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A B S T R A C T   

Monitoring and updating calibration models are common tasks when analytical methods are based on near- 
infrared spectroscopy. This work describes a situation in which a PLS calibration model that is used routinely 
for the determination of phosphorus content in pig faeces in digestibility studies had to be updated in order to be 
used with the faeces collected in a new trial with phytases. An approach based on D-optimality is presented that 
selects a reduced number of the new samples to be analyzed with the reference analytical method so that the 
small set is used to confirm the need to update the model and validate it. The rest of the new samples that had not 
been selected by the algorithm were accurately predicted with the updated model. The updated model main
tained its previous performance for the samples in the validation set (an RMSEP of 1.58 g kg− 1 compared with an 
RMSEP of 1.54 g kg− 1 before the update) and the prediction error for the new samples was RMSECV = 1.95 g 
kg− 1, much lower than the RMSEP = 11.38 g kg− 1 obtained before the model update. In addition, the predictive 
ability of the updated PLS model was significantly better than updated models selecting the reduced dataset 
using other sample selection methods such as Kennard-Stone, a leverage-based selection method and random 
selection.   

1. Introduction 

Animal nutrition research is a wide field aimed at the efficient and 
sustainable production of food. A large branch of animal nutrition 
research is devoted to finding optimal formulations for the diets of farm 
animals at the different growth stages and understanding how the in
gredients interact and enhance nutrient digestibility. This valuable in
formation is obtained in in-vivo trials in which ingredients, feeds and 
faeces must be analyzed. Over the years, the traditional time-consuming 
analytical methods used to analyze these samples have been replaced by 
rapid, reagent-free, waste-free determinations based on near-infrared 
spectroscopy (NIRS) and multivariate calibration. These models have 
been shown to predict accurately the nutritional content of a variety of 
ingredients [1–4], feeds [5,6] and faeces [7,8] so NIRS is now widely 
used, not only in animal research but also as a routine analytical tech
nique and legal feed labelling by feed producers in the agri-food sector. 

To provide accurate predictions, NIRS-based models must be trained 
on representative samples for which the reference parameters have been 
determined with validated analytical methods, usually official methods. 
This is the longest part of method development since it involves 

collecting and analysing samples from different sources, over long pe
riods of time until all probable future sources of spectral variations have 
been taken into account. In the feed-production sector, for example, this 
implies including different raw materials from different origins, from 
various harvests and stored in a variety of conditions. Since model 
predictions are only reliable for samples obtained under the same con
ditions (within the limits) as the samples from the calibration set, the 
performance of these models must be monitored to uncover unmodelled 
spectral variability. If it exists, then the model must be adapted to the 
new situation. To do that, some calibration transfer or domain adapta
tion methods have been proposed in the literature [9,10]. Among them, 
the present study focuses on model update with new samples to expand 
the domain [11]. How often an update is needed depends on how uni
versal the model is. It is less frequent in feed production facilities, which 
use stable sources of raw materials, than in animal research studies, 
where new combinations of ingredients are regularly being tested. This 
work describes an example of the latter, in which NIRS-based multi
variate models are used to predict organic matter, crude protein, fat, 
neutral detergent fibre, acid detergent fibre and phosphorus in pig faeces 
during digestibility studies carried out at the Institute of Agrifood 
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Research and Technology (IRTA) in Constantí, Tarragona, Spain. The 
composition of the studied faeces depends on the weight, age, and ge
netic background of the animal [12] but especially on the type and di
gestibility of the diet. Therefore, it is not uncommon for faeces spectra 
from a new digestibility trial to show variations not recognized by the 
current model. If that were the case, the model would produce unreli
able predictions for these samples and therefore they would have to be 
analyzed with the slower analytical method. Alternatively, one wishes 
not to analyze the whole batch of samples but just a reduced represen
tative number of them. This subset would be then used to update the 
calibration model so that the new model can be used to predict the rest 
of the batch as well as all future samples of the same type. 

The selection of representative samples is a recurrent topic in the 
NIRS literature, ranging from dividing a dataset into training, validation 
and test sets [13], to selecting a subset of samples for model transfer 
between instruments or in new conditions [14], as well as the selection 
of samples for updating running models [11]. This work focuses on the 
latter case. The simplest selection method in model updating is to 
randomly select samples from the new batch. While this method is sta
tistically sound, the main drawback is that the selected subset may not 
expand to the limits of the new spectral domain. Hence, some of the 
samples to be predicted may still appear extreme to the updated model, 
leading to extrapolation problems [15]. To better ensure the represen
tativeness of the selected subset and the coverage of the spectral domain, 
the selection can be made with specific algorithms. Algorithms can be 
grouped into those that make use of the spectra (X) and the reference 
values (y) and those that only use the spectra. Sample set partitioning 
based on the joint X-y distances (SPXY) is an example of the first group 
[16]. This algorithm has been shown to select more representative 
subsets than those based solely on the spectra [17]. Other examples are 
the successive projections algorithm (SPA) [18] and the reference value 
(YR)-based sample selection algorithm [19]. The main drawback of 
these algorithms is that they require analysing all the new samples with 
the reference method. This means that the updated model will only be 
useful for future samples but the batch that just arrived cannot benefit 
from the update. A more interesting approach is to select samples based 
on the spectra only, which is particularly useful when the new batch is 
large. Once the outlier diagnostics have warned about the likely inac
curacy of the predictions, a few of these samples are selected based on 
their spectra, are analyzed by the reference method and are used to 
update the model. The updated model can be then used to predict the 
rest of the batch. A variety of algorithms can select the samples based 
solely on the spectra. Two popular ones are the Kennard-Stone [20] and 
the duplex [21] algorithms that try to uniformly cover the multidi
mensional spectral space by selecting the samples with the maximum 
distance (commonly Euclidean distance or Mahalanobis distance) be
tween the selected samples. Other algorithms are those based on 
leverage or Mahalanobis distance [22,23]. More recently, Xu et al. [24] 
proposed to use the simple interval calculation (SIC) leverage as the 
criterion and Chen et al. [25] developed an algorithm based on isolation 
forests for outlier detection and subset selection (IOS). The cited algo
rithms rank the samples by their importance but there is no criterion that 
indicates what is a sufficient number of samples. An optimal subset size 
can be provided by criteria from the field of optimal design of experi
ments. To decide optimal sets of experimental conditions, criteria such 
as the D-criterion, the G-efficiency criterion and the A-criterion [26] 
provide optimal sets on the basis of Multiple Linear Regression (MLR) 
models. Ferré and Rius used the D-optimality criterion to select samples 
based on their spectra for different types of spectroscopies [27,28]. In 
their work, the samples were selected from an initial set for building a 
model, but not to update an existing one. 

This work presents as a case study the selection of samples for the 
updating of a partial least squares (PLS) model for the prediction of 
phosphorus content in pig faeces from their NIR spectra. The need arose 
when the spectra of the pig faeces from a new digestibility trial were 
flagged as outliers for the running model. Thus, a reduced subset of 

samples from the new trial was selected, analyzed with the reference 
method and used to update the model. The sample selection approach is 
inspired by the D-optimality criterion used in optimal experimental 
design. Its performance is compared with that of random selection, the 
Kennard-Stone algorithm and selection based on the leverage. 

2. Materials and methods 

2.1. Samples 

The existing model for phosphorus content in pig faeces was built 
with pig faeces samples collected during digestibility studies from 2018 
to 2020 at the Institute of Agrifood Research and Technology (IRTA) in 
Constantí, Spain. The faeces samples were lyophilized, ground and 
stored in sealed bags in the refrigerator until analysis. Phosphorus 
content (expressed as g kg− 1 related to raw product) was determined by 
UV-VIS spectroscopy using molybdovanadate reagent according to 
AOAC Official Method 965.17 [29]. The spectrum of approximately 30 g 
of sample was measured on a NIRS DS2500 (Foss NIR Systems, 
Denmark) with a 7 cm diameter cup in reflectance mode from 800 to 
2499.5 nm every 0.5 nm. The data set was randomly divided into 246 
training samples and 83 validation samples that were used to develop 
the model running in the laboratory. In 2021, a new batch of 103 
samples was collected in a digestibility study that investigated the effi
cacy of different phytases on the performance of weaned piglets fed with 
a complex diet based on wheat-corn and soybean meal. The determi
nation of phosphorus in these samples from their spectra using the 
existing calibration model produced outlier detection warnings and 
hence, an update of the current model was required. For this process, the 
phosphorus content in some selected samples of the new batch was 
needed. This was found with the reference method for phosphorus 
content mentioned above. 

2.2. Data analysis 

Partial least squares regression (PLSR) was used to develop the 
calibration model for phosphorus content. The spectra were pretreated 
with Savitzky–Golay first derivative interpolating with a second-order 
polynomial and a window width of 17 points [30] and mean-centered. 
A five-fold venetian blind cross validation was used to choose the 
optimal number of latent variables (LVs) for the model. PLS toolbox 
software (2016, Eigenvector Research, Inc., Manson, WA, USA) running 
in Matlab R2020a (The MathWorks Inc., Natick, MA, USA) was used to 
develop the calibration models. The Fedorov algorithm used for sample 
selection was programmed in-house. 

2.3. Selection of samples for model updating 

D-optimality is a numerical criterion used in the field of optimal 
experimental design that defines the quality of an experimental design. 
Standard experimental designs, such as the full factorial design, are D- 
optimal. D-optimality is also used to create experimental designs when 
the experimental domain is irregular, in which case an algorithm such as 
Fedorov’s algorithm [31] or genetic algorithms [32] is used to choose 
from a list of candidate examples which ones should be selected, under 
the criterion that they should maximize the determinant of the infor
mation matrix in an MLR model. In the context of multivariate cali
bration, this idea was used to select subsets of calibration samples to 
obtain models using fewer samples. It was found to perform as well as or 
even better than Kennard-Stone algorithm or random sampling [27,33, 
34]. Different from the Kennard–Stone algorithm, which seeks to 
maximize the distance between the selected samples to uniformly cover 
the calibration domain, the samples selected with the D-optimal crite
rion tend to be located at the edges of the domain in lineal models where 
the most influential samples are found. 

D-optimality is also used in experimental design to repair designs 
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when some of the planned experiments cannot be executed, or the 
domain must be extended. In that case, the algorithm searches which 
examples from a list of candidates should be added to the existing ones 
in order to maximize the determinant of the information matrix. This use 
of D-optimality is exploited in this work, where a procedure using 
Fedorov’s algorithm is presented. This algorithm will be used to find 
which samples from an external trial should be added to the existing 
calibration set to update the original PLS model. 

For a working PLS model, let T be the N × P matrix of scores of the 
calibration samples where each row corresponds to a calibration sample 
and each column corresponds to a latent variable of the model. Let TB be 
I × P matrix of the scores of the new batch of samples projected onto the 
latent variable space of the current model. These samples are candidates 
to being analyzed and used for model updating. The algorithm starts by 
creating matrix Tn by randomly selecting n rows of TB. Then, the 

determinant Det(TT
E TE) is evaluated, where TE is the matrix 

[
T
Tn

]

and T 

indicates transpose. Next, one of the rows of Tn is exchanged for one of 
the remaining rows of TB so that the determinant increases as much as 
possible. The exchanged rows are decided following Fedorov’s algo
rithm to find D-optimal subsets and can be found elsewhere [26–28]. 
This step is repeated iteratively until the determinant no longer im
proves. Since the algorithm can find local maxima, it can be restarted 
multiple times with a new random set of samples Tn and the set of n 
samples with the largest determinant is kept as optimal. The whole 
procedure is then repeated to select subsets with a different number of 

samples n and the one with a maximum Det
(

TT
E TE

n+N

)1
P, which is a mea

sure of the information content per sample, is finally selected as the 
optimal subset to be used for updating the model. 

3. Results and discussion 

3.1. Detecting the need for model updating 

At IRTA, a PLSR model was used to predict the phosphorus content in 
faeces. Table 1 shows the performance measures for this model. The 
model involved 14 LVs as determined by cross-validation. This relatively 
high number was attributed to the fact that the training set included 
faeces from diverse research studies from 2018 to 2020, which involved 

different diets fed to pigs of different ages, sexes and weights. Also notice 
that different from other nutrients such as protein or fat, phosphorus 
does not present specific absorption bands in the studied spectral range. 
Its prediction is possible thanks to the correlations between this con
stituent and the absorbance of some organic molecules of the sample 
such as phytate that it is abundant in plant materials and hence in pig 
diets and faeces. This makes the prediction of phosphorus usually less 
accurate than the predictions for main nutrients that have stronger 
contributions in NIRS. Overall, the model performed well with a coef
ficient of determination of prediction (R2

p ) of 0.94 and a root mean 
square error of prediction (RMSEP) of 1.54 g kg− 1 for the validation set. 
Thus, the model was considered valid for routine use. The routine use of 
the model included checking the sum of squares of the spectral residuals 
(Q-residuals) and the leverage of the new samples to be predicted [35]. 
These are common diagnostics to flag unmodeled spectral variability in 
the new spectra. Q-residuals and/or leverage larger than those of the 
training and validation samples warn of unreliable predictions. The 
detected outliers can be the result of erroneous measurements but can 
also indicate unique samples. The analyst’s decision on how to proceed 
next depends on knowledge about the unusual characteristics of the new 
samples and whether they are occasional (so they should simply be 
analyzed with the reference method) or whether more samples of the 
same type are likely to arrive in the future, in which case it may be worth 
updating the model [36]. 

In this work, a new batch of pig faeces came from a trial coded P704 
that tested a complex diet with ingredients that had not been used 
before. This included rapeseed meal, rice bran and sunflower seeds, but 
also different phytases, which could affect the digestion of the nutrients 
in the feed, mainly phosphorus digestion. Therefore, it was likely that 
the faeces from this trial could be outliers for the current model for 
phosphorus content. As expected, the faeces spectra had significant 
differences in signal intensity from those used to train and validate the 
PLS model (Fig. 1). In addition, the entire batch was positioned in the 
upper right quadrant of the Q-residuals versus leverage plot (Fig. 2). The 
unmodeled variability in the new spectra could lead to large errors in the 
predicted phosphorus content. Note that although limits for the leverage 
and Q-residuals can be defined from the training and validation data 
[35,37], in this case visual inspection of this plot was sufficient to reveal 
the abnormal behavior of the new batch. The expected large errors were 
confirmed by analyzing a subset of the samples of trial P704 with the 
reference method. As expected, (Fig. 3), the errors were unacceptably 
large, with an RMSEP of 11.38 g kg− 1, much higher than the 1.54 g kg− 1 

Table 1 
Characteristics of the previous and updated calibration models developed for 
phosphorus content in pig faeces (g⋅kg− 1). Number of samples used for cali
bration (Nc) and validation (Nv), number of P704 trial samples in the D-optimal 
selected subset (ND− sel), number of samples used to validate the methodology 
(ND− val), number of latent variables (LV), coefficient of determination of cali
bration (R2

c ) and prediction (R2
p ), root mean square error of calibration (RMSEC) 

and prediction (RMSEP), bias and slope of the predicted vs measured regression 
line, root mean square error of prediction of the P704 samples included in the 
subset (RMSEPD− sel) and used to validate the methodology (RMSEPD− val).   

Previous model Updated model 

Nc 246 271 
Nv 83 83 
ND− sel 25 25 
ND− val 78 78 
LV 14 14 
R2

c 0.95 0.93 
RMSEC (g⋅kg− 1) 1.45 1.63 
R2

p 0.94 0.93 
RMSEP (g⋅kg− 1) 1.54 1.58 
Bias 0.24 0.25 
Slope 0.96 0.96 
RMSEPD− sel (g⋅kg− 1) 11.38 1.95 1 

RMSEPD− val (g⋅kg− 1) 10.45 1.66  

1 RMSECV calculated from the cross-validation results that considered only 
the prediction errors of the P704 samples in the subset. 

Fig. 1. Mean spectrum (after 1stderivative) of the calibration and validation 
sets, and that of the new batch of samples. 
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that had been accepted for the current model. Since more digestibility 
studies of the same type were expected in the future, it was more 
convenient to update the model than to exceptionally analyze all the 
new batch of samples with the reference method. Therefore, those same 
selected samples that had been used to confirm that the predictions er
rors for this batch were unacceptable, were also used to update the 
model. The following sections describe the selection of the subset of 
samples to be analyzed and the validation of the updated model. 

3.2. Subset selection 

Once the Q-residuals vs leverage plot flagged all 103 samples of trial 
P704 as outliers, the model scores (T) and the scores of the new trial 
spectra (TB) were submitted to the selection algorithm (section 2.3) to 
select which samples should be analyzed with the reference method. The 

algorithm returned the subsets of size n = 1, …103 that maximized 

Det
(

TT
E TE

n+N

)1
P. Although subsets with very low n are expected to be 

useless, they serve to understand the evolution of the optimization cri
terion when n varies. Fig. 4 shows the value of this determinant against 
the number of samples in the subset, n. The large increase in the 
determinant on the left of the graph indicates that the subsets with low n 
incorporate informative samples that can improve the model. Adding 
more samples continues to increase the information content of the 
subset, but the improvement is less and less because the newly selected 
samples were less unique (that is, their spectra were like the spectra of 
the already selected samples). A plateau is reached for subsets con
taining 20 to 30 samples, obtaining the maximum determinant for all 
subset sizes with the 25-sample subset. For subsets of more than 25 
samples, the additional samples did not contribute significant new in
formation per sample and the determinant begins to decrease. There
fore, those samples in the subset of 25 were the most informative and 
were analyzed with the reference method. They were first used to 
confirm the need to update the model (as discussed in the previous 
section) and to update the model. 

3.3. Model update and validation 

The model was recalculated by adding the 25 selected samples from 
the trial P704 into the existing training set. The optimal number of LVs 
obtained by cross-validation was 14, as in the original model. The fact 
that the inclusion of new sources of spectral variance did not increase 
the number of LVs means that the variance was distributed over the 
many LVs of the model. A similar behavior had been observed by Capron 
et al. [11], who noted that only one out of four models that had been 
updated required an additional factor while the rest used the same 
number. 

The validation of the updated model was as follows. Commonly, the 
original data sets are divided into training, validation and test sets that 
are used to compute the model (training set), select model parameters 
such as the number of factors or guide wavelength selection (validation 
set) and verify the actual performance of the final model (test set). When 
the number of samples is low, the validation set (and sometimes the test 
set as well) is replaced by some alternative validation method such as 
cross-validation. In the case of updating a model, the validation of the 
model with an independent set of samples would require analyzing with 
the reference method not only those necessary to update the model (as 
indicated by the selection algorithm) but also a sufficient number to 

Fig. 2. Q-residuals versus leverage. Calibration samples of the stablished 
models (blue), validation samples of the stablished models (orange) and sam
ples of the new batch (red). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Predicted vs measured values of phosphorus content with the current 
model for the calibration set, validation set, the selected samples of Trial P704 
and the non-selected samples of Trial P704. 

Fig. 4. Number of selected samples used to update the model against the D- 
criterion. The root mean square error of prediction (RMSEP) of the non-selected 
samples of trial P704 is also shown. 
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verify that the model can predict the new samples correctly. However, 
the analysis of too many samples reduced the benefit of the presented 
approach and it was decided that no additional samples would be 
analyzed in addition to those selected by the algorithm. Therefore, 
validation was carried out by predicting the existing validation set, to 
confirm that the model maintained the prediction ability for the previ
ous samples, and by cross-validation. The common cross-validation 
returns an average prediction error over all the samples included in 
the model (in the form of the root-mean-squared error of cross- 
validation RMSECV). This obscures the performance of the model for 
the newly included samples. To focus only on the new samples, a vari
ation of the common RMSECV was calculated from the cross-validation 
results that considered only the prediction errors of the samples of the 
new trial. As it can be seen in Table 1, the updated model maintained its 
previous performance for the samples in the validation set (an RMSEP of 
1.58 g kg− 1 compared with an RMSEP of 1.54 g kg− 1 before the update) 
and the prediction error for the new samples was RMSECV = 1.95 g 
kg− 1, much lower than the RMSEP = 11.38 g kg− 1 obtained before the 
model update. As discussed, a fairer comparison of prediction errors 
could be obtained by analyzing extra samples of the new trial. However, 
this additional effort was not considered to be necessary since the 
improvement after the update was significant enough to conclude that 
the update was successful. The updated model was still valid for pre
dicting the original type of samples and also for predicting the rest of the 
samples of the P704 trial. This finished the model update procedure. 

3.4. Performance of the subset selection approach 

Exclusively for this work, the 78 not selected samples from the P704 
trial were also analyzed with the reference method to study the per
formance of the presented approach. It should be clear that this is not 
part of the model update strategy but was necessary to compare the 
selection strategy with other options. 

As it has been shown previously (section 3.1), the need to update the 
model was discovered from the outlier diagnostics (Fig. 2) and 
confirmed by the prediction errors of a subset of selected samples from 
the P704 trial. Fig. 3 shows the predicted phosphorus content with the 
original model for the selected subset of samples (25 red dots) but also 
for the unselected samples (78 red crosses) against their reference 
values. As expected from Fig. 2, the prediction errors were large for all 
samples in the P704 trial and confirm the conclusions obtained from 
only the selected samples. 

Fig. 4 shows the evolution of the RMSEP of the unselected samples of 
P704 trial when updated models with an increasing number of optimal 
samples were used to predict them. The RMSEP remained high when 
only a few new samples were used to update the model, since the in
fluence of these samples in the calculated model was diluted by the 
many others in the training set. As expected, the RMSEP decreased as 
more samples of the P704 trial were included in the model until it 
reached a stable value of 1.66 g kg− 1 when the 25 new subset samples 
were added. This means that the model finally accounted for the spectral 
variability in the new samples and was able to accurately predict the rest 
of the samples of the new batch. This model performance correlated well 
with the information content per sample that was used as a criterion to 
decide the optimal number of samples. The larger reduction of RMSEP 
occurred when the increments of the determinant were large which 
happens with the small size subsets. The RMSEP then kept decreasing as 
the subset sizes increased while the determinant increased, and the 
stable RMSEP was reached for the subset with the maximum determi
nant, at 25 samples. This behavior suggested that the D-optimal criterion 
helps to select informative samples to update the model. 

Fig. 5 shows the predictions of the training samples of the updated 
model, showing those that were part of the original training set, and 
those that were added from the selection algorithm. It can be observed 
that the selected samples, which were predicted with large errors before 
the update, are now predicted with low errors. This was to be expected, 

as these samples have now been used in the training step. The most 
relevant results are those of the unselected samples (red diamonds). As 
Table 1 shows, these samples had large prediction errors in the original 
model (RMSEP of 10.45 g kg− 1) although this value would never actu
ally be known in the proposed approach because the reference values of 
these samples would not be known. Now they are predicted well, with an 
RMSEP of 1.66 g kg− 1, similar to the 1.95 g kg− 1 value obtained by cross- 
validation of the updated model and lower than the maximum accepted 
error for this model (2 g kg− 1). The prediction of the samples that had 
not been used for the model update was one of the objectives of the 
update. 

Fig. 6 compares the effectiveness of the proposed approach with 
other sample selection methods, namely random selection, the Kennard- 
Stone algorithm and the selection of the samples with the highest 
leverage, fixing to 25 the number of samples selected by each method. 
To select the samples randomly, it must be considered that any selected 

Fig. 5. Predicted vs measured values of phosphorus content with the updated 
model for the calibration set, validation set, the selected samples of Trial P704 
and the non-selected samples of Trial P704. 

Fig. 6. Cumulative distribution of the RMSEP of 10,000 phosphorus models 
updated using a subset of samples selected at random. The RMSEP obtained 
selecting the samples by the D-optimal criterion, Kennard-Stone and sorted 
leverage are indicated. 
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subset of 25 samples is out one of the many possible subsets (5.6 × 1023 

combinations) that can be created from 103 samples. The performance 
of these subsets can be ranked to see how one approach compares to the 
others. For this purpose, 10.000 models were calculated with 25 
randomly selected samples from the P704 trial, with the number of LVs 
selected by cross-validation, and the RMSEP of the unselected samples 
was plotted as a cumulative distribution in Fig. 6. On the curve one can 
read the proportion of models that gave an RMSEP less than or equal to a 
given value. It is seen that random sampling can provide updated models 
with an RMSEP as low as 1.57 g kg− 1 but also as high as 2.91 g kg− 1. 
Considering that the acceptable RMSEP for the determination of phos
phorus content in the digestion studies is 2 g kg− 1, it is seen that the 
effort of updating a model with 25 random samples can sometimes be 
useless and can end-up with updated models that predict the remaining 
samples very poorly (although better than without updating the model). 
To ensure the efficiency of the experimental effort, a criterion must be 
sought to guide the selection of the subset so that the RMSEP is as low as 
possible. The proposed algorithm based on the D-optimality criterion 
selected a subset whose updated model was better than 99.5% of the 
randomly subsets selected. The subset selected by sorting the leverage 
also performed better than most random selections but worse than the D- 
criterion. In this dataset, the Kennard-Stone algorithm performed the 
worst. We could not find an explanation for such a bad performance, and 
the usual performance of the Kennard Stone algorithm found with 
models of other properties (results not shown) is usually better than the 
average of random sampling, although still worse than that of D- 
optimality. 

4. Conclusions 

A new sample selection algorithm inspired by the D-optimality cri
terion was successfully used to update a functional PLS model that 
predicts the phosphorus content of pig faeces from their NIR spectra. The 
selection algorithm used only the information already available, that is, 
the complete set of spectra from a new batch. Those spectra had already 
been measured since the samples were intended to be predicted by the 
current model. Once outlier detection diagnostics had shown the failure 
of the model for these samples, Fedorov’s algorithm was used to select a 
subset of the batch that was used to update the model. The new model 
was validated by cross-validation. The optimal selection of additional 
samples to be used as a test set to validate the updated model was not 
considered and is the subject of current research. The results showed 
that the predictive ability of the updated model was significantly better 
than the prediction ability of other updated models after selecting the 
subset by other sample selection methods such as random selection, 
Kennard-Stone and leverage-based selection. 
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infrared reflectance spectroscopy (NIRS) for the mandatory labelling of compound 
feedingstuffs: chemical composition and open-declaration, Anim. Feed Sci. 
Technol. 116 (2004) 333–349. 

[6] E. Fernández-Ahumada, J.E. Guerrero-Ginel, D. Perez-Marín, A. Garrido-Varo, 
Near infrared spectroscopy for control of the compound-feed manufacturing 
process: mixing stage, J. Near Infrared Spectrosc. 16 (2008) 285–290. 

[7] L. Paternostre, V. Baeten, B. Ampe, S. Millet, J. De Boever, The usefulness of NIRS 
calibrations based on feed and feces spectra to predict nutrient content digestibility 
and net energy of pig feeds, Anim. Feed Sci. Technol. 281 (2021), 115091. 
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