Deep learning in agriculture: A survey
Ver/Abrir
Fecha de publicación
2018-02-22ISSN
0168-1699
Resumen
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.
Tipo de documento
Artículo
Versión del documento
Versión aceptada
Lengua
Inglés
Materias (CDU)
63 - Agricultura. Silvicultura. Zootecnia. Caza. Pesca
Páginas
54
Publicado por
Elsevier
Publicado en
Computers and Electronics in Agriculture
Citación
Kamilaris, Andreas, and Francesc X. Prenafeta-Boldú. 2018. "Deep Learning In Agriculture: A Survey". Computers And Electronics In Agriculture 147: 70-90. Elsevier BV. doi:10.1016/j.compag.2018.02.016.
Número del acuerdo de la subvención
EC/H2020/665919/EU/Opening Sphere UAB-CEI to PostDoctoral Fellows/P-SPHERE
Program
Sostenibilitat en Biosistemes
Este ítem aparece en la(s) siguiente(s) colección(ones)
- ARTICLES CIENTÍFICS [3048]
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0/