Show simple item record

dc.contributor.authorMiranda, Juan C.
dc.contributor.authorArnó, Jaume
dc.contributor.authorGené-Mola, Jordi
dc.contributor.authorLordan, Jaume
dc.contributor.authorAsín, Luis
dc.contributor.authorGregorio, Eduard
dc.contributor.otherProducció Vegetalca
dc.date.accessioned2023-10-30T09:36:09Z
dc.date.available2023-10-30T09:36:09Z
dc.date.issued2023-10-07
dc.identifier.citationMiranda, Juan Carlos, Jaume Arnó, Jordi Gené-Mola, Jaume Lordan, L. Asín, and Eduard Gregorio. “Assessing Automatic Data Processing Algorithms for RGB-D Cameras to Predict Fruit Size and Weight in Apples.” Computers and Electronics in Agriculture 214 (November 1, 2023): 108302. doi:10.1016/j.compag.2023.108302.ca
dc.identifier.isbn0168-1699ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/2465
dc.description.abstractData acquired using an RGB-D Azure Kinect DK camera were used to assess different automatic algorithms to estimate the size, and predict the weight of non-occluded and occluded apples. The programming of the algorithms included: (i) the extraction of images of regions of interest (ROI) using manual delimitation of bounding boxes or binary masks; (ii) estimating the lengths of the major and minor geometric axes for the purpose of apple sizing; and (iii) predicting the final weight by allometric modelling. In addition to the use of bounding boxes, the algorithms also allowed other post-mask settings (circles, ellipses and rotated rectangles) to be implemented, and different depth options (distance between the RGB-D camera and the fruits detected) for subsequent sizing through the application of the thin lens theory. Both linear and nonlinear allometric models demonstrated the ability to predict apple weight with a high degree of accuracy (R2 greater than 0.942 and RMSE < 16 g). With respect to non-occluded apples, the best weight predictions were achieved using a linear allometric model including both the major and minor axes of the apples as predictors. The mean absolute percentage error (MAPE) ranged from 5.1% to 5.7% with respective RMSE of 11.09 g and 13.02 g, depending to whether circles, ellipses, or bounding boxes were used to adjust fruit shape. The results were therefore promising and open up the possibility of implementing reliable in-field apple measurements in real time. Importantly, final weight prediction error and intermediate size estimation errors (from sizing algorithms) interact but in a way that is not easily quantifiable when weight allometric models with implicit prediction error are used. In addition, allometric models should be reviewed when applied to other apple cultivars, fruit development stages or even for different fruit growth conditions depending on canopy management.ca
dc.description.sponsorshipThis work was partly funded by the Department of Research and Universities of the Generalitat de Catalunya (grants 2017, SGR 646 and 2021 LLAV 00088), by the Spanish Ministry of Science and Innovation / AEI/10.13039/501100011033 / ERDF (grants RTI2018-094222-B-I00 [PAgFRUIT project], PID2021-126648OB-I00 [PAgPROTECT project]) and by the Spanish Ministry of Science and Innovation / AEI/10.13039/501100011033 / European Union NextGeneration / PRTR (grantTED2021-131871B-I00 [DIGIFRUIT project]). We would also like to thank the Secretariat of Universities and Research of the Department of Business and Knowledge of the Generalitat de Catalunya and the European Social Fund (ESF) for financing Juan Carlos Miranda’s pre-doctoral fellowship (2020 FI_B 00586). The work of Jordi Gené-Mola was supported by the Spanish Ministry of Universities through a Margarita Salas postdoctoral grant funded by the European Union - NextGenerationEU.ca
dc.format.extent15ca
dc.language.isoengca
dc.publisherElsevierca
dc.relation.ispartofComputers and Electronics in Agricultureca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleAssessing automatic data processing algorithms for RGB-D cameras to predict fruit size and weight in applesca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.relation.projectIDMICIU/Programa Estatal de I+D+I orientada a los retos de la sociedad/RTI2018-094222-B-100/ES/Tecnologías de agricultura de precisión para optimizar el manejo de dosel foliar y la protección fitosanitaria sostenible en plantaciones de frutales/PAgFRUITca
dc.relation.projectIDMICINN/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/PID2021-126648OB-100/ES/Protección de cultivos de precisión para conseguir objetivos del Pacto Verde Europeo en uso eficiente y reducción de fitosanitarios mediate Agricultura de Precisión/PAgPROTECTca
dc.relation.projectIDMICINN/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/TED2021-131871B-I00/ES/Sistemas de monitoreo de bajo coste en plantaciones frutales para agricultura de precisión basados en sensores fotónicos/DIGIFRUITca
dc.subject.udc62ca
dc.subject.udc633ca
dc.identifier.doihttps://doi.org/10.1016/j.compag.2023.108302ca
dc.contributor.groupFructiculturaca
dc.contributor.groupÚs Eficient de l'Aigua en Agriculturaca


Files in this item

 
 

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint