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Abstract 14 

There is a growing realisation that the complexity of model ensemble studies depends not only the 15 

models used, but also on the experience and approach used by modellers to calibrate and validate results, 16 

which remain a source of uncertainty. Here, we applied a multi-criteria decision-making method to 17 

investigate the rationale applied by modellers in a model ensemble study where twelve process-based 18 

different biogeochemical model types were compared across five successive calibration stages. The 19 

modellers shared a common level of agreement about the importance of the variables used to initialise 20 

their models for calibration. However, we found inconsistency among modellers when judging the 21 

importance of input variables across the different calibration stages. The level of subjective weighting 22 

attributed by modellers to calibration data decreased sequentially as the extent and number of variables 23 
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provided increased. In this context, the perceived importance attributed to variables such as fertilisation 1 

rate, irrigation regime, soil texture, pH, and initial levels of soil organic carbon and nitrogen stocks were 2 

statistically different when classified according to model types. The importance attributed to input 3 

variables such as experimental duration, gross primary production, net ecosystem exchange, varied 4 

significantly according to the length of the modeller’s experience. We argue that the gradual access to 5 

input data across the five calibration stages negatively influenced the consistency of the interpretations 6 

made by the modellers, with cognitive bias in “trial-and-error” calibration routines. Our study highlights 7 

that overlooked human and social attributes is critical in the outcomes of modelling and model 8 

intercomparison studies. While complexity of the processes captured in the model algorithms and 9 

parameterisation are important, we contend that (1) the modeller’s assumptions on the extent to which 10 

parameters should be altered, and (2) modeller perceptions of the importance of model parameters, are 11 

just as critical in obtaining a quality model calibration as numerical or analytical details. 12 

Keywords: Model ensembles, biogeochemical models, multi-criteria decision-making, 13 

modelcalibration,model intercomparison, climate change, greenhouse gases, soil carbon., AgMIP 14 

Synopsis: This study outlines subjective inconsistencies in the prioritization of variables used in 15 

model calibration, with implication in the outcomes of modelling and model intercomparison studies. 16 

Introduction 17 

Multi-model ensemble comparisons are becoming increasingly common in contemporary research 18 

using agricultural simulation models to understand the impacts of weather variability1, climate change2, 19 

greenhouse gas (GHG) emissions from agriculture3,4 and carbon stock5,6 and the development of 20 

mitigation options.7,8 Ensemble modelling has long been used by climate modellers to overcome 21 

uncertainty in understanding processes, but it is a relatively new concept in the domain of agricultural 22 

systems modelling.9 Running multiple biogeochemical models and model versions, in combination with 23 

different sets of site conditions, helps to distil uncertainty derived from individual model simulations.2 24 

It is generally accepted by the modelling community that - provided models are diverse and independent 25 

– the prediction error decreases when using the ensemble approach.10 A number of questions, however, 26 
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continue to prompt discussion and debate of what model ensemble studies tell us about the uncertainty 1 

surrounding the impact of the future climate on agriculture, and the effectiveness of climate mitigation 2 

strategies in agriculture under different emission scenarios.3,11,12 As well, the use of multiple models 3 

generally increases the range of results, increases the workload, and requires more diverse skillsets to 4 

be successful.13,14 The answers to these questions are relevant beyond the bound of agricultural science, 5 

as climate mitigation and adaptation decisions may be influenced by what is learned from multi-model 6 

ensemble studies. 7 

Terrestrial biogeochemical and eco-physiological models typically comprise sets of mathematical 8 

equations simulating a continuum of interlinked atmosphere-plant-soil processes (e.g. plant 9 

photosynthesis, organic matter decomposition, ammonia volatilisation, nitrification and denitrification), 10 

enabling the simulation of spatial-temporal patterns of carbon (C) and nitrogen (N) cycles in crop and 11 

grassland systems, and subsequent responses of GHG emissions to agricultural practices.3,15,16,17 As a 12 

result of their fixed, semi-empirical and nonlinear model structure, biogeochemical models were often 13 

described as black-box models.18,19 They often have many parameters (e.g. 100-1000) that have no 14 

intuitive meaning20,21 and/or cannot be measured and must be inferred from the data. Consequently, one 15 

of the main challenges in biogeochemical modelling is that bulk observations of C and N cycling or 16 

GHG emissions rarely contain sufficient information to reliably estimate model parameters.12  17 

Agricultural model intercomparison studies are becoming increasingly common. To date, a number of 18 

studies have discussed the complexity and limitations characterising agro-ecosystems from multi-model 19 

ensemble studies.3,22,23,24,25 In model ensemble studies, there is not only uncertainty about the structural 20 

limitations of the model from which the contribution of agricultural systems should be generated.26 21 

There is also uncertainty about how the initial conditions (i.e. input data) in the model simulations 22 

should be interpreted28; uncertainty in model internal coefficients that cannot be altered by the users; 23 

and further uncertainty concerning which processes are included in the model by the developer.20,21 This 24 

gives rise to a branch of studies examining automatic multi-objective parameterisation of several model 25 

parameters simultaneously.13 Ensemble studies include and compare results from models that have 26 

varying development histories, funding support, as well as varying priorities of developers, including 27 

their perceived importance of processes and parameters. Depending on the intent to which a model was 28 
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built, some models include representations of agricultural processes that other models do not, include 1 

and based on model structure, each model may require different input data and calibration strategies. 2 

Accordingly, there may be substantial variability between model outputs when different modellers are 3 

using the same calibration data, even when all are using the same model and version.3,27,28 4 

There is a growing realisation that the complexity of model ensemble studies arises not only due to the 5 

models used, but that the human dimension also has a prominent role to play, considering the 6 

experience, perceptions, expectations and approaches brought forth by modellers to calibrate 7 

parameters and validate results. The human dimension remains a key but often recalcitrant source of 8 

uncertainty.23 In this context, there is a little information on the social and psychological aspects of 9 

model calibration or intercomparison, including how parameters are chosen for calibration, how 10 

parameters are calibrated or weighted against available data, and how model are technically verified 11 

and outputs validated against observed data.29 To address this gap, we surveyed and interviewed several 12 

modellers who contributed to a model ensemble study that aimed to simulate productivity and nitrous 13 

oxide (N2O) emissions from cropland and grassland sites spanning four continents.3 These modellers 14 

varied in nationality, experience, gender, and discipline, giving us an ideal cross-section of geographical 15 

and disciplinary expertise. We analysed the rationale used by these modellers in a multi-stage model 16 

ensemble study where different model types were compared across five successive stages (i.e. from 17 

blind parameterisation to partial and full calibration) to benchmark their performance in relation to the 18 

input data provided at each stage.3 The objectives are to describe: (i) the heterogeneity in modellers’ 19 

prioritisation of different variables in modelling decision contexts, (ii) the perceived importance of the 20 

variables across the five stages of the modelling protocol, (iii) the perceived variable structure and 21 

interrelationships, and (iv) a process through which surveys of modellers’ insights can be used to 22 

improve model intercomparison guidelines. 23 

Materials and Methods 24 

The model ensemble study described in Ehrhardt et al.3 was based on the contribution of 24 modellers 25 

from 11 countries, reporting the results of 24 process-based integrated C-N models by comparing multi-26 

year (1-11 years) simulations with experimental data from nine sites (four temperate permanent 27 
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grassland sites and five arable crop rotations with wheat, maize, rice and other crops). Following the 1 

multi-stage modelling protocol of Ehrhardt et al.3, here we implemented a Multi-Criteria Decision 2 

Making (MCDM) method that collected and analysed information on the modelling experience, 3 

priorities, and decisions made by the modellers who contributed to the model ensemble study. 4 

Multi-stage modelling protocol 5 

The model ensemble protocol described in Ehrhardt et al.3 included 55 input variables clustered into 6 

seven categories that were released to the modellers in successive stages (Figure 1). In Stage 1, input 7 

data used for initial model testing included information on experimental farm site conditions (such as 8 

general site information (SI), climate during the experiment (CL), management practices during the 9 

experiment (MPDE) and soil information (SOI). Stage 2 provided long-term (i.e. historical) site-specific 10 

data on climate (LTCL) and management practices (LTMP) for the long-term model calibration period.3 11 

Stage 3 provided part of the experimental data from site (EDS) describing plant phenology, 12 

crop/grassland vegetation development (e.g. leaf area index), and grain yields or monthly grassland 13 

offtake (biomass removed by haying or animal intake determined monthly). In Stage 4, modellers 14 

accessed additional EDS data on the dynamic trends of soil temperature, moisture, and mineral N during 15 

the experiment. Finally, Stage 5 included the remaining EDS information against which model outputs 16 

were compared, such as agricultural productivity (ANPP together with daily changes in live weights of 17 

livestock and daily grassland offtake), GHG emissions and soil organic C (SOC) stock changes. In the 18 

five modelling stages, modellers were free to choose a calibration procedure of their choice based on 19 

their own subjective knowledge, the model type used and the agricultural system targeted. 20 

Framework of the survey 21 

This study was introduced during a meeting of the Global Research Alliance on Agricultural 22 

Greenhouse Gases, hosted by former INRA (currently INRAe) in Paris (France), on 13-15 December 23 

2017. In this workshop, the modellers discussed the objectives of the survey in relation to the work 24 

performed in previous multi-stage model ensemble studies. Following this meeting, the modellers were 25 

invited to participate in the survey, which included a consent form and a background questionnaire to 26 

be completed prior to receiving the questionnaire (see S.1 and S.2 in the Supplementary Information). 27 
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In particular, the background questionnaire collected general information such as gender, education 1 

level, academic rank, modelling experience, location, institution, general features of the model/model 2 

version used and the calibration method adopted. 3 

A second invitation was sent to the modellers who agreed to participate in the survey, which included 4 

a participant instruction document explaining the methodology used in the survey, a demonstration 5 

video accompanied by a video help script describing how to complete the pairwise questionnaire (see 6 

S.3 and S.4 in the Supplementary Information). The pairwise questionnaire included a number of 7 

pairwise comparison matrices (PCMs) grouped by variable categories, where the modellers assessed 8 

the relative importance and influence (i.e. relationship) that each input variable had against each other.  9 

In particular, we asked the modellers to use pre-defined rating scales to rank the data based on the steps 10 

followed during the stages of the model inter-comparison study (see S.5 in Supplementary Information). 11 

After completing of the pairwise questionnaire, the participants received a third invitation for an 12 

interview. The interviews were conducted by telephone or videoconference and were ‘semi-structured’ 13 

into a list of open-ended questions (see S.6 in the Supplementary Information) that allowed participants 14 

to fully express their opinions on the questionnaire.30 Broad topics discussed with each participant 15 

included (1) feedback on the study, (2) problems encountered during the pairwise process, and (3) 16 

discussion of the pairwise results with the possibility to change any response. 17 

Multi-Criteria Decision-Making questionnaire 18 

The 12 model types used in the ensemble study encompassed biogeochemical processes (e.g. plant 19 

growth, organic matter decomposition, atmospheric processes, ammonia volatilisation, nitrification, 20 

denitrification and other carbon and nitrogen processes) designed to interact with each other to describe 21 

the cycling of water, C and N for the target ecosystems.26 As such, across the five modelling stages, 22 

each modeller subjectively decided how to select and prioritise the parameters that should be calibrated 23 

using the input data provided, and how their model outputs should be validated against specific observed 24 

data. In particular, each modeller selected the parameters that they deemed to be the most important in 25 

contributing to high model performance (i.e., the quality of fit of several output variables to the provided 26 

data). To deal with the complexity, we applied an MCDM process (Figure 2) that combined the Decision 27 
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Making Trial and Evaluation Laboratory (DEMATEL)31 and the Analytic Network Process (ANP) 1 

method.32 Using DEMATEL, we visualised the complex interrelationships between the different 2 

variable categories, outlining the degree of influence imparted by each category, as envisaged by the 3 

modellers. In ANP, the strength of relationships outlined in DEMATEL were integrated into a network 4 

of dependencies and feedbacks to determine the relative importance of each input variable across the 5 

five stages of the modelling protocol (see S.7 in Supplementary Information). 6 

Data analysis 7 

To assess the level of agreement between the modellers, Kendall’s concordance coefficient (KW)33 was 8 

applied to the importance scores for the variable categories and input variables included in the pairwise 9 

questionnaires (Eq. 1): 10 

𝐾𝑤 =
12 𝑆𝑆

𝑚2(𝑛3−𝑛)−𝑚𝐹
          (1) 11 

where SS is the sum-of-squares from sums of rank scores 𝑎𝑖𝑗 (see Eq. 9 in S.7 of the Supplementary 12 

Information), n is the number of elements in the PCMs, m is the number of modellers that participated 13 

to the survey, and F is a correction factor for tied ranks.34 The null hypothesis of Kw is that the modellers 14 

provided independent ranking scores for each input variable and category (i.e. the modellers were not 15 

in agreement with each other). Perfect agreement is indicated by Kw values of 1, while no agreement is 16 

indicated by values of 0. When the null hypothesis was rejected, we tested significant effects (p < 0.05) 17 

against the null hypothesis that there is no agreement between the modellers. 18 

A one-way multivariate analysis of variance was applied using SPSS statistical software (IBM SPSS 19 

v.25) to determine whether there were differences in the ratings (i.e. dependent variables) given by the 20 

modellers in the pairwise questionnaires, based on the 12 model types used and their modelling 21 

experience ranging from <5 to >20 years. Wilks' lambda test was utilised to determine whether there 22 

were significant differences (p < 0.05) between the mean scores of the modellers across the combination 23 

of dependent variables. 24 
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Data analysis included the correlation between the MCDM results (i.e. modelling priorities) and the 1 

ensemble modelling prediction errors described in Ehrhardt et al.3 Model prediction error, in particular, 2 

was represented by the root mean square error normalised by the mean of the observed data (RRMSE) 3 

of the individual models across the five stages for simulations of N2O emissions from arable and 4 

grassland systems, maize, wheat and rice crop yields, and ANPP in grasslands.3 5 

The relationship between RRMSE and modelling priorities across stages was investigated as: 6 

𝑀𝐸𝑅 =
𝑅𝑅𝑀𝑆𝐸

∑𝑃𝑖
            (2) 7 

where, ∑Pi represents the cumulative modelling importance of the input variable (see Eq. 10 in S.7 of 8 

the Supplementary Information) across the five stages of the model ensemble protocol, and MER is the 9 

model error rate corresponding to the change in RRMSE per unit of importance given to the input 10 

variable accessed across the five stages.  11 

RESULTS AND DISCUSSION 12 

Characteristics of participating modellers 13 

Table 1 shows an overview of the information gathered in the background questionnaire and during the 14 

interviews with the modellers who participated in the survey. Overall, the 20 modellers that participated 15 

in the study were aged between 25 to 64 years, the majority were male (54%), 68% held a PhD degree, 16 

58% were employed under fixed-term contracts, and 84% had > 5 years modelling experience. 17 

Modellers within the 35-44 and 45-54 age category generally used, and had published, information from 18 

a larger number of models (Table 1). The 20 modellers interviewed used 12 different models types: 19 

i) APSIM (The Agricultural Production Systems sIMulator)35 (Holzworth, 2014) 20 

ii) CERES-EGC (Crop Environment REsource Synthesis - Environnement et Grandes Cultures)36 21 

iii) DayCent and Daily DayCent37 22 

iv) DNDC (DeNitrification-DeComposition)38,39 23 

v) Landscape DNDC40 24 

vi) DSSAT (Decision Support System For Agro-technology Transfer)41,42,43 25 
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vii) EPIC (Environmental Policy Integrated Climate)44 1 

viii) PaSim (Pasture Simulation model)45 2 

ix) DairyMod/SGS46 3 

x) FASSET47 4 

xi) STICS48 (Brisson et al, 1998) 5 

xii) INFOCROP49 (Aggarwal et al., 2006) 6 

Further details are provided in the Supplementary Information of Ehrhardt et al.3, Appendix S1. 7 

Modellers’ prioritisation and uncertainties in the variables provided 8 

During the interviews, the modellers discussed their systematic approach across the five stages of the 9 

modelling protocol, as well as the uncertainties they encountered when answering the pairwise 10 

questionnaire. Here we summarise and explain some of the uncertainties discussed with the modellers 11 

in relation to the modelling decision contexts. 12 

In the model ensemble study, the modellers were given a set of choices about how many parameters 13 

should be calibrated against the available input data, and how the models should be evaluated when the 14 

model outputs are validated against the observed data. Based on the information gathered from the 15 

interviews, in the first two stages of the modelling protocol the modellers based their model calibration 16 

on their own experience and knowledge of the expected outcomes. In the last three stages, most 17 

modellers adopted the “trial-and-error” calibration routine, with only one modeller consistently 18 

applying Bayesian calibration. It is plausible that the gradual access to input data across the five stages 19 

negatively influenced the logic applied by the modellers in the calibration and validation processes, 20 

employing inconsistent modelling decisions between each stage (i.e. cognitive biases50). 21 

The results of the pairwise questionnaires confirmed that all modellers showed some level of 22 

inconsistency in judging the relative importance of the input variables. The consistency of the 23 

modeller’s judgements was assessed though the consistency ratio (CR), which outlines the degree of 24 

bias in the pairwise judgments related to the rank order and mutual preference of alternative input data 25 

within each input category (Table 2). In this context, the responses from one modeller were excluded 26 
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from the analysis due to high inconsistency (CR >30%), above the 10% cut-off threshold. The 1 

remaining 19 modellers completed the questionnaire with a consistency ratio of 7±1% (mean±standanrd 2 

deviation). Where the CR was above 10%, an in-person review was undertaken with the modellers to 3 

address the source of inconsistencies and find possible corrections. CR was above 10% for 37% of the 4 

modellers when ranking the variables in SOI, 21% for the scores given to EDS, 11% for the variables 5 

listed in MPDE and LTMP, and 5% when ranking the variables in SI and LTCL. Behavioural science 6 

could help to further address these findings. The pairwise judgements expressed by the modellers may 7 

have been affected by systematic biases in judgements, which reduced the complex tasks of determining 8 

the importance and influence of several input variables within each categories to simpler judgmental 9 

operations related to the modelling approach. Some of these biases may be mediated by “heuristics 10 

principles” in judgements under uncertainties, overconfidence, neglect of base-rate information, and 11 

overestimates of frequency of events that are easy to recall 51. 12 

 13 

Importance of (and interactions between) different calibration variables perceived by modellers 14 

The use of DEMATEL and ANP allowed visualization of the perceived importance and the relationship 15 

between the input data across the five stages of the modelling protocol. Overall, in the ensemble study 16 

Stage 1 included more than 50% of the input variables used in the simulations (i.e. 28 input variables) 17 

(Figure 1), and accounted for 67% of importance in the model ensemble framework (Table 3). In 18 

contrast, the cumulative importance of the inputs released in Stage 2 was 11%, 6% for Stage 3, 5% for 19 

Stage 4, and 11% for Stage 5. We found a common agreement between modellers about the importance 20 

of the data used in Stage 1 to initialise the models for calibration, which comprised data included in the 21 

categories SI, CL, SOI and MPDE (Table 2). The high importance of MPDE may reflect the fact that 22 

the models involved in the ensemble study required information about farming practices such as 23 

harvesting, mowing, fertilisation, tillage and irrigation.26 Whereas the low level of agreement for the 24 

priority attributed to MPDE may reflect differences in the simulations of cropland and grassland 25 

systems, as well as model characteristics, rather than disagreement between modellers on the relative 26 

importance of the input variables in MPDE. However, the importance of input variables such as 27 

fertilisation rate, irrigation regime, soil texture, field capacity and/or water-filled pore space, pH, SOC 28 
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and soil organic nitrogen (SON) stocks, and atmospheric CO2 concentration were statistically different 1 

when classified according to model types (Table 2).  2 

The input data given in Stage 1 in the categories CL, LTCL and SI were considered net influencers in 3 

the modelling protocol (Figure 3). This means that 60% of the relationship within the climate variables 4 

(CL and LTCL) was directed towards other input variables (i.e. a positive relationship). In contrast, the 5 

categories EDS, MPDE, LTMP and SOI, which spread the data across the five modelling stages, were 6 

considered net receivers, with >50% of their relationship based on the influence received from other 7 

variable categories (i.e. a negative relationship). In particular, the category EDS used in Stage 3, 4 and 8 

5 (Table 3), included important in-season and end-of-season experimental data used to validate model 9 

outputs, such as site-specific experimental data on crop phenology, grassland offtake, dynamic soil 10 

processes, crop yields, ANPP, GHG emissions and SOC stock changes. The low level of agreement 11 

between the modellers about the priorities given to EDS may reflect the heterogeneity in modellers’ 12 

knowledge on the use of experimental data for model calibration. In the model intercomparison study, 13 

the models APSIM, DairyMod, and DayCent were used by more than one modeller or modelling team. 14 

For these model types, the opinion about variables included in the categories MPDE, SOI, and EDS 15 

was characterised by low level of agreements between modellers. The modellers that used APSIM, and 16 

DairyMod, in particular, prioritised information on yield and dynamic vegetation. While, for the 17 

modellers that used DayCent, the importance of EDS was focussed on parameters related to the 18 

components of the ecosystem GHG budget (such as N2O and CH4 emissions) or gross primary 19 

production (GPP), net ecosystem production (NEP), net ecosystem exchange (NEE), and ecosystem 20 

respiration (Reco) (see Table S.8 in Supplementary Information).  21 

Overall, the importance given to input variables such as experimental duration, GPP, NEP, NEE, Reco 22 

and soil temperature was statistically different among modellers with different experience (Table 2). 23 

This is an important result, as the trial-and-error manual calibration routines applied in the final stage 24 

of the modelling protocol depend not only on users’ knowledge and expertise of the model structure, 25 

but also on their understanding of the variables measured in the targeted agroecosystems.52 The analysis 26 

of the influence given and received between the variables showed contradictory results for EDS, which 27 

had a negligible influence on the value of variables included in CL, LTCL, MPDE and SI (Figure 3). 28 
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The SI category, in particular, was perceived as a net influencer, and included a relatively high incoming 1 

influence in the system. Further investigation would be needed to understand whether these results are 2 

due to biases related to: (i) specific features of the model structure, (ii) physical or biogeochemical 3 

processes characterising agricultural systems, (iii) the complexity of the multi-stage modelling protocol 4 

in answering the pairwise questionnaires, or iv) the uncertainty and variability implicit to the measured 5 

input data. In addition to the MCDM analysis, we used qualitative interviews to better understand how 6 

modellers’ attitudes (e.g., best practices), the influence of outside actors (e.g., fellow researchers, 7 

literature), and other factors (e.g., data quality, time constraints) impact their approach to modelling 8 

(manuscript in preparation). 9 

Relationship between modelling decisions and uncertainty of the ensemble outcomes. 10 

Overall the patterns of uncertainty between single models and model ensemble simulations suggest that 11 

the modeller’s choices were governed by general rational rules. However, across the five modelling 12 

stages modellers may have come across significant challenge, particularly when the same numerical 13 

result could be arrived at in multiple ways (ie. the right answer for the wrong reasons). In the context 14 

of decision-making, the modeller’s decision could have be restricted by “narrow framing”53, limited 15 

“accessibility” which is a technical term for the ease with which mental contents come to mind 54, and 16 

“decision bracketing”55. The choices that the modellers faced arose one at a time, and the problems were 17 

considered as they arose. This means that in each modelling stage the problem at hand and the 18 

immediate consequences of the choices made were far more accessible than all other considerations, 19 

and as a result the overall modelling problem was framed far more narrowly than the rational modelling 20 

assumes. In that respect, we found that the gradual access to additional input data across the five stages 21 

did not show a clear benefit in reducing the model ensemble uncertainty (Figure 4). Across the five 22 

stages, the mean RRMSE of the model simulations was 99% for N2O emission, 81% for ANPP and 31% 23 

for crop yield (Figure 4). It is plausible that the gap between high model complexity and limited data 24 

availability in the initial stages of modelling generated uncertainties related to parameter equifinality or 25 

non-identifiability and ill-defined problems.12,13,56,57,58 In particular, equifinality or non-identifiability 26 

arises when different combinations of parameter values give the same results. Such results have been 27 

shown to be sensitive to the inclusion of extreme events, such as very wet and dry seasons, in the 28 
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calibration.59 Ill-posed problems occur when the number of parameters to be optimised is greater than 1 

the boundary conditions and the number of measured data points used in the model calibration.13,20,21 2 

The number of input data and their perceived importance was clustered in the first two stages of the 3 

modelling study (Table 3). This limited the possibility to extract detailed information about the 4 

incremental effect of the different variable categories on the ensemble simulations. The change in model 5 

prediction errors per unit of dataset importance given by the modellers (MER) showed that in the crop 6 

productivity simulation, the input variables used in the first two stages (i.e. 78% of overall dataset 7 

importance) were sufficient to calibrate the models and obtain plausible results. The ensemble 8 

simulations of N2O emissions and ANPP, however, showed that only after receiving approximately 9 

90% of all input data of the modelling protocol, the modellers were able to achieve the highest accuracy 10 

of the ensemble simulations. In particular, the use of historical data on climate and management 11 

practices in Stage 2 reduced the MER by 25% for the ensemble prediction of N2O emissions in Stage 12 

1. However, in Stage 3 the additional access of experimental information on vegetation data such as 13 

LAI, plant phenology and extracted yields (i.e. 6% of the relative modelling importance) increased the 14 

MER for N2O emission simulation by 18%. Only with access to additional experimental data in Stage 15 

4 (dynamic measurement of soil moisture, temperature and mineral N) did the simulation of N2O 16 

emissions improve, with a mean reduction in MER of 50% compared to Stage 1. The ANPP predictions 17 

showed a similar trend in MEP as the N2O emissions. In this case, however, the ANPP predictions of 18 

ANPP benefitted only marginally from access to site-specific experimental data in Stages 3, 4 and 5 19 

(Figure 4). 20 

The development of generic guidelines including information about how to characterise the data 21 

required for agroecosystem modelling, with complementary and clear protocols for estimating model 22 

parameters and validation model results, remains a major challenge of agroecosystem model studies. 23 

Here, we used a multi-model ensemble study to highlight the psychology of modellers in ranking and 24 

interpreting the variables used in the simulations. 25 

Two major conclusions can be drawn from our analysis. First, modellers perceive variables such as 26 

general site information, climate conditions and management practices as being of vital importance for 27 
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modelling cropland and grassland systems. The perceived importance of these variables was related to 1 

the calibration of processes in the first two stages of the modelling protocol, requiring information such 2 

as precipitation, air temperature, crop yield, fertilisation rate, irrigation regime, soil texture, field 3 

capacity and water-filled pore space. However, these input variables were not sufficient to obtain 4 

satisfactory ensemble simulations of crop production and GHG emissions. In this respect, the 5 

intercomparison study here showed that the crop yield simulations achieved plausible results after 6 

accessing the crop phenology and yield values, which corresponded to 84% of the variables given in 7 

the whole modelling protocol. These findings agree with23, who identified minimum input data 8 

requirements for crop model intercomparisons including weather, soil and crop management data, as 9 

well as some site-specific measurements of crop responses to test a given comparison. 10 

Second, the framework for multi-model intercomparison studies needs to pay more attention to the 11 

structure of the models, the understanding of the interrelationships between the different processes and 12 

the experience of the modellers. The models used in the ensemble study included numerous 13 

biogeochemical processes (e.g. plant growth, organic matter decomposition, atmospheric processes, 14 

ammonia volatilisation, nitrification and denitrification) designed to interact with each other to describe 15 

the water, C and N cycles for the target ecosystems.28 In this context, we visualised the relationship 16 

between the different variables used in a multi-stage modelling protocol, partitioning these between into 17 

the categories of net influencers and net receivers. Although general site information and climate data 18 

only represent 30% of the input data used in the ensemble protocol, the modellers’ opinions on the 19 

importance and level of influence of these variables, used to initialise the model calibrations, depended 20 

by the model type used. In addition, the ensemble simulations of N2O emissions and grassland above 21 

ground biomass required more than 90% of the input data used in the modelling protocol (i.e. four out 22 

of five stages) to obtain plausible results. In this context, Ehrhardt et al.3 outlined several limitations in 23 

the calibration methods and model structure that could explain the discrepancies between simulated and 24 

observed data. The opinion of the modellers, however, was that fundamental parameters such as crop 25 

management, soil characteristics and experimental data from sites were net receivers in the framework 26 

of the modelling protocol. Importantly, the ranking of the most important input data, such as 27 

experimental length and season, irrigation, SOC stock, soil temperature, GPP, NEP, NEE and Reco, 28 
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varied according to the experience of the modellers. We argue that it is likely that, among the limitations 1 

explaining the uncertainty of the ensemble study, the interpretation made in the “trial-and-error” 2 

calibration routines, and the structure of the modelling protocol itself, also lead to uncertainty in the 3 

simulations. We argue that it is likely that, among the limitations explaining the uncertainty of the 4 

ensemble study, the interpretation made in the “trial-and-error” calibration routines, and the structure 5 

of the modelling protocol itself, also lead to uncertainty in the simulations. What is natural and intuitive 6 

in a given modelling situation is not the same for everyone: different experiences favour different 7 

modelling intuitions about the meaning of input variables, and modelling behaviours become intuitive 8 

as skills are acquired51. In the Ehrhardt, et al.3 study only one modelling team used the automatic 9 

calibration method. It is plausible that in automatic calibration methods, the selection of parametrisation 10 

algorithm or software is one such human decision factor among many that could have a large bearing 11 

on the validity of calibration and consequential model performance. Thus the experience and skills of 12 

the modellers again influences model outputs via their initial capability, knowledge and confidence in 13 

using a given approach for calibration. 14 

Moving forward, ensemble studies should include in their guidelines an understanding of how data 15 

interpretations and model structures influence the calibration and validation strategies  and collect 16 

information on this. This study would have been particularly helpful if it had been carried out before 17 

and during the model ensemble study, as the information obtained could have contributed to the 18 

guidelines for the ensemble study. The structure of the multi-stage benchmarking protocol was a major 19 

limitation of our analysis. Firstly, the model intercomparison study involved 20 modellers that used 12 20 

distinct model types. This means that in our study only for three model types we had the possibility to 21 

sample more than modeller. Secondly, the first two stages of the protocol comprised the majority of the 22 

input data used by the modellers, corresponding to 78% of the variables considered by the modellers to 23 

be the most important. In this context, a release of data across the stages in line with modelling priorities 24 

and model structure could have helped to organize the five stages of the ensemble study to understand 25 

the relative contribution between data interpretation, model calibration methods, model structures and 26 

site-specific variability of observations to the uncertainty of the ensemble simulation. 27 
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Figure captions: 1 

Figure 1: Framework of the variables, and partition between input categories and variables used in the 2 

five stages of the model ensemble protocol described in Ehrhardt et al. (2018). 3 

Figure 2: Steps of the Multi-criteria Decision Method process combining the DEMATEL (Decision 4 

Making Trial and Evaluation Laboratory) and ANP (Analytic Network Process) methods. Through 5 

DEMATEL we visualise the perceived relationship between different categories of variables. While in 6 

ANP, the strength of the relationships outlined in DEMATEL is integrated into a network of 7 

dependencies and feedbacks among input variables to determine their relative importance across the 8 

five stage of the modelling protocol. 9 

Figure 3: The table reports the DEMATEL total relation matrix summarising the level (mean±standard 10 

deviation) of direct and indirect influence given (G) and received (R) in each input category, the net 11 

influence (G-R), and the total level of influence (or dominance) (G+R) of the model input category used 12 

in the model ensemble study. Categories with a positive G-R have a net influence towards the value of 13 

other variable categories and are denoted as “influential” categories. The circular diagram outlines the 14 

causal relationship in the model ensemble protocol between General site information (SI), Climate 15 

during the experiment (CL), Long-term climate (LTCL), Management practices during the experiment 16 

(MPDE), long-term management practices (LTMP), Environmental data from site (EDS), and Soil 17 

information (SOI). The arrows in the diagram show the direction and level of influence that each input 18 

category gives and receives from the other categories. The coloured arrows highlight the three 19 

categories of variable that resulted to be net influencers in the model ensemble protocol (i.e. positive 20 

G-R). Radial bar numbers represent the total level of R+C influence, and the relative percentage of the 21 

casual relationship within each input category. 22 

Figure 4: The table summarises the Relative Root Mean Square Error (RRMSE), averaged across 19 23 

models, for the ensemble simulations of soil N2O emissions from arable and grassland systems, crop 24 

yields of annual crop monocultures such as maize, wheat and rice, and above-ground net primary 25 

productivity in grassland (ANPP). Pi corresponds to the cumulative modelling importance of the input 26 

variables accessed in the five stages of the model ensemble framework. MER represents the model 27 

simulation error rate for N2O, yield and ANPP per unit of modelling importance in each stage. The bar 28 

chart below the table outlines the trend of MER across the five stages of the model ensemble protocol. 29 

Table 1: Background information reported by age class (AC) of modellers who participated in the 30 

multistage intercomparison protocol and the MCDM survey. N = number of modellers, F = proportion 31 

of modellers identified as female, PhD = proportion of modellers holding a PhD degree, FTC = 32 

proportion of modellers with a fix-term contract, MU = knowledge on number of models, MP = number 33 

of models published in peer-reviewed articles and MT = type of model used. 34 

Table 2: Summary of the importance of the input variables and their categories, the consistency ratio 35 

of the modellers’ judgments in the pairwise comparison matrix of each input category, and the level of 36 

Kendal concordance between the modellers. Ranking scores (i.e., importance) with the letters m and e 37 
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are significantly different between model groups and modeller experience groups, respectively. * 1 

indicates the level of significant concordance within each category of variables (p < 0.05). 2 

Table 3: Cumulative importance of the five stages of the model ensemble protocol. In each stage, the 3 

ranking of the input variables shown in Table 2 was normalised to the importance score of their 4 

corresponding categories. 5 

  6 
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Figure 1: Framework of the variable partition between input categories and variables used in the five stages of the model ensemble protocol described in 
Ehrhardt et al. (2018). 
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Figure 2: Steps of the Multi-criteria Decision Method process combining the Decision Making Trial 
and Evaluation Laboratory (DEMATEL) and the Analytic Network Process (ANP) methods. Through 
DEMATEL we visualize the perceived relationship existing between different variable categories. 
While in ANP, the strength of the relationships outlined in DEMATEL are integrated in a network of 
dependencies and feedbacks among input variables to determine their relative importance across the 

five stages of the modelling protocol. 
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Figure 3: The table reports the total relation matrix of DEMATEL summarising the level (mean±sd) 
of direct and indirect influence given (G) and received (R) in each input category, the net influence (G-
R), and the total level of influence (or dominance) (G+R) of the model input category used in the model 
ensemble study. Categories with positive G-R have a net influence towards the value of other variable 
categories and are denoted as “influential” categories. The circular diagram outlines the causal 
relationship in the model ensemble protocol between General site information (SI; red lines), Climate 
during experiment (CL; green lines), Long-term climate (LTCL; purple lines), Management practices 
during experiment (MPDE), long-term management practices (LTMP), Environmental data from site 
(EDS), and Soil information (SOI). The arrows in the diagram show the direction and the level of 
influence that each input category gives and receives from other categories. The coloured arrows 
highlight the three variable categories that resulted to be net influencers in the model ensemble protocol 
(i.e. positive G-R in Table 4). Radial bar numbers represent the total level of influence R+C, and the 
relative percentage of the casual relationship within each input category. 
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Figure 4: The table summarises the Relative Root Mean Square Error (RRMSE) averaged across 19 
models for the ensemble simulations of soil N2O emissions from arable and grassland systems, crop 
yields of annual crop monocultures such as maize, wheat and rice, and above-ground net primary 
productivity in grassland (ANPP). Pi corresponds to the cumulative modelling importance of the input 
variable accessed in the five stages of the model ensemble framework. MER represents the rate of model 
simulation error for yield, N2O, and ANPP per unit of modelling importance in each stage. The bar chart 
below the table outlines the trend of MER across the five stages of the model ensemble protocol. 
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Table 1: Background information reported by age class (AC) of the modellers participating in the 
multistage intercomparison protocol and MCDM survey. N = number of modellers, F= proportion of 
modellers identified as female, PhD = proportion of modellers holding a PhD degree, FTC = proportion 
of modeller with a fix-term contract, MU = knowledge on number of models, MP = number of models 
published in peer-reviewed articles, and MT= type of model used. 

AC N F PhD FTC E MU MP MT 

25-34 4 0% 50% 75% 50% from 1 to 4 from 1 to 4 
Daycent, DNDC, Manure DNDC, 
Century, SPA/DALEC, EU-

Rotate_N, FASSET, FarmAC 

35-44 7 29% 100% 71% 86% from 1 to 7 from 1 to 4 

CERES-EGC, PaSim, FarmSim, 
EcoSys, Armosa, Daycent, 

DSSAT, EPIC, APEX, ModVege, 

Gemini, DairyMod, APSIM, 

GrassGro, AusFarm, GrazFeed, 
SGS, FarMax 

45-54 7 43% 57% 43% 100% from 1 to 7 from 1 to 7 

AusFarm, DNDC, Daycent, 

Century, Tier II IPCC, 
RZWQM2, LEACHM, InfoCrop, 

DSSAT, STICS, Daycent, 

Century, SGS, DairyMod, RothC, 

DairyMod, GrassGro 

55-64 1 100% 0% 0% 100% 3 3 Overseer, FarMax, APSIM 
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Table 2: Summary of the importance of the input variables and their categories, the consistency 
ratio of the modeller’s judgments in the pairwise comparison matrix of each input category, 
and level of Kendal concordance between the modellers. The ranking scores (i.e importance) 
with letters m and e are significantly different at the p < 0.05 level between model types and 
modeller’s experience groups, respectively. * indicates level of concordance significant within 
each variable categories at the p < 0.05 level. 

Input Category 
(Importance) 

Input variable 
Ranking Consistency Ratio Kendal level 

mean ± sd mean ± sd mean 

G
en

er
al

 s
it

e 
in

fo
rm

at
io

n
 

(0
.0

5
 ±

 0
.0

4
) Crop type (crop rotation) 0.31 ± 0.16 m 

0.06 ± 0.03 0.50* 

Mean regional yield 0.24 ± 0.11 

Experimental length and season 0.23 ± 0.10 e 
Location (country, latitude N) 0.12 ± 0.08 

Terrain info 0.09 ± 0.06 

C
li

m
at

e 
d

u
ri

n
g
 

ex
p

er
im

en
t 

(0
.1

3
 ±

 0
.0

8
) 

e   
 

Precipitation 0.32 ± 0.08 

0.05 ± 0.03 0.81* 

Air temperature 0.26 ± 0.08 
Solar radiation 0.21 ± 0.08 

Other climate factors (Wind, [CO2]) 0.09 ± 0.05 
Air humidity 0.07 ± 0.04 e  

Atm. pressure 0.05 ± 0.02 

L
o

n
g

-t
er

m
 

C
li

m
at

e
 

(0
.0

3
 ±

  0
.0

2
) 

m
 

Air temperature 0.26 ± 0.08 

0.04 ± 0.04 0.60* 

Precipitation 0.32 ± 0.08 
Solar radiation 0.21 ± 0.08 
Air humidity 0.07 ± 0.04 

Atm. pressure 0.05 ± 0.02 
Other climate factors (Wind, [CO2]) 0.09 ± 0.05 m 

E
x

p
er

im
en

ta
l d

at
a
 

fr
o

m
 s

it
e
 

(0
.2

3
 ±

 0
.1

0
) 

e  

Annual extracted yield 0.15 ± 0.12 

0.08 ± 0.05 0.03 

Dynamic soil moisture 0.13 ± 0.07 

Vegetation data (Phenology, LAI) 0.12 ± 0.08 
N2O and/or CH4 0.12 ± 0.08 

GPP & NEP 0.10 ± 0.08 e 
NEE & Reco 0.09 ± 0.06 e 

Dynamic soil mineral N 0.08 ± 0.05 m 
Dynamic SOC & SON stock 0.08 ± 0.05 

Soil N losses 0.07 ± 0.04 
Dynamic soil temperature 0.05 ± 0.03 e 

M
an

ag
em

en
t 
p

ra
ct

ic
es

 
d

u
ri

n
g

 e
x

p
er

im
en

t 

(0
.2

6
 ±

 0
.0

9
) 

Fertilization rates 0.23 ± 0.07 

0.08 ± 0.04 0.12 

Irrigation 0.18 ± 0.06 e 

Freq. harvest, grazing & cut in grass 0.13 ± 0.07 
Fertilizer type 0.10 ± 0.04 

Frequency of ploughing 0.09 ± 0.04 
Crop residues 0.07 ± 0.04 

Intercropping 0.08 ± 0.03 
Fertilization mode 0.06 ± 0.04 

Frequency of other activities 0.06 ± 0.04 

L
o

n
g

-t
er

m
 

m
an

ag
em

en
t 
p

ra
ct

ic
es

  

(0
.0

6
 ±

 0
.0

4
) 

Fertilization rates 0.20 ± 0.07 m 

0.06 ± 0.04 0.09 

Irrigation 0.17 ± 0.06 

Frequency of harvest 0.11 ± 0.07 
Intercropping 0.09 ± 0.05 

Land use history 0.08 ± 0.06 
Frequency of ploughing 0.09 ± 0.03 

Crop residues 0.09 ± 0.03 
Fertilizer type 0.07 ± 0.03 

Frequency of other activities 0.06 ± 0.03 
Fertilization mode 0.04 ± 0.03 

S
o

il
 i
n

fo
rm

at
io

n
 

(0
.2

3
 ±

 0
.0

9
) 

m
 

Soil texture 0.20 ± 0.10 m 

0.09 ± 0.07 0.22* 

FC, WFPS, CEC 0.19 ± 0.09 

Bulk density 0.15 ± 0.04 
Initial SOC stock 0.13 ± 0.04 m, e 

pH 0.09 ± 0.05 m 
Initial SON stock 0.09 ± 0.04 m 

Soil mineral N 0.07 ± 0.04 
Other soil information 0.06 ± 0.03 

Soil type 0.03 ± 0.02 

Footnote: The colour gradient indicates where the relative importance of each input variables falls within each variable 
category.  
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Table 3: Cumulative importance of the five stages of the model ensemble protocol. Within 
each stage, the ranking of the input variables shown in Table 2 was normalized over the 
importance score of their corresponding categories. 

Input Category Input Variable 
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

(0.67 ± 0.02) (0.11 ± 0.01) (0.06 ± 0.03) (0.05 ± 0.01) (0.11 ±  0.02) 

S
o
il
 i
n
fo

rm
at

io
n

 

Soil type 0.01 ± 0.01     

Soil texture 0.05 ± 0.04     

Bulk density 0.04 ± 0.15     

SOC stock 0.03 ± 0.13     

SON stock 0.02 ± 0.09     

pH 0.02 ± 0.09     

Soil mineral N 0.02 ± 0.07     

FC, WFPS, CEC 0.04 ± 0.19     

Other soil information 0.01 ± 0.06     

C
li
m

at
e 

ex
p
. Air temperature 0.03 ± 0.03     

Precipitation 0.04 ± 0.03     

Solar radiation 0.03 ± 0.01     

Air humidity 0.01 ± 0.01     

Atm. pressure 0.01 ± <0.00     

Other climate factors 0.01 ± <0.00     

M
an

ag
em

en
t 

p
ra

ct
ic

es
 

d
u
ri

n
g
 e

x
p
er

im
en

t 

Crop residues 0.02 ± 0.01     

Fertilization rates 0.06 ± 0.03     

Fertilization mode 0.02 ± 0.01     

Fertilizer type 0.03 ± 0.02     

Irrigation 0.05 ± 0.02     

Frequency of ploughing 0.02 ± 0.01     

Frequency other activities 0.02 ± 0.01     

Intercropping 0.02 ± 0.01     

Freq. harvest, grazing & cut in grass 0.03 ± 0.01     

G
en

er
al

 s
it
e 

in
fo

rm
at

io
n

 Crop type 0.02 ± 0.01     

Location 0.01 ± 0.01     

Terrain info <0.00 ± <0.00     

Experimental length 0.01 ± 0.02     

Mean regional yield  0.01 ± 0.01    

L
o
n
g

-t
er

m
 

C
li
m

at
e 

Air temperature  0.01 ± <0.00    

Precipitation  0.01 ± 0.01    

Solar radiation  0.01 ± 0.01    

Air humidity  <0.00 ± <0.00    

Atm. pressure  <0.00 ± <0.00    

Other climate factors  <0.00 ± <0.00    

L
o
n
g

-t
er

m
 

m
an

ag
em

en
t 

p
ra

ct
ic

es
 Fertilization rates  0.01 ± 0.01    

Fertilization mode  <0.00 ± <0.00    

Fertilizer type  <0.00 ± <0.00    

Irrigation  0.01 ± 0.01    

Frequency of harvest  0.01 ± 0.01    

Frequency of ploughing  0.01 ± <0.00    

Frequency other activities  <0.01 ± <0.00    

Crop residues  0.01 ± <0.00    

Intercropping  0.01 ± <0.00    

Land use history  0.01 ± 0.01    

E
x
p
er

im
en

ta
l 

d
at

a 
fr

o
m

 s
it
e 

Annual extracted yield   0.03 ± 0.03   

Vegetation data (phenology, LAI)   0.03 ± 0.03   

Soil temperature    0.01 ± 0.01  

Soil moisture    0.03 ± 0.01  

Soil mineral N    0.02 ± 0.01  

SOC & SON     0.02 ± 0.01 
GPP & NEP     0.02 ± 0.02 
NEE & Reco     0.02 ± 0.02 

Soil N losses     0.02 ± 0.01 
N2O and/or CH4     0.03 ± 0.03 

Footnote: SOC= soil organic carbon, SON= soil organic nitrogen, FC= field capacity, WFPS= water field pore space, CEC= cation exchange capacity, GPP= gross 
primary production, NEP= net ecosystem production, NEE= net ecosystem exchange, Reco= ecosystem respiration. 




