Deep learning in agriculture: A survey
Visualitza/Obre
Data de publicació
2018-02-22ISSN
0168-1699
Resum
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.
Tipus de document
Article
Versió del document
Versió acceptada
Llengua
Anglès
Matèries (CDU)
63 - Agricultura. Silvicultura. Zootècnia. Caça. Pesca
Pàgines
54
Publicat per
Elsevier
Publicat a
Computers and Electronics in Agriculture
Citació
Kamilaris, Andreas, and Francesc X. Prenafeta-Boldú. 2018. "Deep Learning In Agriculture: A Survey". Computers And Electronics In Agriculture 147: 70-90. Elsevier BV. doi:10.1016/j.compag.2018.02.016.
Número de l'acord de la subvenció
EC/H2020/665919/EU/Opening Sphere UAB-CEI to PostDoctoral Fellows/P-SPHERE
Programa
Sostenibilitat en Biosistemes
Aquest element apareix en la col·lecció o col·leccions següent(s)
- ARTICLES CIENTÍFICS [3048]
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by-nc-nd/4.0/