11(8), 1235–1241. https://doi.org/10.3201/eid1108.050111
342	
343	

344 Table 1. Mean (\pm SEM) white blood cell values in female and male camels

345					
-		Fe	male	Male	
	Parameters	Value	Reference †	Value	Reference †
-	Total leucocyte count (10 ³ /µl)	10.15 ± 0.71	12.97 ± 0.99	10.63 ± 0.8	12.38 ± 0.97
	Neutrophils (%)	40.88 ± 1.49	43.60 ± 1.30	42.8 ± 1.7	$44.70\pm\!1.4$
	Lymphocytes (%)	44.88 ± 1.36	48.60 ± 1.50	41.14 ± 1.72	$47.50\pm\!1.4$
	Eosinophils (%)	9.03 ± 1.11	7 ± 0.39	10.1 ± 1.17	7.20 ± 0.4
	Monocytes (%)	2 ± 0.45	1 ± 0.10	3.47 ± 0.68	1.20 ± 0.10
	Basophils (%)	< 0.1	< 0.1	< 0.1	< 0.1

†Farroq et al., 2011.

346 347

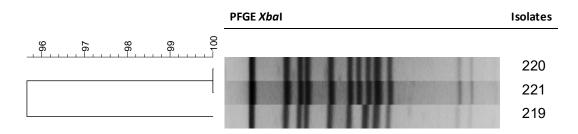


Figure 1. PFGE dendrogram of XbaI patterns of Salmonella Frintrop isolates from dromedaries.