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 32 

Abstract  33 

The β-aminobutyric acid (BABA) is a plant defense priming compound highly effective in controlling 34 

important tomato diseases and plant-parasitic nematodes. It has also been shown to induce resistance 35 

against phytophagous insects such as aphids.  36 

This study examines the effect of BABA on the performance of the tomato pest Bemisia tabaci (MEAM 1, 37 

previously known as Biotype B) and its zoophytophagous predator Macrolophus pygmaeus under 38 

laboratory and greenhouse conditions.  Tomato plants were treated with BABA 25 mM applied by soil 39 

drenching. The effect of BABA on the fertility and juvenile development of two generations of B. tabaci 40 

and M. pygmaeus was evaluated.  41 

Our results showed no effect of BABA on the juvenile development or adult fecundity/fertility of both the 42 

whitefly and  its  predator.  The non-interference of BABA with M. pygmaeus and B. tabaci assures that 43 

the control of the whitefly with this mirid bug will not be affected  when this elicitor is applied to the crop. 44 

Further studies are needed to clarify the mechanisms underlying BABA-plant-whitefly-predatory myrids 45 

interactions. 46 

 47 

 48 

Keywords BABA, induced resistance, life history traits, zoophytophagous predator, whitefly 49 

 50 

 51 

 52 

Introduction 53 

 54 
The sensitization of the plant innate immune system causing faster and stronger expression of the basal 55 

defense mechanisms against a subsequent attack is referred to as ‘priming’ (Conrath et al. 2006). Priming 56 

presents the advantage of increasing plant protection with low plant fitness costs (i.e., plant reproduction 57 

and growth) (Van Hulten et al. 2006; Walters et al. 2009) because under enemy-free conditions (e.g., an 58 

absence of pathogens or pests), priming-mediated resistance outweighs the costs associated with the direct 59 

activation of plant defenses (Heil 2002; van Hulten et al. 2006). Priming is generally associated with root 60 



3 
 

colonization by symbiotic fungi (Glomus spp., Rhizophagus spp., Trichoderma spp.) or nonpathogenic 61 

bacteria (Van der Ent et al. 2009; Estaún et al. 2010; Shoresh et al. 2010; Hermosa et al. 2012) but can also 62 

be associated with the attack of a plant by arthropods (Pappas et al. 2015; Pérez-Hedo et al. 2015). In 63 

addition to beneficial plant-microbe interactions, several chemicals have been reported to trigger induced 64 

resistance, among which β-aminobutyric acid (BABA), a nonprotein amino acid, was recently indicated to 65 

be a novel plant defense hormone (Baccelli et al. 2017). 66 

The mechanisms of BABA-induced resistance (BABA-IR) are based on the ability of BABA to potentiate 67 

different defense signaling pathways (Baccelli et al. 2017). β-Aminobutyric acid-induced resistance against 68 

the bacterial pathogen Pseudomonas syringae Van Hall and the fungal pathogen Botrytis cinerea Persoon 69 

follows the endogenous accumulation of salicylic acid and the NPR1 protein (Zimmerli et al., 2000, 2001). 70 

Furthermore, in soybean, BABA induces the expression of 15 genes related to defense against aphids and 71 

significant increases in the activities of several defense enzymes (Zhong et al., 2014). One of the 72 

consequences of BABA-IR is the rapid deposition of callose-containing papillae. This event also occurs in 73 

Arabidopsis genotypes with impairment of in  salicylic acid, ethylene, or jasmonic acid signalling pathway 74 

(Conrath et al. 2006). Callose induction is an important defense response to phloem-sucking pests because 75 

callose occludes sieve elements, thus interfering with their food supply (Hao et al. 2008; Sun et al. 2018). 76 

In some cases, direct toxicity of BABA to insects is highly likely, since unmetabolized BABA has been 77 

detected in both aphids (Hodge et al., 2011; Cao et al. 2014) and parasitoids (Hodge et al., 2011). 78 

β-Aminobutyric acid induces plant resistance in diverse crop species, such as grapevine, pepper, potato, 79 

tobacco, and tomato (Jakab et al. 2001; Cohen 2002). β-Aminobutyric acid is effective against a wide range 80 

of plant antagonists, including viruses, bacteria, fungi and phytopathogenic nematodes (Justyna and Ewa 81 

2013). The main effect of BABA on insects has been demonstrated in phloem feeders such as aphids on 82 

plants such as legumes, brassicas, wheat, soybean and apples: BABA-treated plants negatively alter the 83 

fitness of Acyrthosiphon pisum (Harris), Myzus persicae (Sulzer), Brevicoryne brassicae (L.) and Aphis 84 

plantaginea (Passerini) by reducing their survival, prolonging juvenile development and reducing adult 85 

fecundity (Hodge et al. 2005, 2006; Cao et al. 2014; Zhong et al. 2014; Robert et al. 2016). Moreover, 86 

BABA has been shown to promote resistance against the Asian citrus psyllid Diaphorina citri Kuwayama 87 

in citrus plants by affecting all developmental stages of the insect (Tiwari et al. 2013). More specifically, a 88 

drench application of BABA, at concentration 25 mM,  significantly reduced  the mean number of D. citri 89 

eggs, nymphs and adults, produced per  plant, as compared with a water control. 90 



4 
 

Few studies have addressed the effects of BABA on the behavior and fitness of natural enemies. The 91 

priming of plant defenses usually induces the release of volatile compounds that increase the attractiveness 92 

of plants to predators and parasitoids (Shimoda et al. 2002; Lou et al. 2005; Moraes et al. 2009; Battaglia 93 

et al. 2013; Duran et al. 2017). Conversely, it has been shown that the predator Coccinella septempunctata 94 

L. avoids broad bean plants treated with BABA (Williams and Flaxman 2012). No effect on the behavior 95 

of the parasitoid Aphidius ervi (Haliday) has been detected (Hodge et al. 2011). Regarding the effects on 96 

the fitness of natural enemies, a reduction in the size and survival of A. ervi-parasitizing A. pisum has been 97 

observed (Hodge et al. 2011). The extent of the adverse effects varies with the dose of BABA applied to 98 

the host plant Vicia faba L.  99 

Currently, BABA is not marketed as a plant protection product although it can play an important role in the 100 

protection of tomato plants. Indeed ,it has been demonstrated that this compound is highly effective in 101 

controlling important tomato diseases caused by pathogens such as Phytophora infestans (Mont.) de Bary 102 

and Oidium neolycopersici L. and plant-parasitic nematodes (Fatemy et al. 2012; Justyna and Ewa 2013; 103 

Mutar and Fattah 2013). However, the BABA-mediated effects have not been studied in the tomato pests 104 

or their natural enemies with the sole exception of Aulacorthum solani (Kaltenbach) (Hodge and Powell 105 

2012). 106 

One of the most serious pests of tomato crops is the sweet potato whitefly, Bemisia tabaci (Gennadius) 107 

(Hemiptera: Aleurodidae) (McKenzie et al. 2004), a polyphagous species that is now recognized as a cryptic 108 

species complex (De Barro and Ahmed 2011). The increases in pest resistance to many insecticides and the 109 

need to develop environmentally friendly agricultural practices have promoted the use of biological control 110 

agents as an effective control strategy for B. tabaci (Gerling et al. 2001; Shah et al. 2015). The predator 111 

Macrolophus pygmaeus Rambur is used across Europe in integrated pest management (IPM) programmes 112 

for tomato pests including B. tabaci, especially in the Mediterranean region (Alomar et al. 2002; Castañé 113 

et al. 2004; Alomar et al. 2006; Arnó et al. 2010; Perdikis et al. 2011; Moreno-Ripoll et al. 2012; Aviron et 114 

al. 2016). This zoophytophagous predator is highly polyphaghous and is linked to the host plant for feeding 115 

and oviposition (Castañé et al. 2011; Hamdi et al. 2013; Han et al. 2015; Duran et al. 2016, 2018). 116 

BABA used against plant pathogens may have side effects on tomato pests. In this case, it is very likely 117 

that predators will also be affected. One of the effects of BABA on insects is a reduction in size. Host size 118 

is a constraint for parasitoids. Conversely, the size of the prey may not be a limiting factor for predators if 119 

there is an abundance of prey. On the other hand, by consuming more prey items, predators may be 120 
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particularly affected by the presence of nonmetabolized toxic chemicals in their prey (Kos et al. 2011). 121 

Finally, in the case of zoophytophagous predators, BABA can directly affect the predator through the host 122 

plant. In this study, we evaluated the effect of BABA on the juvenile development and adult fecundity of 123 

B. tabaci. These parameters affect population growth and therefore the availability of prey for M. pygmaeus. 124 

We also assessed the effect of BABA on the fecundity and juvenile development of M. pygmaeus fed either 125 

B. tabaci or an alternative prey that has no nutritional relationship with the plant, i.e. eggs of Ephestia 126 

kuehniella Zeller (Lepidoptera: Pyralidae). 127 

 128 

Materials and methods 129 

 130 

Insect and plant material  131 

Bemisia tabaci and M. pygmaeus were obtained from rearing cultures established at IRTA and maintained 132 

under controlled conditions (25 ± 2ºC, 16 h/8 h L:D and 70 ± 10% RH). Bemisia tabaci (MEAM 1, 133 

previously known as biotype B) was originally collected in Murcia (Spain) in 1992 and was reared on 134 

cabbage seedlings. Macrolophus pygmaeus was originally collected in tomato crops from the Maresme area 135 

(Barcelona, Spain) and was reared on tobacco plants and fed with the eggs of E. kuehniella , as described 136 

in Agustí and Gabarra (2009). Ephestia kuehniella eggs were purchased from Biotop (Valbonne, France). 137 

The experiments were conducted using tomato plants of the San Marzano nano (dwarf) cultivar. This 138 

tomato cultivar, characterized by small pear-shaped fruits, is native to southern Italy (Corrado et al. 2014). 139 

The San Marzano nano cultivar has been used in previous studies mainly because of its susceptibility to 140 

insect pests and plant pathogens (Battaglia et al. 2013; Chitarra et al. 2016; Coppola et al. 2017; Duran et 141 

al. 2017). Tomato seeds were sown in trays containing a mixture of commercial propagating substrate 142 

(Stender® propagation substrate A 210, Germany) composed of white and Irish peat and perlite (NPK 14-143 

16-18, pH 5.5-6.0). The seedlings were transferred to individual plastic pots (12 cm diameter), watered as 144 

required and maintained in a heated greenhouse (temperature ranging between 20.35ºC and 22.1°C; relative 145 

humidity ranging between 50.6 and 68.0%; both parameters were measured with a Testo 175-H2 146 

Temperature and Humidity Data Logger - Spain). 147 

Plants,at the 5 fully extended leaf stage (aprox. 40 cm) were treated with 50 ml/pot of BABA (Sigma-148 

Aldrich Co.; purity 97%) at a 25 mM concentration in distilled water, applied by soil drenching; the plants 149 

were separated in trays depending on the treatment. The control plants were watered with 50 ml of distilled 150 
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water. The BABA-treated plants were allowed to undergo priming for 4 days in greenhouse conditions 151 

before being used in the different tests. During this time interval, BABA-treated plants and controls were 152 

not watered, as suggested by Hodge et al. (2005). 153 

In several studies, a single application of 25 mM BABA has been reported to affect the performance of 154 

sucking insects (Hodge et al. 2005, 2006; Hodge and Powell 2012; Cao et al. 2014; Zhong et al. 2014). 155 

Preliminary tests showed that the concentration of 50 mM BABA (a single dose of 50 ml/pot) causes a 156 

phytotoxic effect on tomato plants of the selected cultivar (unpublished results). This finding together with 157 

the fact that 25 mM BABA has been shown to decrease the severity of pathogenic diseases without causing 158 

any phytotoxic effects (Hassan and Buchenauer 2008) was the reason that we chose this concentration. 159 

To reduce the variability in B. tabaci egg laying due to temperature fluctuation, the tests for evaluating the 160 

fertility of whiteflies and predators were performed under the same controlled conditions applied in the 161 

rearing colonies. The tests for evaluating the effect of BABA on the juvenile development of B. tabaci and 162 

M. pygmaeus were performed in the winter-spring period in a heated greenhouse, which allowed us to 163 

maintain similar environmental conditions to those applied in commercial greenhouse crops. 164 

 165 

Effect of BABA on B. tabaci 166 

The effect of BABA on the fertility and juvenile development of two generations of B. tabaci was evaluated. 167 

Egg deposition by the parental generation was assessed by confining B. tabaci adults from the rearing 168 

colony to tomato leaves (10 females and 10 males per plant) inside muslin bags (5 cm width x 7 cm length) 169 

(28 replicates for both BABA and untreated plants). The whitefly adults were allowed to lay eggs for 72 h 170 

under controlled conditions (25 ± 2ºC, 16 h/8 h light/dark and 70 ± 10% RH). After removing the muslin 171 

bags, the number of eggs was recorded with the aid of a stereomicroscope without detaching the leaves 172 

from the plants. Subsequently, 24 plants from the untreated group and 20 from the group treated with BABA 173 

were individually isolated in transparent acrylic cylinders (20 cm diameter x 41 cm height with a muslin 174 

cover on the top to allow ventilation) and moved to a greenhouse for whitefly juvenile development. The 175 

remaining plants (4 from the untreated group and 8 from the BABA-treated group), which were accidentally 176 

damaged during egg counting, were eliminated. Thirty-three days later, when adults started to emerge, the 177 

numbers of nymphs, pupae and empty puparia were recorded. 178 

A new set of 20 plants treated as described above was then prepared. Ten whitefly adults (5 females and 5 179 

males per plant) that had emerged in the previous test (BABA and control first generation adults) were 180 
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confined to leaves inside muslin bags for egg laying and maintained for 72 hours under controlled 181 

conditions. After removing the muslin bags, the number of eggs was counted. The BABA-treated plants 182 

and untreated plants were then individually isolated in acrylic cylinders and moved to the greenhouse for 183 

immature whitefly development (second generation). When adults started to emerge (35 days after 184 

oviposition), the numbers of nymphs, pupae and empty puparia were recorded. As in the previous 185 

experiment, the plants that were accidentally damaged during egg counting were discarded. Unfortunately, 186 

some plants from the untreated group and few plants treated with BABA, but showing mild symptoms, 187 

were attacked by O. neolycopersici during the experiment. Plants showing symptoms, even mild ones, were 188 

eliminated from the analysis. For this reason, only 8 and 12 plants were evaluated for the control and BABA 189 

treatments, respectively. 190 

 191 

Effect of BABA on M. pygmaeus 192 

The fertility of M. pygmaeus females from the rearing colony and the development of newly hatched 193 

nymphs were evaluated on BABA-treated and untreated plants. Two different sources of food were tested 194 

for the developing M. pygmaeus nymphs: E. kuehniella eggs and B. tabaci larvae, to discern two possible 195 

effects: the effect of the consumption of BABA directly from the plant (the only possibility when feeding 196 

on E. kuehniella eggs) and that of indirect BABA intake through the consumption of B. tabaci nymphs. 197 

Emerging adults were weighed, and their fertility was recorded. 198 

To evaluate fertility in the parental generation, five 7-day-old females and five males of M. pygmaeus were 199 

allowed to interact and lay eggs on plants treated with BABA or control plants (11 replicates) without prey 200 

for 72 h. Ten days later (the time period necessary for eggs to hatch at 25ºC), the newborn nymphs were 201 

counted. 202 

To evaluate the survival of the nymphs fed with E. kuehniella eggs, twenty 1st-instar predator nymphs from 203 

the rearing colony were released on a plant (5 fully extended leaves) that was either treated with BABA or 204 

untreated and placed in a transparent acrylic cylinder (20 cm diameter x 41 cm height). Twelve replicates 205 

(plants) were performed for both the BABA and control treatments. A small spoonful of E. kuehniella eggs 206 

(approximately 600 eggs) was provided as food every two or three days. Between the 3rd and 4th weeks of 207 

predator development, the number of adults was recorded daily. Adults were sexed and weighed with a 208 

precision scale (Sartorius A200S Analytical Balance, readability 0.0001 g). Thereafter, the adults from each 209 

treatment were maintained together on a non-treated plant for 7 days to allow their sexual maturation and 210 
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were then used for the subsequent fertility tests. Ephestia kuehniella eggs were also offered as prey during 211 

this period. The fertility of the first-generation females that were obtained and allowed to mature as 212 

described above was evaluated by placing 5 females and 5 males on an untreated plant for 72 h without 213 

prey (12 replicates). After 10 days, the total number of newborn nymphs per plant was recorded. 214 

Nymphal survival with B. tabaci larvae as prey was assessed by following the same experimental procedure 215 

used in the previous experiment. However in this case, before starting the bioassay, the plants were infested 216 

with B. tabaci by releasing 25 whitefly females and males per plant and maintaining them for 20 days under 217 

controlled conditions in an acrylic cage (44 cm width x 67 cm length). Fourteen replicates were performed 218 

for both the control and BABA-treated plants. 219 

 220 

Statistical Analyses 221 

To examine the effect of BABA on the mean number of eggs laid by B. tabaci females, fecundity data for 222 

both the parental and first generations were independently analyzed with a two-sample t-test. 223 

To evaluate whether the whitefly age distribution was influenced by BABA, a two-way factorial ANOVA 224 

with “treatment” (two levels, controls and BABA-treated plants) and “whitefly instar” (three levels, 225 

nymphs, pupae and empty puparia as a representation of emerged adults) as fixed effects was performed 226 

independently for the parental and first generations. 227 

The effect of BABA on predator fitness, measured as the survival of juvenile stages and female fertility, 228 

was analyzed with a two-sample t-test. The weights of M. pygmaeus individuals fed with E. kuehniella or 229 

with B. tabaci nymphs were independently analyzed in a two-way factorial ANOVA with sex and treatment 230 

(controls and BABA-treated plants) as fixed effects. 231 

All the statistical analyses performed in this study were carried out using R.3.6 software (R Core Team, 232 

2019). 233 

  234 

Results  235 

 236 

Effect of BABA on B. tabaci  237 

The differences in the mean number of eggs laid by B. tabaci females on BABA-treated and control plants 238 

were not statistically significant in the parental generation or the first generation (Table 1). The plants 239 

https://www.merriam-webster.com/dictionary/succeeding
https://www.merriam-webster.com/dictionary/succeeding
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treated with BABA were therefore accepted for oviposition by B. tabaci to the same extent as the control 240 

plants. Furthermore, the development of juvenile stages on the plants treated with BABA did not 241 

subsequently alter the fertility of emerging females. 242 

Figure 1 shows the mean number of first-generation nymphs, pupae and empty puparia per plant 33 days 243 

after egg deposition, grouped by instar and condition. The differences between the whitefly instars were 244 

obviously significant (F2,126 =19.59; P< 0.001). In contrast, the differences between treatments (BABA vs 245 

control: F1,126 = 0.87; P=0.353) and the interaction effect between the whitefly instars and treatments 246 

(F2,126=0.13; P=0.876) were not significant. A similar result was obtained in the second generation (whitefly 247 

instars: F2,54=32.31; P<0.001; treatments: F1,54=2.37; P=0.129; interaction F2,54=0.32; P=0.729; Fig. 2). 248 

This result indicates that the development rate and survival of juvenile stages were not affected by BABA. 249 

 250 

Effect of BABA on M. pygmaeus 251 

In M. pygmaeus, BABA had no significant effect on either female fertility or the development and survival 252 

of juvenile stages (Table 2). The result was the same whether M. pygmaeus fed on plants with E. kueniella 253 

eggs or B. tabaci nymphs. In the first case, M. pygmaeus was only able to obtain BABA from the plant, 254 

whereas, in the second case, BABA was available from both the plant and the prey. 255 

The mean weights of the females and males that developed on the BABA-treated or control plants and were 256 

fed with E. kuehniella eggs are shown in Figure 3. The difference in body weight between the sexes was 257 

statistically significant (F1,128=387.19, P < 0.001). In contrast, the differences between the treatments 258 

(F1,128= 0.85, P= 0.359) and the interaction between the two factors (F1,128= 1.77, P= 0.186) were not 259 

significant. The M. pygmaeus individuals fed with B. tabaci nymphs were smaller than those fed with E. 260 

kuehniella eggs. The differences in body weight were statistically significant between sexes (F1,155= 74.26, 261 

P <0.001) and between treatments (F1,155= 21.18, P <0.001), although the interaction between the two 262 

factors was not significant (F1,155= 2.37, P=0.125) (Fig. 4). Males that developed on plants treated with 263 

BABA were significantly heavier than those that developed on control plants (Tukey’s test P < 0.05). 264 

 265 

Discussion 266 

The application of 25 mM BABA to tomato as a soil drench did not affect the overall fitness of B. tabaci 267 

and its predator M. pygmaeus. Higher concentrations or multiple applications might lead to different results 268 
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since the effect of BABA on insects is dose dependent (Cao et al. 2014). However, the tested concentration 269 

(25 mM) has been reported to affect the performance of sucking insects such aphids and one psilid species 270 

on diverse host plant species (Hodge et al. 2005, 2006; Hodge and Powell 2012; Tiwari et al. 2013; Cao et 271 

al. 2014; Zhong et al. 2014), including tomato (Hodge and Powell 2012). Previous studies on the effect of 272 

BABA on whiteflies and zoophytophagous predators are not available for either tomato or other host plants. 273 

Our data seem to demonstrate that BABA is ineffective against whiteflies, contrary to what has been 274 

observed for aphids. We can hypothesize a few explanations for this finding that are not necessarily 275 

mutually exclusive. 276 

First, aphids and whiteflies, which are both hemipterans that feed on phloem, exhibit different life cycles 277 

and feeding behaviors. Aphid adults and nymphs are mobile and change feeding sites on the plant during 278 

their lifespan, while whitefly first-instar nymphs establish a unique feeding site that will be the same for 279 

the next nymphal instars (Pollard 1955). Both insects use their stylets to penetrate the plant cuticle, 280 

epidermis and mesophyll to reach the phloem sieve elements, where they feed on. Both insects also produce 281 

stylet sheets with their saliva to insulate their stylets from the plant tissues, and these structures are very 282 

useful for revealing the track followed to the phloem vessels. The difference is that the stylet sheets from 283 

aphids are profusely branched, indicating that the insect punctures and probes most of the mesophyll cells 284 

in its path to a major vein in the phloem and, depending on its size and the elicitors of its saliva, causes 285 

moderate to extensive damage. In this process, wound signalling pathways are activated. In contrast, stylet 286 

sheets from whiteflies are usually shorter and lead to the puncture of minor phloem vessels. Whitefly stylets 287 

rarely puncture mesophyll cells, thus avoiding cell damage and the consequent activation of wound 288 

responses in the plant (Pollard 1955). Therefore, whiteflies are known to mainly activate the salicylic acid 289 

defensive pathway in plants (which is also activated by plant pathogens), while suppressing the activation 290 

of the jasmonic acid (JA) pathway, which interferes with whitefly nymphal development (Kempema et al. 291 

2007; Zarate et al. 2007; Walling 2000; 2008). We can speculate that BABA amplifies the plant's normal 292 

response to B. tabaci by inducing faster and stronger accumulation of SA. As a result of negative cross-talk 293 

between SA and JA (Koornneef & Pieterse 2008), the activation of the SA response will protect the whitefly 294 

against the activation of effective defenses from the plant (Zarate et al. 2007; Puthoff et al. 2010). This 295 

might explain the lack of effects mediated by BABA or other elicitors, such as Actigard (benzo (1,2,3) 296 

thiadiazole-7-carbothioic acid (S)-methyl ester), on B. tabaci performance(Inbar et al. 1997; Mayer et al. 297 

2002). 298 
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A second aspect concerns the ability of whiteflies, particularly B. tabaci MEAM1, to detoxify toxic 299 

chemicals obtained from the plant (Wang et al. 2017). For this reason, whiteflies appear to be immune to 300 

the defenses elicited in the plant by other phytophagous species (Mayer et al. 2002; Pappas et al. 2015). We 301 

cannot exclude the possibility that B. tabaci is able to metabolize defensive chemicals induced by BABA 302 

or BABA itself. 303 

The third aspect concerns the translocation and metabolism of BABA in the plant. Studies on this topic 304 

have shown that when BABA is applied to the roots, it travels acropetally via the transpiration stream and 305 

remains mostly unmetabolized in plant tissues (Cohen 2002). High concentrations of BABA have been 306 

found in aphids feeding on BABA-treated plants (Hodge and Powell 2011; Cao et al. 2014). It is possible 307 

that the different feeding behavior of whiteflies compared to aphids reduces the risk of taking in 308 

unmetabolized BABA from the host plant. 309 

We further must add that tomato genotypes display different levels of resistance to pests and diseases in 310 

relation to environmental conditions (Goggin et al. 2001; Sharma et al. 2010; Rivelli et al. 2013). The 311 

relationship between the genotype and the inducibility of resistance is complex and poorly studied. Tomato 312 

accessions vary considerably in the inducibility of resistance by BABA, at least in relation to pathogens, 313 

and the level of induction is not always related to the basal resistance level (Sharma et al. 2010). 314 

The lack of an effect of BABA-primed plants on predator fitness is consistent with the absence of an effect 315 

on the prey. Macrolophus pygmaeus is a zoophytophagous insect that activates plant defence mechanisms 316 

itself (Pappas et al. 2015; Zhang et al. 2018). Nevertheless,the dependence of M. pygmaeus on plant 317 

nutrients is much more limited than that of a strict phytophagous insect. This predator is more dependent 318 

on its prey than on the plant, and it can be reared for several generations on a meat diet alone without the 319 

presence of any plant material (Castañé and Zapata 2005), while it barely survives on a strict plant diet 320 

(Perdikis and Lykouressis 2004). It is assumed that this mirid bug uses the host plant mainly as a water 321 

source (Castañé et al., 2011) except in conditions of prey scarcity (Sampson and Jacobson 1999). The 322 

limited dependence on the plant may explain the lack of direct negative effects of the BABA-treated plants 323 

on the predator, apart from the lack of prey-mediated effects. 324 

In conclusion, the application of BABA to tomato as a soil drench did not have an effect on the overall 325 

fitness of B. tabaci or its predator M. pygmaeus. The non-interference of BABA with M. pygmaeus and B. 326 

tabaci assures that the control of the whitefly with this mirid bug will not be disturbed when this elicitor is 327 

applied to the crop. As previously mentioned, it is well established that the action of BABA is effective in 328 
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the control of tomato diseases caused by phytopathogens and nematodes, and the results obtained here 329 

indicate that the use of BABA at the tested concentration will be compatible with the implementation of 330 

biological control programmes targeting pests based on the use of M. pygmaeus. Further studies are needed 331 

to clarify the mechanisms underlying BABA-plant-whitefly-predatory myrids interactions. 332 
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 530 

Figure and table  captions 531 

 532 

Fig. 1. First generation of B. tabaci: Individuals per plant (mean ± SE) obtained as offspring of 10 females 533 

left to lay eggs for 72 hours in controlled conditions; distribution by instar on the thirty-third day from 534 

oviposition. 535 

 536 

Fig. 2. Second generation of B. tabaci: Individuals per plant (mean±ES) obtained as offspring of 5 females 537 

left to lay eggs for 72 hours in controlled conditions; distribution by instar on the thirty-fifth day from 538 

oviposition. 539 

 540 

Fig. 3. Mean weight (± SE) of M. pygmaeus individuals reared on control or BABA-treated tomato plants 541 

and fed with E. kuehniella eggs as prey. 542 

 543 

Fig. 4. Mean weight (± SE) of M. pygmaeus females and males reared on control or BABA-treated tomato 544 

plants and fed with B. tabaci. 545 

 546 

Tab. 1. Number of eggs laid by B. tabaci females in both the parental and first generations on BABA-547 

treated and control plants and the corresponding two-sample t-test results. 548 

 549 

Tab 2. M. pygmaeus: female fertility (number of newly emerged nymphs/female/plant/day of oviposition) 550 

and the number of emerged adults per plant, including the corresponding two-sample t-test results. 551 

 552 
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Table 1. Number of eggs laid by B. tabaci females in both the parental and first generations on BABA-treated and 

control plants and the corresponding two-sample t-test results. 

 BABA (Mean ± SE) Control (Mean ± SE) Statistics 

Eggs/female/day (parental generation) 3.88±0.49 3.81±0.42 t54=0.10, P=0.92 

Eggs/female/day (first generation) 7.56±0.67 6.80±0.61 t38=0.83, P=0.42 
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Table 2. M. pygmaeus: female fertility (number of newly emerged nymphs/female/plant/day of oviposition) and the 

number of emerged adults per plant, including the corresponding two-sample t-test results. 

  BABA (Mean ± SE) Control (Mean ± SE) 
Statistics 

 

Fertility of parental generation adults  0.38±0.08 0.47±0.09 t20 =-0.76, P=0.46 

Fertility of first-generation adults (E. 

kueniella eggs as prey) 
2.7±0.37  2.2±0.31  t26=-0.40, P=0.45 

Fertility of first-generation adults 

(B.tabaci as prey) 
0.9±0.22  1.0±0.09  t33=0.40; P=0.69 

Number of emerged adults (E. 

kueniella eggs as prey) 
10.75±0.95 9.75±0.98 t22=0.73, P=0.47 

Number of emerged adults (B.tabaci 

as prey) 
5.37±0.84 5.92±0.68 t26= -0.35, P= 0.73 
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