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Abstract 34 

The present study is the first report of some representative innate immune genes in meagre 35 

(Argyrosomus regius) larvae. This study has specifically focused on the growth period from 36 

hatching to the juvenile stage, a critical time in marine fish development when reliance on 37 

innate immune mechanisms are required for survival. We report molecular cloning of 38 

partial open reading frames and expression patterns for some innate immune genes (c3, 39 

cox2, met, lyzc, mxp, myd88, nod2, nod3). In addition, phylogenetic analyses of some of 40 

the sequences obtained was performed where confusion among closely allied isoforms may 41 

have existed. These results show the met isoform from meagre is met II, an isoform more 42 

similar to a homolog described in Larimichthys crocea; lysozyme (lyzc) corresponds to the 43 

c-type and NOD isoforms (nod2, nod3) separate into different clades confirming their 44 

distinctness within a common evolutionary history. Gene expression profiles of innate 45 

genes were investigated, for nine developmental stages, from 8 days post-hatching (dph) 46 

to 120 dph. Present results demonstrated that c3, cox2, met II, lyzc, mxp, myd88, nod2, and 47 

nod3 were expressed in all stages of larval development and displayed distinct expression 48 

profiles in separate tissues (kidney, spleen gut and gill). Moreover, expression patterns 49 

suggested theses innate immune genes may be influenced by feeding practices, i.e. 50 

switching from live prey (rotifer and Artemia) and weaning onto an inert commercial diet. 51 

In addition to evaluating changes in gene expression during early development, this study 52 

evaluated the modulation of gene expression by means of in vivo trials in juveniles that 53 

were stimulated with PAMPs (LPS, poly I:C, β-glucan). These results revealed significant 54 

changes in mRNA levels of target genes in the kidney, spleen, gut and gills. However, 55 

expression profiles differed in magnitude depending on the stimulant and/or tissue. These 56 

results are discussed in terms of their relevance and potential application in aquaculture 57 

practices. 58 
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1. Introduction 64 

In recent decades, the development of the aquaculture industry has been achieved by 65 

important advances in production techniques, as well as the introduction of new species 66 

[1]. To achieve greater sustainability for the industry, more enhanced production is needed 67 

to boost efficiency; thus, proper health management is a key issue in actual fish farming 68 

operations. One research area that could improve health management is vaccine 69 

development, among other preventive measures (i.e, functional feeds and/or therapeutic 70 

agents). However, in addition to the significant research and financial investments required 71 

for vaccine development for each particular infectious agent, there is a requirement for 72 

proper understanding of the immune functions and timing of their development in order to 73 

synchronize rearing practices (i.e. vaccination) to the stage of fish development. 74 

Meagre (Argyrosomus regius) is an emerging species in aquaculture and is currently 75 

receiving a lot of attention within European region. Meagre can be found throughout the 76 

Mediterranean and Black Seas, as well as in the East Atlantic coasts [2]. As is common in 77 

production of a new species in aquaculture, the artificial rearing of meagre larvae needs to 78 

be optimized to improve survival rate in an effort to reduce larval rearing costs [3]. The 79 

successful culture of larvae from marine species not only requires optimized rearing and 80 

feeding protocols based on the species’ nutritional requirements and digestive capabilities, 81 

but it also relies on an understanding of the function and timing of maturation of the 82 

immune system to aid management of the occurrence of infectious disease, which cause 83 

high losses in aquaculture, especially during early development [4].  84 

Fish larvae are not capable of eliciting a specific immune response during early 85 

development since immune memory and a fully competent adaptive response develops 86 

later during the juvenile stage. Therefore, larvae are dependent on innate defenses against 87 

pathogens or opportunistic agents during their early life stages. While the epithelial layers 88 

of gills skin and digestive tract provide an initial physical barrier, if  breached by a pathogen 89 

the innate immune system, composed of various effector molecules, provides the first line 90 

of defense. The innate immune system includes membrane-bound pathogen recognition 91 

receptors (PRRs), such as NOD-like receptors, and cytoplasmic proteins that bind 92 

pathogen-associated molecular patterns (PAMPs) expressed on the surfaces of invading 93 

microbes [5]. Innate immunity exerts its effect  by employing a variety of cells and effector 94 

proteins able to destroy or inhibit the growth of infectious micro-organisms [6]. The 95 

complement system is one of the first lines of immune defense and is a regulator of acquired 96 



immunity. The complement system is activated through three different, but partially 97 

overlapping routes: the classical, alternative and  lectin binding pathways [7]. The classical 98 

pathway is triggered by antibody binding to the cell surface that in turn binds a cascade of 99 

complement factors; the alternative pathway is independent of antibody binding and is 100 

activated directly by foreign microorganisms; and the lectin pathway, which is activated 101 

by the binding of a protein complex consisting of mannose/mannan-binding lectin to 102 

oligosaccharide ligands on bacterial cells [8]. Lysozyme is expressed in a wide variety of 103 

tissues of the innate immune system of vertebrates and it is an important defense molecule 104 

that possesses lytic activity against microbial cell walls preventing invasion [9]. The role 105 

of Mx protein (mxp) in resistance to negative-strand RNA viruses has been well 106 

established, despite the precise mechanism of viral inactivation by Mxp not being fully 107 

understood [10]. Mx proteins are highly conserved in vertebrates, and are able to inhibit 108 

the virus life cycle in different phases, whether they are localized in the cytoplasm or in the 109 

nucleus of cells [11]. Cyclooxygenase (cox2) is responsible for synthesis of prostaglandins 110 

to maintain homeostatic functions and it also plays an important role in the inflammatory 111 

response, among other relevant functions [12]. Metallothionein is an important protein 112 

contributing to resistance to heavy metal contamination in aquatic organisms, but also has 113 

important immune functions [13]. Metallothionein plays a relevant role in the 114 

detoxification of heavy metal ions and plays a role in buffering action against heavy metals  115 

by binding essential metals such as Cu and Zn, which has an inhibitory effect on systemic 116 

pathogens and provides protection against oxidative stress [14]. For these effector 117 

molecules to carry-out their function in a coordinated manner there is a need for intra- and 118 

inter-cellular signaling. For this, the innate immune response relies on signaling by 119 

members of the toll-like receptor (TLR) family that are highly conserved in vertebrates, 120 

and associated adaptor molecules, such as Myd88 (myeloid differentiation primary 121 

response gene). MyD88 has been implicated in the downstream signaling of TLRs with the 122 

possible exception of TLR3 [15], and thus, it is implicated in defense against a variety of 123 

pathogens. MyD88 contains a Toll/Interleukin receptor (TIR) domain and is required for 124 

activation of mitogen–activated protein (MAP) kinase family members as well as nuclear 125 

factor kB (NF-kB) translocation, which in turn activates transcription of pro-inflammatory 126 

cytokines such as interleukin 1 beta (IL1B) [16]. Innate immunity additionally has the 127 

potential to respond to endogenous molecules [17] that are released by host cells as a result 128 

of necrosis, pathogen infection, and certain pathological conditions, which are directly or 129 

indirectly recognized by NOD-like receptors. The NOD-like receptors (NLRs) function as 130 



cytoplasmic sensors of pathogen presence. NOD2 detects muramyl dipeptide (MDP) found 131 

in the peptidoglycan of the cell wall of both gram-positive and negative bacteria [17]. 132 

NOD2 in mammals is highly expressed in epithelial cells or macrophages associated with 133 

the intestine. Studies in zebrafish have detected NOD3 (nod3) which has been shown to be 134 

an orthologue of mammalian NOD3 (NLR3) and found to have similar NACHT domains 135 

and an equal number of Leucine-Rich-Repeat (LRR) domains, likely required for binding 136 

to pathogen associated molecular patterns [18], but its specific ligand remains to be 137 

identified. 138 

The aim of this study is to improve understanding of the innate immune response of meagre 139 

during larval rearing when the adaptive immune response remains incomplete. To this end 140 

this study will examine i) the ontogenic changes in innate immune-relate gene expression 141 

of c3, cox2, metII, lyzc, mxp, myd88, nod2, nod3 during larval and juvenile development 142 

in meagre, and ii) how their expression is modulated by different PAMPs in vivo using 143 

adult fish; and iii) examine the modulation using PAMPs in isolated cells from specific 144 

organs in vitro. This information will be of value for better understanding early ontogeny 145 

of the immune system in this fish species, as well as serve as a basis for proper health 146 

maintenance in hatchery and nursery management practices.  147 

2. Materials and methods  148 

2.1 Larval rearing and sample collection  149 

Larvae used in this study were obtained  from a meagre broodstock held at IRTA-SCR (San 150 

Carlos de la Rapita, Spain). The broodstock was maintained under controlled simulated 151 

natural water temperature and photoperiod using a recirculation system (IRTAmar®). 152 

During the natural reproductive period (April-June), mature fish were selected based on 153 

oocyte size (< 550 µm) and spermiating condition. Pairs of mature fish (21.2 ± 3.7 kg 154 

females and 16.1 ± 2.6 kg males) were hormonally induced (15 µg/kg of des-Gly10, [D-155 

Ala6]-gonadotropin-releasing hormone ethylamide (Sigma, Spain)) to spawn in 10,000 L 156 

tanks. The resulting fertilized eggs were collected using a passive egg collector placed in 157 

the outflow of the tank. Batches of 50,000 eggs were incubated at 18-19 ºC in 35 L mesh -158 

bottomed (300 µm mesh) incubators with aeration and gentle air-lift water exchange that 159 

were placed within 2,000 L tanks. Hatching rate was determined by estimating the number 160 

of larvae (three 100 ml sub-samples) obtained from the stocked eggs. 161 



Larvae were then transferred to two 1.5 m3 tanks and reared using a mesocosm system. 162 

Water temperature was maintained at 20 ºC. From two days post-hatching (dph), larvae 163 

were fed enriched rotifers (Brachionus sp.) until 11 dph. Freshly enriched Artemia 164 

metanauplii were introduced from 9 dph until 31 dph. The experimental tanks were fed 165 

with a dry commercial feed for fish larvae containing 60 % protein, 15 % lipids, 9 % ash, 166 

0.5% fibre, 0.5% phosphorus, (Gemma Wean 0.2, Trouw France S.A, France). The diet 167 

was incorporated from 21 dph until the end of the experiment. Random samples of larvae 168 

and juvenile meagre were taken at 8, 15, 29, 40, 43, 60, 85, 96, and 120 dph. Each sample 169 

consisted of ten animals that were placed in an Eppendorf tube on ice, containing 170 

RNAlater™ (Ambion, Austin, Texas), then preserved at -80 ºC until RNA extraction. Time 171 

points for analysis were chosen to coincide with the specific periods of change in rearing 172 

practices; primarily changes in diet, but also rapid changes in organogenesis, all of which 173 

increase stress and enhance susceptibly to diseases. Before immersion in RNAlater™ 174 

(Ambion, Austin, Texas) the fish were euthanized using a high concentration of MS222 (1 175 

g/l) (Aldrich, E10521). Larger larvae (post-29 dph) had an excess of tissue, mainly 176 

muscular tissue that was trimmed to reduce signal dilution from non-target tissues. The 177 

anterior section from the gills forward and the posterior part from the anus to the tail were 178 

removed (Fig. 1), whereas younger larvae were processed entire. At days 85, 96, and 120 179 

individual tissues (gill, kidney, spleen, and intestine) were excised aseptically. 180 

 181 

Fig. 1. Prior to the extraction of RNA from the samples, the rostrum and caudal portions were removed by 182 

cutting with scalpel as illustrated with dashed lines. Only the remaining ventral part was used for further 183 

analysis.  184 

2.2 Total RNA extraction and reverse transcription 185 

Total RNA was extracted using Trizol reagent (Invitrogen) according to manufacturer’s 186 

instruction. RNA concentration and purity was determined by spectrophotometry 187 

(NanoDrop 2000, Thermo Fisher Scientific, Madrid, Spain) measuring the absorbance at 188 

260 and 280 nm. The quality of extracted RNA was verified with visualization of the 28S 189 

and 18S ribosomal RNA bands by agarose gel electrophoresis. Prior to reverse transcription 190 



total RNA was treated with the DNase 1 AMPD1 kit, (Sigma–Aldrich), according to 191 

manufacturer’s instructions to remove possible contaminating genomic DNA. Total RNA 192 

then underwent reverse transcription by adding 2 µg total RNA using the ThermoScript ™ 193 

Reverse Transcriptase (Invitrogen) with oligo-dT (0.5 µg/µl) and random hexamer primers 194 

(50 ng/µl) 10X RT buffer [200 mM Tris-HCl (pH8.4), 500 mM KCl] 1.5 mM MgCl2, 800 195 

mM dNTP mix, RNase inhibitor, SuperScript TM II RT, followed by RNAse H (Invitrogen) 196 

treatment. Once reverse transcription reactions were prepared they were placed in a 197 

Mastercycle® nexus GSX1 (Eppendorf AG, Hamburg, Germany) to complete first.strand 198 

cDNA synthesis. All the samples were diluted 1:20 in molecular biology grade water 199 

(Sigma-Aldrich) and stored at -20 ºC. Negative controls (no RT enzyme) were included to 200 

confirm absence of genomic DNA contamination.  201 

2.3 Gene isolation 202 

Nucleotide sequences of target genes from the Genebank (www.nbci.gov) were chosen 203 

from different marine teleost species, such as large yellow croaker (Larimichthys crocea), 204 

mandarin fish (Synchiropus splendidus), Humphead snapper (Lutjanus sanguineus), 205 

European seabass (Dicentrarchus labrax), orange spotted grouper (Epinephelus coioide), 206 

turbot (Scophthalmus maximus), Asian sea bass (Lates calcarifer) and gilthead sea bream 207 

(Sparus aurata). The sequences were aligned using CLUSTAL W (BioEdit package; 208 

http://www.mbio.ncsu.edu/BioEdit/bioedit.html) for designing degenerate/consensus 209 

primers for amplification from cDNA produced from meagre tissues as described 210 

previously (Campoverde et al., 2017). The fragments amplified were separated by gel 211 

electrophoresis and resulting bands of the expected length were excised, purified using the 212 

QIAQuick PCR purification kit (Qiagen) and sequenced by Sistemas Genomicos 213 

(Valencia, Spain). The transcript sequences obtained were then used as templates for 214 

designing primers for quantitative PCR assays.  215 

2.4 Phylogenetic analysis 216 

Some of the genes chosen for analysis are known to be members of larger more diverse 217 

and previously studied families of genes. As such, there exists in genetic databases other 218 

homologues for comparison to establish the member of such a gene family that has been 219 

identified for study. To clarify this, evolutionary analyses were conducted in MEGA5 [19] 220 

after alignment of all selected homologs using CLUSTAL W. Nucleotide substitution 221 

models were chosen for each analysis using the utility included in MEGA 5. The 222 

evolutionary reconstruction of the NOD isoforms was performed using the Kimura 2-223 



parameter nucleotide substitution model [20] and Neighbor-Joining method [21]. The 224 

evolutionary history for metallothionein and lysozyme were inferred by using the 225 

Maximum Likelihood method based on the Jukes-Cantor model [22]. For these analyses, 226 

the initial trees for the heuristic search were obtained automatically as follows: when the 227 

number of common sites was < 100 or less than one fourth of the total number of sites, the 228 

maximum parsimony method was used; otherwise Neighbor-Joining method with MCL 229 

distance matrix was used. A discrete gamma distribution was used to model evolutionary 230 

rate differences among sites [5 categories (+G, parameter = 200,0000)]. Statistical 231 

robustness of data for all analyses was analyzed using the bootstrap method [23] with  232 

bootstrap confidence values from 1,000 replicates shown at branch nodes (values < 40 not 233 

shown). During analyses all ambiguous positions were removed for each sequence pair. 234 

The analysis of NOD isoforms (nod2 and nod3) involved 129 positions from 25 sequences. 235 

For metallothionein (metII), a total of 22 sequences were included in the final dataset each 236 

with 71 positions. The analysis of lysozyme (lyzc) included 25 sequences with 148 237 

positions in each. 238 

2.5 PAMP stimulation 239 

To investigate the effect of PAMP stimulation on the expression of the selected genes, 38 240 

healthy juvenile individuals (30 - 40 g each) were held in a recirculating water tank (100 l) 241 

at 20 ˚C. Fish were fed with a commercial diet, 58% protein, 17% lipids, 10 % ash, 0.6% 242 

fibre, 1,3 % phosphorous (Gemma Wean 0.3, Trouw France S.A, France) twice a day 243 

(09:00 and 16: 00) for two weeks to acclimate them to the indoor culture environment. For 244 

primary cell culture and collection of samples, fish were euthanized with an overdose of 245 

anesthesia (50 mg/l MS-222). 246 

2.5.1 In vivo stimulation 247 

Fish were injected  (n = 8) intraperitoneally with 100 µl PBS containing either 100 µg poly 248 

I: C (3.3 mg/kg) (Sigma, UK. P1530), 400 µg LPS (13.3 mg/kg) (Sigma, UK. L3129) or 249 

100 µg β-glucan (3.3 mg/kg) (Sigma, UK. 89862). The control animals were injected with 250 

PBS only. After 24 h, the individuals were dissected and tissues (head kidney, spleen, gut 251 

and gill) sampled. Total RNA was isolated and cDNA was prepared as described above. 252 

The mRNA expression level of metII, c3, cox2, lyzc, mxp, myd88, nod2, nod3 were 253 

determined by qPCR. Relative expression was normalized to GAPDH expression and 254 

calculated as arbitrary units and converted to a proportion relative to the PBS control 255 

samples. 256 



2.5.2 In vitro stimulation 257 

Tissues (kidney, spleen, gills, and gut) from apparently healthy fish (n = 6) were collected 258 

from euthanized fish for primary cell culture. Tissue from gills and gut were pre-treated 259 

with collagenase in HBSS with FBS (0.37mg/ul – Sigma Aldrich, Ref# C0130-100MG) 260 

for 30 min at 37ºC to facilitate dissociation of cells from intercellular connective tissue. 261 

Afterwards these tissues, together with the spleen and kidney samples, were passed through 262 

a 100 μm nylon mesh cell strainer (SefarNytal PA-13xxx/100, Spain) in Leibovitz L15 263 

medium (Gibco) containing penicillin/streptomycin (Gibco, #15140-122) at 1:1000 and 264 

2% foetal calf serum (Gibco, #10270-098). The resulting cell suspension was collected and 265 

centrifuged at 400 x g for 10 min. The supernatant was removed and replaced with 10 ml 266 

of previously described L15 media. The cell suspension was again centrifuged and 267 

supernatants removed and replaced with 30 ml of media. Cells were distributed to 12 well 268 

microtiter plates in 5 ml aliquots. Wells were stimulated using LPS (Sigma, #L3129-269 

100MG) at 50 μg/ml, poly (I:C) (Sigma, #P1530-25MG) at 100 μg/ml, and B-glucan 270 

(Sigma, #89862-1G-F) at 50 μg/ml in triplicate. Control samples included 250 μl of PBS. 271 

Four, 12 and 24 h after stimulation the cells were harvested and centrifuged at 400 x g for 272 

10 min, the supernatant discarded, and the pellet suspended in RNAlater. Total RNA was 273 

isolated and cDNA was prepared as described above. 274 

2.6 Real-time qPCR  275 

The qPCR reactions for innate immune gene expression were carried out using a 276 

LightCycler® 480 Real-Time (Applied Biosystems, Roche). A master mix was prepared 277 

containing: 5 µl SYBR Green Supermix (Life Technologies), 1µl of molecular biology 278 

grade water (Sigma) containing 10 μM of forward and reverse gene-specific primers and 4 279 

µl of sample cDNA in a final volume of 10 µl. The real-time qPCR cycling was carried out 280 

as follows: 10 min at 95 ºC, 40 cycles of 95 ºC for 25 s, followed by an annealing step of 281 

approximately 59 ºC for 25 s (annealing temperatures were adjusted for each specific 282 

primer pair), followed by 72 ºC for 15 s, with a final dissociation stage of 0.5 ºC increments 283 

from 75 ºC to 95 ºC. Each sample on the qPCR plate had two methodological replicates. 284 

Primer sequences used and amplicon lengths for each assay are shown in Table 1. The 285 

specificity of the primers was checked by confirming that only one melt peak was 286 

produced, and also by running a subsample on an agarose gel (2%) to confirm the presence 287 

of a single band of the expected size. The efficiency of amplification (E, %) of each primer 288 

pair was assessed from five serial ten-fold dilutions of cDNA from individual tissues, then 289 



calculated following the equation: E (%) = 10(-1/slope) – 1, where the slope is that calculated 290 

from the regression line of the standard curve. Efficiencies of the gene expression assays 291 

ranged from 96.2% to 100.9% (100.27 ± 1.58, mean ± SD) (Table 1). The absence of 292 

primer-dimer formation in the NTC (non-template control) was also confirmed. Relative 293 

expression of genes from larvae, and each tissue from juveniles (ontogeny study), was 294 

normalized using the three endogenous controls glyceraldehyde phosphate dehydrogenase 295 

(gpdh), beta-actin (β-act), and hypoxanthine-guanine phosphoribosyltransferase (hprt) as 296 

determined using geNORM (http://www.primerdesign.co.uk/products/9461-genormplus-297 

kits/), while the relative quantification at 120 dph, showing the lowest expression, was used 298 

as the calibrator. 299 

For analyzing the relative expression in vivo and in vitro after PAMP stimulation, data was 300 

normalized using just GAPDH expression values, as this endogenous control gene showed 301 

less variability under the conditions tested. After normalization to this endogenous control 302 

as arbitrary units, results were converted to a proportion relative to the control group (PBS 303 

injected fish). 304 

 305 

http://www.primerdesign.co.uk/products/9461-genormplus-kits/),
http://www.primerdesign.co.uk/products/9461-genormplus-kits/),


Table 1. Primers used for gene expression analysis by  qPCR, including the amplicon size and primer sequences. Abbreviations: gpdh, glyceraldehyde 3-phosphate 

dehydrogenase; β-act, beta-actin; hprt, hypoxantine-guanine phosphoribosyltransferase; metII, methallothionein;  c3, complement; cox2, cyclooxygenase; lyzc, 

lysozymes; mxp, mx protein; myd88, myeloid differentiation primary response gene 88; nod2, nucleotide-binding oligomerization domain-containing protein 2; nod3, 

nucleotide-binding oligomerization domain-containing protein 3. 

 

           
  Genes  E (%)  Forward primer (5’  3´)  Reverse primer (5’  3´)  Size (bp) 

           

R
ef

er
en

ce
 

g
en

es
 

          

 gpdh  100.0  CCAGTACGTGGTGGAGTCCACTG  AGCGTCAGCGGTGGGTGCAGAG  109 

 β-act  100.0  TGGGGGAGCAATGATCTTGATCTTCA  AGCCCTCTTTCCTCGGTATGGAGTC  212 

 hprt  100.9  CATGGACTCATCTTGGACAGGACAGA  GCCTTGATGTAGTCCAGCAGGTC  137 

                      

  

Im
m

u
n

e 
g

en
es

 

 metII  102.2  GATCCTGCAATTGCAAAGACTGTTC  CCGGATGGGCAGCATGGGCAG  70 

 c3  100.1  AACCCATACGCTGTTGCCATGACG  CACGTCCTTTAGGTACTGGGCCAG  120 

 cox2  100.5  GGAAGTTGGTGTTGACATGCACTAC  CAATCAGGATGAGCCGTGTGGTC  211 

 lyzc  100.0  GATGGATCCACTGACTACGGCATC  AAGCTGGCTGCACTGGATGTGGC  100 

 mxp    96.2  AGTCAGTGGTTGACATTGTTCATAATG  AACAGTGGCATGACCGTCATTGTAG  187 

 myd88  102.2  GCTACTGCCAGAGTGACTTCGAGT  TCCATACACACGAACCCGGGAGG  120 

 nod2  100.1  CTCAATACTGTGCTGATGTCCATGG  CAAGTGTAACCTTTGGAGTAAGGTAG  145 

 nod3  100.8  CAGCTTGGTGGAACTTGTTCATCAC  TAACATCAGTCAGGATCTCAGTGTTG  130 

 

 



2.7 Statistical analysis 306 

All data sets were checked for homogeneity of variances by subjecting them to a Levene’s 307 

test using univariate analysis in a general linear model, based on a Tukey HSD post-hoc test, 308 

with a sample size of n =10 (larva) and n = 8 (juvenile) to determine differences between time 309 

points (P ≤ 0.05). The Kruskal-Wallis test was used for analyzing the expression for the in 310 

vivo (n = 8) samples after PAMP stimulation, while the ANOVA test was used for analyzing 311 

expression for the in vitro (n = 6) based on a Tukey HSD post-hoc test, using the statistical 312 

software package SPSS 20.0 (SPSS Inc., US). 313 

3. Results 314 

3.1 Gene Isolation 315 

Specific gene products were obtained using degenerate or consensus-primed PCR assays. All 316 

amplified fragments were sequenced bi-directionally and analyzed using the BLAST utility 317 

via the National Center for Biotechnology Information (NCBI) database 318 

(http://www.ncbi.nlm.nig.gov/) to confirm their identity as proper orthologues of the intended 319 

target gene. Sequences for transcripts from met, c3, cox2, lyzc, mxp, myd88, nod2, nod3, are 320 

reported for the first time in this species. These sequences have been uploaded to GenBank 321 

under the following accession numbers: met = MF281966, c3 = MF281960, cox2 = 322 

MF281967, lyzc = MF281968, mxp = MF281965, myd88 = MF281964, nod2 = MF281970, 323 

nod3 = MF281969. Sequences were also obtained for GAPDH, β-actin and HPRT as 324 

endogenous control genes for gene expression assays and have been entered into the GenBank 325 

database under the following accession numbers MF281962, MF186587 and MF186588, 326 

respectively. 327 

3.2 Phylogenetic analysis 328 

Some of the genes of interest for this study are known to have additional isoforms. For this 329 

reason, phylogenetic analysis was performed to properly identify such genes. Homologs of 330 

metallothionein, nod2, nod3, and lysozyme from meagre were further characterized as to class 331 

or isoform to give clarity to resulting gene expression analyses. To achieve this, extant 332 

sequences from GeneBank were aligned using CUSTAL W and the alignment edited 333 

manually. For all analyses, the percentage of trees in which the associated taxa clustered 334 

together (bootstrap values) is shown next to the branch nodes. Phylogenetic analysis of 335 

representative homologs of nod2 and nod3 sequences from GenBank were compared to that 336 

obtained from meagre resulting in an optimal tree with a sum branch length = 1.89832313. 337 

The two different Nod isoforms, nod2 and nod3, clearly separated into distinct and differing 338 

http://www.ncbi.nlm.nig.gov/


clades.  Analysis of metallothionein II confirmed its segregation from metallothionein I and 339 

generated a tree with the highest log likelihood of -157.7290. The tree resulting from the 340 

analysis of lysozyme had highest log likelihood value of -2526.8685 and demonstrated its 341 

membership in the clade with lyzc. 342 

3.2 Gene expression analyses 343 

3.2.1 Gene expression during ontogeny  344 

In order to better understand the biological role of several significant innate immune genes in 345 

meagre, mRNA levels for met II, c3, cox2, lyzc, mxp, myd88, nod2, nod3 were analyzed by 346 

quantitative real-time PCR from 8 until 120 dph (Fig. 2). The expression of the above-347 

mentioned genes were variable throughout development and growth of larvae and  fry. 348 

However, among genes studied three general patterns of expression were evident. In the first 349 

group, including cox2, there was a general decrease over time between 8 and 60 dph. A second 350 

group, composed of mxp and myd88, showed an expression pattern characterized by an initial 351 

low expression that increased over time with an important peak in expression at 60 dph. A 352 

third group of genes, consisting of lyzc, nod2, nod3, was also discernable, which showed low 353 

levels initially with peaks at 29 and 60 dph. The pattern of met II and c3 expression was clearly 354 

at a high level at day 8, and then it decreased to a moderate level at day 29 and followed by a 355 

substantial increase at day 60. However, a different expression pattern was found for mxp and 356 

myd88 transcripts. They were detected at day 8 and subsequently the expression level 357 

increased gradually until day 60. In contrast, the expression of cox2 gradually decreased 358 

during the study period, possibly due to the expression signal being diluted by accumulation 359 

of non-expressing cells as the fish larva grew. A comparison of nod2 and nod3 show their 360 

expression profiles were similar. In fact, the levels of expression of both transcripts were 361 

higher at day 29 and then, decreased to moderate levels (40-43 dph), followed by an increase 362 

at day 60. The pattern of expression seen with lyzc expression was similar, but with greater 363 

differences in expression between 29 and 60 dph. Interestingly, changes in the expression of 364 

these genes seemed to correlate to changes in the diet during on-growing  (Fig. 3). 365 

As larvae increased in size during the latter part of the ontogeny study (85, 96, or 120 dph) 366 

the transcript expression was monitored in individual tissues (kidney, spleen, gill and gut). As 367 

shown in Figure 4, the eight genes exhibited different patterns of tissue specific expression. 368 

The expression of cox2 showed a significant increase in gill, gut and kidney at day 120 369 

compared to earlier time points (85-96 dph). Expression of myd88 transcripts showed a 370 

significant increase in the kidney at 96 dph that was maintained high and stable until 120 dph. 371 



However, met II and mxp transcripts showed significant increases in the gut during 85-96 dph. 372 

Finally, nod3 transcript levels increased significantly (P ≤ 0.05) in the spleen (85 dph) and 373 

gut (120 dph) in comparison with other preceding time points (Fig. 4).  374 

 375 

 376 

 377 

a) 

b) 



 378 

 379 

Fig. 2. The evolutionary history for (a) met II, (b) lyzc (c) nod2, nod3 from meagre (shown in bold) was inferred 380 

using the maximum likelihood (a), (b) and neighbor-joining (c) method conducted in MEGA5. All coding 381 

positions were included and values for the bootstrap confidence values (1,000 replicates) are shown at branch 382 

nodes.  383 
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 390 

c) 



 391 

 392 

Fig. 3.  The temporal change in gene expression of larval and juvenile (n = 10) meagre for met II, c3, cox2, lyzc, 393 

mxp, myd88, nod2, nod3. Transcripts were normalized using an arithmetic mean of three housekeeping genes: 394 

GAPDH, HPRT, and β-actin. Different letters above the bars indicate significant differences among different 395 

time points (Tukey´s test, P ≤ 0.05) and the larval feeding schedule also are shown. Results are expressed as the 396 

mean ± SEM.  397 

 398 



 399 

 400 

Fig. 4. The temporal change in gene expression of met II, c3, cox2, lyzc, mxp, myd88, nod2, nod3  in the kidney, 401 

spleen, gill, and gut (n = 8) from 85-120 dph in meagre. Transcripts were normalized using an arithmetic mean 402 

of three housekeeping genes: gpdh, hprt, and β-act. Different letters above the bars indicate significant 403 

differences among different time points (Tukey´s test, P ≤ 0.05). Results are expressed as the mean ± SEM. K = 404 

kidney, Sp = spleen, Gu = gut, Gi = gill. 405 

 406 



3.2.2 Response of meagre innate immune genes to in vivo PAMP stimulation 407 

To better understand how different pathogenic stimuli influence changes in the expression of these 408 

genes, an in vivo challenge with various PAMPs was performed, with samples collected for analysis 409 

after 24 h. Post stimulation, c3 mRNA levels were most highly up-regulated in the kidney, spleen, gut 410 

and gills by β-glucan. However, LPS seemed to be a more potent stimulator of expression in the gut 411 

and gills.  Lysozyme was significantly up-regulated in the kidney, spleen, gut and gill by LPS, but, 412 

curiously, there was significant down-regulation in mucosal tissues (gut and gill) when poly I:C was 413 

used, while there was a significant up-regulation in systemic tissues (kidney and spleen) by β-glucan 414 

stimulation. The expression of met II was potently induced in the spleen, gut, and gills by LPS 415 

stimulation and by poly I:C and β-glucan stimulation in the spleen and gut.  The expression of myd88 416 

was significantly up-regulated in the gut by all the PAMP stimulants. The abundance of mxp transcripts 417 

were increased in all the tissues tested when stimulated by poly I:C and in the gut there was also a 418 

significant up-regulation (P ≤ 0.05) when stimulated by LPS and β-glucan. The expression level of 419 

cox2 was significantly up-regulated in kidney and spleen by LPS. The expression of nod2 transcripts 420 

showed the highest up-regulation in spleen and gut when stimulated by LPS and β-glucan. Different 421 

expression profiles were observed for nod3; there was significant up-regulation (P ≤ 0.05) in the 422 

kidney and spleen by β-glucan, while the other PAMP stimulants had little significant effect on mRNA 423 

levels, as seen in Figure 5. 424 

3.2.3 Response of meagre innate immune genes to in vitro PAMP stimulation 425 

 Only the lymphoid organs of kidney and spleen were analyzed for the in vitro part of this study. The 426 

kidney is the first major lymphoid organ to develop during early ontogeny and the spleen plays an 427 

important role in hematopoietic and immune functions.  Cells were isolated from these lymphoid 428 

organs (kidney and spleen) and challenged with 3 PAMPs for 4, 12 and 24 h. The expression of met II 429 

was significantly upregulated (Fig. 6) in splenocytes for all stimulants after 24 h. The expression of 430 

mxp was up-regulated significantly in the spleen and kidney cells after 4 and 12 h stimulation with 431 

poly I:C, but in the kidney cells the only significant increase by all of the stimulants was at 24 h. 432 

Similarly, with kidney cells a differential expression profile was seen with increased expression of c3 433 

in response to all three PAMPS at 24 h, but splenocytes showed an up-regulation after 24 h stimulation 434 

with LPS and β-glucan. No change in expression of myd88 was found in the stimulated kidney and 435 

spleen cells at 4 h, but at 12 h there was up-regulation using poly I:C. However, at 24 h up-regulation 436 

occurred in spleen cells with LPS. The mRNA expression of cox2 in kidney cells was up-regulated at 437 

4 h by all 3 stimulants. In splenocytes, significant expression levels were only detected at 12 h after 438 

the stimulation by poly I;C and β-glucan. A significant up-regulation of lyzc expression was seen in 439 

kidney cells at 4 h after stimulation by LPS and β-glucan and at 24 h after stimulation using poly I:C. 440 

In splenocytes, up-regulation was seen at 12h after stimulation by poly I:C and β-glucan at 24h  after 441 

stimulation by LPS and β-glucan. For nod2, transcription levels in kidney cells was significantly up-442 



regulated at 24 h post-stimulation with LPS and β-glucan. This contrasted with nod3 expression, which 443 

was up-regulated in kidney cells after 4h stimulation with LPS and β-glucan and had returned to 444 

control level by the other later time points. For splenocytes, nod3 expression was significantly up-445 

regulated at 24 h post-stimulation with LPS and  β-glucan. 446 

 447 

Fig. 5. The in vivo expression of met II, c3, cox2, lyzc, mxp, myd88, nod2, nod3 in meagre kidney, spleen, gill 448 

and gut following PAMP stimulation. Fish (n = 8) were injected intraperitoneally with PBS, poly I:C, LPS and 449 

β-glucan and sampled at 24 h post-injection. The gene for GAPDH, was employed as an internal reference. 450 

Asterisks (*) mark significant between stimulated and control groups (Kruskal Wallis test, P ≤ 0.05). Data are 451 

means ± SEM. Abbreviations:  K = kidney, Sp = spleen, Gu = gut, Gi = gill.   452 



 453 

Fig. 6. The expression patterns in vitro of  a) met II, b) mxp, c) c3, d) myd88, e) cox2, f) lyzc, g) nod2, h) nod3 454 

mRNA after PAMP stimulation of cell suspensions isolated from meagre (A. regius) kidney and spleen tissues, 455 

collected from  healthy fish (n = 6). The cells were stimulated with poly I:C, LPS and β-glucan and sampled at 456 

different time points post-stimulation (4, 12 and 24 h), for RNA extraction and qPCR.  All samples were 457 

compared to PBS treated controls. Asterisks (*) mark significant between stimulated and PBS control groups 458 

(Tukey’s test, P ≤ 0.05). Data are means ± SEM. Abbreviations:  K = kidney, Sp = spleen. 459 

 460 

 461 

  462 



4. Discussion 463 

4.1 Ontogeny of Innate Gene Expression 464 

 465 

The present study is the first report of some representative innate immune genes in meagre 466 

and the characterization of their expression patterns in larvae and early juveniles, which is a 467 

critical time in fish development, when reliance on innate immune mechanisms is required for 468 

combatting infectious disease. Although previous studies have focused on identifying immune 469 

genes and/or characterizing their response to certain pathogens, there are few comparative 470 

studies reporting their temporal appearance during development. Further we have 471 

characterized the expression of these gens under specific immune stimulation using four 472 

different PAMPs. This immune stimulation study was performed in whole animals with all 473 

the consequent communication among various tissues, and in primary cell isolations from 474 

those same organs to see how organ-specific responses might differ from the response 475 

obtained from the intact animal. 476 

Phylogenetic analysis was used to confirm the specific identity of genes where closely allied 477 

isoforms are known that could confound gene expression analyses.  The phylogenetic analysis 478 

of met revealed that the isoform identified from meagre was met II, and it is an isoform more 479 

similar to a homolog described in Larimichthys crocea as expected, since both species are 480 

quite close, from a taxonomical point of view. Metallothionein has been shown to be a 481 

potential biomarker for metal contamination, but it also has an important role in Zn regulation 482 

during development [24]. Zinc is one of the major trace elements indispensable for 483 

functioning of, among other things, zinc-finger transcription factors. In this study, met II 484 

showed a higher expression level from 8 dph (4.49 ± 0.39 mm SL), but slowly decreased 485 

during development in meagre. In specific tissues during the early juvenile period, the 486 

abundance of met II transcripts increased, particularly in the kidney and gut. In these tissues, 487 

metallothionein is especially important in development due to cellular signals that are required 488 

during cell growth and differentiation, which require nuclear localization of this intracellular 489 

zinc regulator [25] and maintaining Zn homeostasis at the cytoplasmic level for regulation of 490 

several crucial processes implicated in the innate immune [26]. For example, Zn ions are 491 

important for the production of pro-inflammatory cytokines such as interleukins IL-1β, IL-6 492 

and tumor necrosis factor α (TNF-α), and Zn deficiency leads to reduced chemotaxis by 493 

polymorphonuclear cells [26], and impaired formation, activation, and maturation of 494 

lymphocytes, disturbed intercellular communication via cytokines, and weakened innate host 495 

defense via phagocytosis and oxidative burst [27]. 496 



The complement system is known as an integral aspect of innate immunity, of which c3 is a 497 

central component. This system also links with the adaptive immune response and has been 498 

shown to be important for C3-trophic driven morphogenesis of developing embryos/larvae 499 

[28]. In this study, the expression of c3 was detected from the initial time point of the study 500 

(8 dph), but transcript levels of c3 reached their lowest levels at 29 dph (14.41 ± 1.62 mm 501 

SL), coinciding with the end of the weaning period (the transition from artemia to an artificial 502 

diet) where as a result, larvae may be immunosuppressed in comparison to other life 503 

development periods and possibly more sensitive to potential pathogenic organism. As larvae 504 

matured, the expression level of c3 in tissues increased in the spleen and gut tissues, probably 505 

acting to facilitate hematopoietic development [29], stem-cell differentiation [30] and  defense 506 

against allochthonous bacteria ingested with feed, some of which may be potential pathogens 507 

[28]. These previous findings support the idea that complement and its recognized role in 508 

immune defense, may also play a role in the formation and generation of different organs 509 

during development [31].   510 

Cyclooxygenase, is the enzyme responsible for the initial rate-limiting conversion of 511 

arachidonic acid to prostaglandins (PGE2 and PGH2). Mammals contain two cox genes, cox1 512 

and cox2. Homologs of these genes have been found in many fish species, including zebrafish 513 

(Danio rerio) [32]. Although, it is known that both isoforms are similar, cox1 is generally 514 

assumed to be constitutively expressed performing homeostatic and maintenance functions, 515 

while cox2 is induced by inflammation, cytokines, endotoxin and other pathophysiological 516 

processes [33]. In the present study, cox2 displayed a decrease in expression between 8 dph 517 

and 60 dph (during which period whole larvae were analyzed), that may be due to the 518 

expression signal being diluted as the larvae grew, since the abundance of cox2-postive cells 519 

likely did not increase in the same proportion as all other somatic cells. Although Ishikawa et 520 

al. [34] observed cox2 expression in zebrafish, it exhibited a more restricted pattern of 521 

expression and no evidence of an association to morphogenic development. In Atlantic salmon 522 

(Salmo salar) [33] and mummichug (Fundulus heteroclitus) [35], cox2 was observed to have 523 

the highest level of expression in the gills, and it was suggested that there was a possible 524 

higher requirement for osmoregulation processes and/or stress responses. In the present study, 525 

high cox2 expression levels were seen in the kidney, gills and gut in early juveniles aged 120 526 

dph, although the relation of this expression to PGE production in these tissues was not 527 

evaluated. High cox2 expression with a potential increase in production of PGs [12][36] in 528 

some tissues such as gills possibly aid the process of osmoregulation [12] and ion transport in 529 

euryhaline species [35], and in the gut to maintain the integrity of the mucosal barrier [37].  530 



Significantly, expression of cox2 is associated with several cell types, e.g. monocytes and 531 

macrophages [38] that likely aid in surveillance of mucosal barriers 532 

In fish, there exist two variants of lysozyme: c and g- types. The lysozyme isoform identified 533 

in meagre was shown to be the c-type, which has been reported previously in many teleost 534 

species [39–41]. Lysozyme possesses lytic activity against both gram-positive and gram-535 

negative bacteria. For this reason, it is an important defense molecule of the immune system, 536 

widely present at host /environment interfaces including gills, and gastrointestinal tract, but it 537 

is also present in lymphoid tissues, serum, mucus, and other body fluids [29]. Aside from its 538 

antibacterial function, it promotes phagocytosis by directly activating polymorphic nuclear 539 

leucocytes and macrophages, or indirectly, by an opsonizing foreign bodies. At 29 dph, 540 

transcript levels of lyzc were found to be significantly up-regulated around the time of 541 

weaning (transfer to Artemia and dry feed). Possibly, this increased expression during the 542 

transition of diet may reflect influence from certain nutrients or exposure to new cohorts of 543 

bacterial species in different feed sources that are stimulating expression of this immune 544 

effector. It may also be that specific components supplemented in the feed modulate lysozyme 545 

expression [42]. Lysozyme gene expression in teleost has been assessed in tissues from 546 

healthy fish, but the levels and pattern of expression varied for individual species, the isoform 547 

under study, and tissues examined [40,43]. In the current study, analysis of lyzc in tissues 548 

showed an increase in the kidney, spleen and mucosal tissues (gut and gill) in juveniles aged 549 

60-85 dph, whereas its expression was even higher at later time points (120 dph). This 550 

observation could be correlated with the structure of the organs and increase in mucus/goblets 551 

cells in mucosal tissues during this period in this species [44]. Further, some reports have 552 

found the c type lysozyme in rainbow trout, (Oncorhynchus mykiss) [45] was specifically 553 

expressed in the liver and kidney [46], whereas in Japanese flounder, Paralichthys olivaceus, 554 

the c-type lysozyme gene was expressed in head kidney, spleen, brain and ovary, while in brill 555 

(Scophthalmus rhombus) expression was observed in liver and stomach [39]. Therefore, 556 

differences in the lyzc-positive tissue distribution and levels of expression of lyzc among fish 557 

species might suggest some variation in function, and potentially multiple roles.  558 

The induction of the gene mxp in mammals is specifically induced by type I-IFN [47]. The 559 

antiviral effect of type I IFN is exerted through its binding to the IFN-α/β receptor, which 560 

triggers a signal transduction through the Jak-Stat pathway resulting in expression of mxp and 561 

other antiviral proteins. In the present study, during early development the peak in expression 562 

of this gene was observed at 60 dph and it was also expressed in all tissues examined during 563 

later stages of development, with a prominent increase in the gut, coincident with an 564 



abundance of granulocytes in this tissue at later developmental periods [44]. The gut 565 

epithelium is a continuation of the interface between the external environment and internal 566 

host environment, therefore it requires defense mechanisms to be operating continuously to 567 

act rapidly for limiting infection and maintaining gut homeostasis. Mxp is among those 568 

proteins that responds quickly to a viral attack, but as the immune system matures might be 569 

maintained at a constitutively higher level in the gut relative to other tissues (Fig. 4). 570 

Myeloid differentiation factor 88 (Myd88) is an important adaptor protein in the Toll-like 571 

receptor (TLR) signaling pathway and is used by all TLRs except for TLR3. Orthologues of 572 

myd88 have been found in multiple fish species [15,48,49], demonstrating among fish the 573 

wide evolutionarily distribution of this intracellular immune mediator due to its crucial role 574 

in host immunologic surveillance where it functions as an accessory protein to ligand 575 

receptors. The gene for Myd88 was found expressed continuously in all stages of larval 576 

development with a sharp increase at 60 dph. In more developed juveniles where individual 577 

tissues were examined, myd88 transcripts were detected in all tissues, while high levels of 578 

transcripts were observed in the gill, spleen and kidney at 85, 96 and 120 dph. 579 

The phylogenetic analyses of NOD isoforms from meagre demonstrated the two isoforms 580 

identified reside hierarchically in different clades, consistent with their presumed separate 581 

functions. The genes nod2 and nod3 belong to the subfamily of NOD-like receptors (NLRs) 582 

characterized by CARD-containing effector-binding domains. Nod2 is a member of the 583 

cytoplasmic pattern recognition receptors (PRRs) family that recognizes muramyl dipeptides 584 

derived from peptidoglycan, present both in gram-positive and negative bacteria. Upon ligand 585 

recognition, Nod2 induces the activation of the NF-kB and MAPK pathways. Activation of 586 

NFkB and Mapk induce transcription and production of inflammatory cytokines, chemokines 587 

and antimicrobial peptides which mediate the antimicrobial response. Nod3 (NLRC3) 588 

belonging to the NLR-C subfamily, plays a role in the innate immune response against 589 

bacteria and virus. Studies have also suggested that it has a role in modulating T cells and 590 

inhibiting inflammatory mechanisms, although studies in species such as catfish have shown 591 

nod3 is present in many tissues [50]. Little is known about the precise mechanism, activation 592 

and signaling cascades of members of the NLRC subfamily.  During the first 60 days of this 593 

study, nod2 and nod3 genes showed similar expression patterns during larval development, 594 

with the transcripts exhibiting abrupt up-regulation at 29 dph and 60 dph, which could suggest 595 

a coordinated activity between the two peptides these genes encode. In contrast, differences 596 

were observed in the individual tissues examined. Expression of nod2 increased in the kidney 597 

and spleen while nod3 transcripts were highly expressed in gill and gut at 120 dph. Similar 598 



results for nod2 expression in the kidney were obtained from grass carp (Ctenopharyngodon 599 

idella) [51], and grouper (Epinephelus coioides) [52], while in rainbow trout (Oncorhynchus 600 

mykiss), nod2 isoforms (nod2a and nod2b) were detected highly expressed in muscle [53].  601 

 602 

4.2 In Vivo Stimulation 603 

 604 

While studies of immune gene expression are becoming more common with fish, the totality 605 

of data is somewhat limited and comparative studies on molecular effectors of the innate 606 

immune system often rely on the greater abundance of literature from mammalian studies as 607 

a starting point.  Herein is presented a study of the expression of key innate immune genes as 608 

modulated by PAMPs.  An in vivo study was performed with three different PAMPs injected 609 

intraperitoneally and measured the immune gene expression responses to each PAMP 24 h 610 

after their administration.  611 

In our study, we found an increase in expression of met II in the spleen, after stimulation by 612 

the three different PAMPs, while in gut the expression of met II was only up-regulated by 613 

LPS and β-glucan. In contrast, it was only slightly stimulated in the gills by LPS. These results 614 

suggest that the spleen is somewhat more responsive with regard to met II activation where 615 

recruitment of lymphocyte lineages are an important response for preventing systemic 616 

infections. The response in the gut was much more pronounced using LPS and β-glucan as 617 

stimulants, demonstrating that this tissue is functioning as a first line of defense with a much 618 

faster, stronger response against invading pathogens. Interestingly, there was a slight, but 619 

statistically significant, decrease in expression in the kidney under stimulation by LPS. The 620 

induction of met II is mediated by immune cells and inflammatory signals.  Additional gene 621 

products may be working to suppress the expression in kidney tissue where filtration of excess 622 

ions and their removal from the blood occurs.  623 

In this study, c3 transcripts were up-regulated in all the tissues exposed to β-glucan. 624 

Interestingly, Campoverde et al. [54] detected a similar response in piscidin (pisc), after β-625 

glucan stimulation, which could suggest a common up-stream response mechanism when 626 

meagre are exposed to β-glucan, such as a shared regulation by pro-inflammatory cytokines 627 

or toll-like receptors.  628 

With regard to cox2 expression, significant differences were observed in the kidney, spleen 629 

and gut after injection with LPS and β-glucan, but there were no changes in gill tissue. This 630 

makes sense physiologically, as there is a need to maintain respiratory functions and avoid 631 

unnecessary damage to respiratory epithelia from an excessive inflammatory response. 632 



Therefore, in gills more stimulation might be needed to elicit significant up-regulation of cox2 633 

and the concomitant increase in prostaglandin synthesis. These results demonstrate that cox2 634 

can be induced by PAMPs binding to PRRs in the kidney, spleen, and gut; all tissues that need 635 

a thorough humoral and cellular response to clear pending systemic infections.  636 

Multiple genes encoding the c-type lysozyme have been identified  in different teleost species, 637 

and in some species different isoforms have been shown to perform distinct functions, or have 638 

tissue-specific expression patterns [40]. In the case of meagre, lyzc transcripts were found to 639 

increase significantly in the kidney and spleen after injection with LPS and β-glucan, while 640 

lyzc expression in the gut and gills was up-regulated only by LPS stimulation. However, poly 641 

I:C stimulation down-regulated lyzc expression in gills and gut. The higher levels of 642 

expression detected in the gill after injection with LPS and β-glucan are coherent with the idea 643 

of epithelia cells forming the primary barrier against a multitude of potential pathogens 644 

requiring a quick and rapid response to obviate any ingression of invaders [9]. These data 645 

from meagre are consistent with other studies from teleosts, but contrasting results have been 646 

obtained; studies of c-type lysozyme in brill showed significant changes in mRNA levels in 647 

stomach and liver after a bacterial challenge [40] possibly indicating this isoform might 648 

provide some direct protection in the digestive system in brill, whereas for g-type lysozyme 649 

similar tissue expression profiles were observed. 650 

A relatively high mxp expression was observed in all tissues stimulated by poly I:C, but mxp 651 

expression was also stimulated to a lesser degree in the gut by LPS and β-glucan. High 652 

expression of mxp transcripts in mucosal tissues (gill and gut) was expected as these are the 653 

main entrance route for viral infections in aquatic organisms, while systemic tissues like the 654 

kidney and spleen have a high abundance of lymphocytes that respond to viral attack and 655 

produce Mx protein.  656 

 The expression of myd88 was found to be up-regulated in the gut by all PAMPs tested. The 657 

expression of myd88 is ubiquitous as it functions as a mediator for intracellular signaling in 658 

immune cells. Increased expression in the gut may facilitate and improve the integrity of the 659 

intestinal barrier following PAMP recognition [55]. Toll-like receptors (TLRs) recruit adaptor 660 

molecules, like Myd88, for signal transduction to activate nuclear factor-kappa B (NF-kB).  661 

In the case of nod2, transcripts were up-regulated in the spleen following injection of LPS and 662 

β-glucan, whereas in the gut an up-regulation was observed following stimulation with each 663 

PAMP. In gills, there was a weak response when fish were injected with LPS, which might 664 

again be explained as a protective measure to avoid an unregulated pro-inflammatory response 665 

leading to tissue trauma. The aquatic habitat is a rich source of bacterial LPS and the immune 666 



responses activated by the presence of LPS would need to be under tight control to 667 

differentiate presence of LPS liberated from natural bacterial cell death from an active 668 

invasion.  669 

Gene expression levels for nod3 were generally weak in all tissues; although there was some 670 

significant up-regulation, in the kidney by LPS and β-glucan, in spleen by β-glucan, in gut by 671 

poly I:C and LPS, and in gill tissue by LPS.  672 

This in vivo trial using poly I:C, LPS, and beta-glucan has demonstrated that gene expression 673 

was effectively modulated in response to these PAMPs for all the studied genes, while the 674 

induction of gene expression by each stimulant demonstrated tissue-specific differences. 675 

 676 

4.3 In Vitro Stimulation 677 

 678 

Due to some difficulties in obtaining cell suspensions of sufficient quality from gills and 679 

intestine, we analyzed in vitro results only for the spleen and kidney. Exposure of kidney and 680 

spleen cells to different PAMPs elicited differential responses as compared to control cell 681 

suspensions treated with only PBS, demonstrating that these cells have the ability to recognize 682 

molecular patterns mimicking diverse pathogen types.  683 

Early modulation of expression was seen for mxp, cox2, lyzc, nod3 in kidney cells. An 684 

important component of the fish antiviral response is the IFN-inducible protein mxp. In 685 

Atlantic salmon and Japanese flounder mxp was found to significantly protect fish cells 686 

against viral infection and induce the gene expression levels of type 1 IFN and mxp [56,57]. 687 

In the present study kidney and spleen cells responded strongly to poly I:C stimulation with 688 

an increase in mRNA transcripts of mxp as early as 4 h, and up to 12 h following exposure. 689 

At the same time expression myd88 reached maximum levels following exposure to poly I : 690 

C in both systemic tissues, then recovered its basal levels at 24 h. These results suggest 691 

stimulation of kidney and spleen cells with poly I:C elicits a significantly increased expression 692 

of mxp and myd88 where they may function in synergy against viral infections [58]. 693 

The antimicrobial activity of c-type lysozyme is due to its hydrolytic activities, inhibition of 694 

viral genomic RNA or RNA transcripts, and degradation of viral polysaccharides. In  orange-695 

spotted grouper, E. coioides and Japanese flounder, Paralichthys olivaceus  the expression of 696 

c-type lysozyme transcripts was most abundant in head kidney [59,60] and  in grouper cells 697 

when they  were exposed to Singapore grouper iridovirus (SGIV). In the present study, 698 

expression of lysozyme was up-regulated in kidney cells at 4 h post exposure to LPS and β-699 

glucan. However, this level increased significantly in spleen at 12 h post exposure to poly I:C 700 



and β-glucan demonstrating lysozyme is more active as an immediate response element when 701 

bacteria (LPS) is the source of stimulation.  702 

The complement system, present in the blood plasma, plays a central role in recognizing 703 

foreign antigens and subsequent microbial killing, and phagocytosis. In the present study, 704 

when kidney cells were exposed to PAMPS, c3 gene expression increased at 24 h exposure, 705 

but was more highly expressed in spleen cells stimulated with LPS and B-glucan. The 706 

difference in expression between these tissues may be due in part to the types of cells present 707 

in each organ since kidney tissue has significant osmoregulatory roles as well as functioning 708 

in hematopoiesis.  709 

Prostaglandin synthesis via cox2 (a.k.a. prostaglandin synthase) activity, among other things, 710 

functions as a mediator of inflammation. It has been reported that the expression of cox2 is 711 

not constitutive in rainbow trout and sea bass, but can be induced by factors such as LPS  712 

[61,62]. In this study, there was an immediate and early up-regulation of expression of cox2 713 

in stimulated kidney cells using all three PAMPS, whereas there was a later, but more 714 

prolonged increase of expression, in spleen cells stimulated with LPS and beta-glucan. By 24 715 

h post exposure, the levels of expression in kidney cells were not significantly different from 716 

the control PBS-treated cells. The significance of the response in kidney cells may be related 717 

to the need for production of O2 radicals generated as by-products of prostaglandin synthesis 718 

that would negatively impact bacterial agents potentially found in the blood during an episode 719 

of bacteremia.  720 

The met II gene, has been used as a biomarker of heavy metals exposure in aquatic animals 721 

[63] and can also be implicated in protection from cellular and oxidative stress. Met II has 722 

been detected mainly in liver and kidney in mandarin fish and catfish [64,65] after exposure 723 

to cadmium and selenium, respectively, however this study found that spleen cells from 724 

meagre responded late to all 3 PAMPS at 24 h post-exposure; in contrast to kidney cells which 725 

did not show any significant stimulation by the three PAMPs used. Chelation of metals such 726 

as iron and zinc may provide a significant edge in combatting pathogens that require such 727 

trace metals for regulation of gene expression (eg. - zinc-finger transcription factor proteins) 728 

or metabolic processes requiring biologically available forms of iron. The response from the 729 

spleen cells seen with this perspective has sense. That there is no response seen from kidney 730 

cells is an area that could be profitable for future study. 731 

NLRs are important intracellular cytosolic sensors for the initiation of innate immune 732 

responses against infectious agents [17]. Recently, genes grouped in the NLR family have 733 

been characterized in Japanese flounder [66] and seabass [67]. High levels of nod2 mRNA 734 



have been found in the spleen and different immune cell populations and in particular 735 

neutrophils [68]. Nod3 plays a role in modulating T cell responsiveness and inhibits 736 

inflammatory mechanisms [67]. The current work with meagre has shown that only the 737 

expression of nod3 in kidney cells increased at 4 h following an exposure to LPS and β-glucan. 738 

However both kidney and spleen cells respond strongly at 24 h to LPS and β-glucan with an 739 

increase of mRNA transcripts of nod2 and nod3. The difference in the timing of expression 740 

of nod2 and nod3 suggests different regulatory pathways may be controlling each in the 741 

immediate early response. In no instance was poly I:C seen to function as a stimulant for either 742 

NLR. This is in agreement with previous findings, considering that muramyl dipeptides are 743 

previously described as a ligand for nod2 [17].  744 

The findings from both the in vivo and in vitro experimental data confirm the genes studied 745 

are responsive to pathogen associated molecular patterns and the host immune response is 746 

tissue specific. The timing of expression during on-growing of larval and juvenile meagre, 747 

can depend on the state of maturity of the organs and their requisite cellular composition.  In 748 

conclusion, the current study is the first to identify the genes for met II, c3, cox2, lyzc, mxp, 749 

myd88, nod2 and nod3, in meagre and examine how these immune genes are expressed during 750 

larval and juvenile development, and the effects of PAMP stimulation on the modulation of 751 

expression in vivo. Interestingly, the data from this study suggests that the transition from live 752 

feed to a commercial dry feed might be a time when the innate immune response is in flux, 753 

and that it may be the change in diet and the nutritional and/or compositional changes of the 754 

feed that are inducing the significant alterations in expression seen at these times.  This study, 755 

by using poly I:C, LPS and β-glucan as proxies for actual viral, bacterial and fungal pathogens 756 

pathogens, also provides valuable insight into how the meagre innate immune response may 757 

respond in comparison to other species. However, further studies focused on larval nutrition, 758 

specifically identifying changes in the components in the diet that can beneficially modulate 759 

gene expression of the immune system, will enhance larval rearing protocols by reducing 760 

mortalities.  761 
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