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Significance and Impact of Study 28 

The continuous discovery of new pathogens poses a challenge in the development and evaluation of 29 

adequate diagnostic tools. In fact, since molecular-based tools sometimes are the only available 30 

laboratory techniques, it is typically difficult to evaluate their diagnostic performances in absence of a 31 

gold standard. The present study assess this issue, demonstrating the excellent performances of two 32 

PCR-based assays for PCV-3 detection using a Bayesian latent class analysis approach. 33 

Therefore, the molecular tests evaluated under this study constitute reliable tools for the routine 34 

diagnosis and surveillance programs of PCV-3 circulating in swine populations. 35 

 36 

Abstract 37 

Aims: Molecular-based tools sometimes are the only laboratory techniques available to detect a 38 

recently discovered agent and their validation without the existence of previously described “gold 39 

standard” methods poses a challenge for the diagnosticians. A good example within this scenario is the 40 

recently described Porcine circovirus 3 (PCV-3) in the swine population worldwide, from which only 41 

few PCR methods have been described. Therefore, the primary objective of this study was to estimate 42 

the diagnostic accuracy of a direct-PCR (dPCR) and a real-time qPCR (qPCR) for detection of PCV-3 43 

in Italian swine population. Methods and Results: Bayesian latent class analysis approach was used to 44 

rigorously assess their features and applicability in routine diagnostic activity. Data on dPCR and 45 

qPCR were available from 116 domestic pigs, which were randomly selected from 55 farms located at 46 

different regions in northern Italy. The sensitivity (Se) estimates of dPCR (94%; posterior credibility 47 

interval [PCI%] 84-100) and qPCR (96%; PCI% 90-100) were high and similar. The estimated 48 

specificity (Sp) of both dPCR and qPCR assays was around 97%. Conclusions: dPCR and qPCR 49 

assays showed a high and comparable sensitivity and specificity estimates for the detection of PCV-3 50 

in Italian swine population.  51 
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 54 

Introduction  55 

The genus Circovirus rose to veterinary medicine attention by the 90s’, when viruses responsible for 56 

different avian diseases were discovered and classified into this group (Todd, 2004). Since then, many 57 

new circovirus species have been identified in different hosts, being in most of the cases responsible for 58 

infections of negligible clinical and economic relevance (Delwart and Li, 2012; Rosario et al., 2017). 59 

Porcine circovirus 2 (PCV-2) represents a very relevant exception due to its ability to cause one of the 60 

most damaging and widespread swine infections (Allan et al., 2012), responsible for several clinical 61 

syndromes collectively named as porcine circovirus diseases (PCVDs) (Segalés et al., 2013). More 62 

recently, a new swine circovirus species, named Porcine circovirus 3 (PCV-3) has been (Palinski et al., 63 

2017). Its genome includes two major open reading frames (ORFs), ORF1 and ORF2, located in 64 

different strands of the viral replicative form, oriented in opposite direction and encoding the replicase 65 

(Rep) and capsid (Cap) proteins, respectively (Palinski et al., 2017). Although the genomic data 66 

availability is still limited, the Rep gene appears more conserved than the Cap one, likely due to the 67 

different action of functional constraints and effect of immune response, as it has been proposed for 68 

PCV-2 (Franzo et al., 2016). Up to now, no definitive evidence of PCV-3 ability to cause disease in 69 

pigs is currently available (Franzo et al., 2018c; Klaumann et al., 2018a). However, PCV-3 detection in 70 

presence of different disease conditions such as porcine dermatitis and nephropathy syndrome (PDNS), 71 

reproductive and respiratory disorders (Ku et al., 2017; Palinski et al., 2017; Shen et al., 2018) and 72 

myocarditis (Phan et al., 2016) has elicited a remarkable interest in the scientific community.  73 

 74 
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PCV-3 has been reported in North and South America (Palinski et al., 2017; Tochetto et al., 2018), 75 

Asia (Kwon et al., 2017; Shen et al., 2018) and Europe (Stadejek et al., 2017; Franzo et al., 2018b), 76 

suggesting its ubiquity and prolonged circulation over time (Klaumann et al., 2018b). Moreover, its 77 

high frequency of detection in wild boar populations has been recently reported (Franzo et al., 2018c; 78 

Franzo et al., 2019; Klaumann et al., 2019). Based on these premises, the pivotal role of effective and 79 

accurate diagnostic tools, finding application for both research and diagnostic purposes, appears of 80 

interest. So far, the only techniques developed to detect PCV-3 are molecular methods such as direct-81 

PCR (dPCR), real-time quantitative PCR (qPCR), and in situ hybridization (Chen et al., 2018; Franzo 82 

et al., 2018a; Li et al., 2018). The latest one, however, is available just in a few laboratories worldwide. 83 

 84 

Molecular based tools have become of great importance as diagnostic assays in veterinary virology 85 

because of their high sensitivity, specificity and rapidity (Belák, 2007; Hoffmann et al., 2009; Pestana 86 

et al., 2010). Test validation studies assuming perfect reference tests are common, but with a potential 87 

to introduce bias in estimation of index test(s) performances (Lijmer et al., 1999). Paradoxically, the 88 

high sensitivity of PCR methods compared to other assays makes almost impossible to define a proper 89 

“gold standard” for diagnostic performance evaluation. In fact, their actual higher sensitivity could be 90 

misclassified as an inadequate specificity (Drigo et al., 2014a). Latent class analysis (LCA) allows for 91 

the simultaneous estimation of test parameters in populations where the underlying true infection status 92 

is unknown (Hui and Walter, 1980). The true infection status in LCA is regarded as an existing, but 93 

unknown (latent) variable, and test accuracy and prevalence are subsequently parametrized according 94 

to this latent variable. Therefore, the application of an appropriate statistical framework allowing the 95 

estimation of the diagnostic performances in a “gold-standard independent fashion” is essential.  96 

The primary objective of this study was to estimate the diagnostic accuracy of recently developed 97 

molecular-based PCR assays including dPCR and qPCR (Franzo et al., 2018a) for detection of PCV-3 98 
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in domestic pig populations within a Bayesian framework. The findings of this study will serve to 99 

illustrate the tests’ potential for routine field use in PCV-3 screening. 100 

 101 

 102 

Results and Discussion 103 

This is the first study estimating the diagnostic Se and Sp estimates of dPCR and qPCR for detection of 104 

PCV-3 in domestic pig populations sampled under natural field conditions without the assumption of a 105 

gold standard. Results of detection of PCV-3 DNA using dPCR and qPCR were available for 116 106 

porcine samples from different pig populations in northern Italy representing different sample type 107 

including 39 lungs, 33 sera, 32 organ pools, 8 oral fluids, 4 nasal swabs samples. The data of both 108 

dPCR and qPCR results were subjected for the LCA analysis. Descriptive statistics showed that 33.6% 109 

(n=39) samples were positive for PCV-3 DNA by dPCR, whereas 34.5% (n=40) samples were positive 110 

by qPCR. Results of cross-tabulated (contingency) of the dichotomous outcome of dPCR and qPCR for 111 

detection of PCV-3 DNA are shown in Table 1. The estimates of posterior median and 95% PCI of true 112 

prevalence and Se and Sp of dPCR and qPCR are shown in Table 2.  113 

The Se estimates of both dPCR and qPCR was high and similar at 95% PCI. Se of dPCR was 94% 114 

(95% PCI: 84-100), whereas Se of qPCR 96% (95% PCI: 90-100). The estimated Sp of both molecular 115 

assays was high and comparable at 97%. The estimated true prevalence of PCV-3 was varied among 116 

the tested porcine subpopulations, ranging from 16% (95% PCI: 0.007-0.62) in Piemonte to 38% (95% 117 

PCI: 0.27-0.50) in Lombardia (Table 2). The covariance parameters (���and ���) differed significantly 118 

from zero “i.e. the 95% PCI did not cover 0” suggesting conditional dependence between the tests. 119 

That was further confirmed based on comparison between the DIC values.  For these reasons, the 120 

model assuming conditional covariance (COC) between dPCR and qPCR was preferred over other CID 121 
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model scenario (DIC = 26.1 for a model assuming COC, and DIC = 27.6 for a model assuming CID 122 

between the two tests).  123 

These findings showed that both dPCR and qPCR assays are highly sensitive and specific for detection 124 

of PCV-3 DNA from different sample types of domestic pigs. These results are in agreement with 125 

previous studies that consistently reported an extremely high Se of PCR-based methods, being able to 126 

detect up to 1 genome copy/reaction when properly designed and optimized (Hoffmann et al., 2009; 127 

Mijatovic-Rustempasic et al., 2013; Parker et al., 2015; Kralik and Ricchi, 2017). Additionally, since 128 

successful target amplification and detection rely on multiple specific interactions between assays 129 

oligonucleotides and target genome, a high-test specificity is typically expected, especially for qPCR. 130 

Nevertheless, this virtue comes at the cost of a potential susceptibility to mismatches among designed 131 

oligonucleotides and target genome, which can significantly affect the assays diagnostic sensitivity 132 

(Drigo et al., 2014b). However, the remarkable performances herein proven for both assays exclude 133 

this limitation. The quite modest PCV-3 genetic variability at present (maximum genetic distance of 134 

3.4% in the Rep gene, based on available sequences) (Klaumann et al., 2018a) and the selection of the 135 

more conserved genomic region for primer/probe design can probably justify the observed results. 136 

Although only Italian samples were screened, the in silico evaluation of published sequences obtained 137 

from virus sequences collected in several countries revealed the presence of few mismatches compared 138 

to the designed oligonucleotides, suggesting that these results could be confidently extended to the 139 

worldwide scenario (Franzo et al., 2018a). 140 

In the previous study where the evaluated PCR techniques were described (Franzo et al., 2018a), it was 141 

shown that the analytic Se and Sp of both dPCR and qPCR methods were high, with a Se of 10 viral 142 

genome copies/μL. Current findings support the substantially perfect concordance between the two 143 

assays and confirm the accuracy of dPCR assay. Consequently, both assays can find a practical 144 

application for reliable PCV-3 DNA detection and their use as laboratory tools to monitor the infection, 145 
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even though with different advantages. The dPCR can provide a new, automatable and cheap tool for 146 

massive PCV-3 screening, while the more “traditional” qPCR, although slightly more expensive and 147 

laborious, could find application when viral quantification is of interest. 148 

When applying LCA to estimate test performance of diagnostic tests, there are model assumptions and 149 

conditions to consider. The first assumption of the LCA model is that the two tests are conditionally 150 

independent given positivity status. In our study, dPCR and qPCR were considered as conditionally 151 

dependent because they are measuring the same target “DNA of PCV3”. This assumption was further 152 

confirmed based on the DIC value for the different models (COC & CID), where the model accounting 153 

for covariance “COC” between dPCR and qPCR was preferred (DIC = 26.1). The second assumption 154 

when using LCA is that Se and Sp of each test are constant throughout the tested populations. To 155 

justify that assumption, we repeated the BLCM analysis with exclusion of each of the 5 regions based-156 

populations, one at a time (Mahmmod et al., 2013). The obtained test estimates (Se, Sp) for both PCR 157 

tests showed no substantial changes, which supports that the assumption was not violated. The final 158 

assumption is that prevalence of infection/disease status should differ between populations. It was 159 

assumed a priori that the apparent prevalence of PCV-3 differed among the study populations because 160 

of different features of regional farming in Italy and efforts devoted to infectious diseases spreading 161 

control. Additionally, fluctuations in PCV-3 detection over time has already been reported (Klaumann 162 

et al., 2018b). That assumption was also confirmed in the present study, as posterior estimates of 163 

prevalence median were different among regions (Table 2). This evidence is of particular interest since 164 

Toft et al. (2005) reported that the larger the difference between disease prevalence in the populations, 165 

the higher the precision in the estimates (Toft et al., 2005). 166 

Using the LCA approach, Se and Sp of both dPCR and qPCR assays for detection of PCV-3 DNA were 167 

estimated in different tissues of pig populations in Northern Italy. Both dPCR and qPCR assays were 168 
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highly sensitive and specific methods for detection of PCV-3; hence, they elucidate reliable tools for 169 

the routine diagnostic and surveillance programs against PCV-3. 170 

 171 

Materials and methods 172 

Study population and sampling procedures  173 

Data on test results of two PCR-based assays were obtained from a previous study (Franzo et al., 174 

2018a), which developed and validated the analytic performance of dPCR and qPCR assays for 175 

detection of PCV-3 in pig populations. Porcine serum and tissue samples were collected from domestic 176 

pigs originating from 55 farms located in Northern Italy. The samples were delivered to the Veterinary 177 

Infectious Disease laboratory (Dept. Animal Medicine, Production and Health, Padua University, Italy) 178 

for diagnostic purposes between 2014 and 2017. Samples were collected from 5 Northern Italy regions, 179 

including Emilia-Romagna, Friuli Venezia Giulia, Lombardia, Piemonte and Veneto (Table 1). The 180 

investigated populations can be considered representative of the Italian swine production industry since 181 

(with negligible variation over time) 7.5 out of about 9 million Italian pigs are raised in Northern Italy: 182 

18% in Emilia-Romagna, 3% in Friuli Venezia Giulia, 56% in Lombardia, 13% in Piemonte and 10% 183 

in Veneto (ISTAT). The sample size was initially selected in order to estimate the infection prevalence 184 

with at least a 10% precision and 95% confidence interval, assuming an infinite population size and 185 

50% prevalence. 186 

The samples were processed as previously described in Franzo et al. (2018a). Briefly, the tissues were 187 

mechanically homogenized in phosphate buffer saline (10 mL of PBS/g of tissue) before further 188 

processing. Similarly, swabs and sponges were diluted in 500 μL of PBS and vortexed. DNA was 189 

extracted from 200 μL of liquid matrices (ExtractSpin TS kit, BIOLAB, Gorizia, Italy), setting the final 190 

elution volume to 100 μL. All samples were subjected for testing using the optimized dPCR and qPCR 191 
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protocols. To ensure blindness, the samples were split in two aliquots and a randomized ID was 192 

assigned. The link between different tests was disclosed at the end of the experiment. 193 

 194 

Diagnostic assays  195 

Direct PCR assay  196 

The dPCR was developed and optimized as previously described (Franzo et al., 2018a). Briefly, several 197 

primer pairs were designed to cover a region of ~500 bp located in the PCV-3 rep region. PCR was 198 

performed using Thermo Scientific™ Phire™ Animal Tissue Direct PCR kit (Thermo Fisher Scientific, 199 

Waltham, MA). To evaluate assay performance, various thermal protocols and reagent concentrations 200 

were attempted and compared by testing a 10-fold plasmid dilution (108–1 copy/μL) performed in 201 

different tissue matrices. The assay was developed using the selected matrices directly as templates 202 

because the DNA extraction step was not required. Reactions were performed on a 2720 Thermal 203 

Cycler (Applied Biosystems™, Foster City, CA), and amplification and specificity of the bands were 204 

visualized after electrophoresis on 2% agarose gel and staining. 205 

The assay limit of detection (LOD, defined as the lowest viral amount that can be detected in at least 206 

50% of replicates) and the absence of nonspecific amplification products were selected as criteria to 207 

evaluate and compare different assay settings. 208 

 209 

Real-time quantitative qPCR assay  210 

Similarly, the qPCR assay was developed and performed as previously described (Franzo et al., 2018a). 211 

Briefly, primers and probes were designed based on the rep gene. Additionally, a commercially 212 

available exogenous internal control was also implemented in the qPCR validation. To minimize the 213 

interference between the IC and viral target amplification, different IC plasmid and primer–probe 214 

combinations were evaluated to maximize PCV3 detection sensitivity while consistently detecting IC, 215 
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particularly at low PCV3 titers. Because qPCR requires purified DNA as template, the plasmid dilution 216 

curves were extracted (ExtractSpin TS kit, BIOLAB, Gorizia, Italy) before further processing. qPCR 217 

was performed using DyNamo™ColorFlash Probe qPCR kit (Thermo Fisher Scientific, Waltham, MA) 218 

on a LightCycler® Nano Instrument (Roche Life Science, Indianapolis, IN), and the analysis was done 219 

using LightCycler nano software v.1.1, (Roche). The assay analytic performances were evaluated using 220 

the same approach described for dPCR. 221 

 222 

Target condition 223 

The latent infection status (viraemia) targeted for detection by the PCR assays reflects a blood sample 224 

containing either the live PCV-3 virus or its DNA fragments at any concentration level, whether the 225 

tests detected it or not. More specifically, the infectious status was assessed by the successful 226 

amplification of a specific region of the viral genome. The positive result (i.e. infection presence) was 227 

identified by the fluorescence increase (qPCR assay) or detection of a specific band after gel 228 

electrophoresis run (dPCR assay). 229 

 230 

Population stratification 231 

The Northern Italian regions: Emilia-Romagna, Friuli Venezia Giulia, Lombardia, Piemonte and 232 

Veneto stratified the Italian swine population into the respective five subpopulations – similarly 233 

perceived to have different true prevalences of PCV-3. 234 

 235 

Statistical analyses 236 

A Bayesian latent class model (BLCM) fitted in OpenBUGS v3.2.2 (Lunn et al., 2009) but called from 237 

R software via the ‘BRugs’ package (Thomas et al., 2006) was used to derive the sensitivity (Se) and 238 

specificity (Sp) of the tests as well as the PCV-3 prevalences specific to the aforementioned swine 239 
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subpopulations. The analysis was closely guided by the standards for reporting diagnostic accuracy 240 

studies that use BLCMs (STARD-BLCM) (Kostoulas et al., 2017), Table S1. 241 

 242 

Fitting BLCMs calls for three assumptions: (1) the target population ought to constitute two or more 243 

subpopulations with different prevalences, (2) the Se and Sp of the index tests should be constant 244 

across the subpopulations and (3) the tests should be conditionally independent given the disease status 245 

(Hui and Walter, 1980). However, considering that the tests employ similar detection mechanisms for 246 

the virus, i.e. both tests target the virus DNA, the assumption on conditional independence was relaxed 247 

to allow for correlation between the two tests by fixing two conditional covariance parameters, ��� and 248 

��� between pairs of Se and Sp of the tests respectively as specified by Gardner et al. (2000). To verify 249 

the importance of the assumption of conditional covariance, the model was compared to a model 250 

assuming conditional independence (CID model) between the two tests. The relative fit between the 251 

two models was compared using the Deviance Information Criteria (DIC) (Spiegelhalter et al., 2002).  252 

 253 

Counts (��) of the different test combinations (e.g. +,+) were presumed to be multinomially distributed: 254 

 255 

�� ∨ �������� �����������������, ��� 256 

 257 

Where ��� and ���represent the respective test characteristics for test � (� = 1,2) and �� is the specific 258 

prevalence for the ��� (� = 1: 5) subpopulation. ����� is a vector of probabilities of observing the 259 

different combinations of test results whereas �� reflects the total number of pigs tested for the ��� 260 

subpopulation. For instance, in the 1st subpopulation for an animal testing positive to each of the two 261 

tests, ����� is given by: 262 

 263 
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����� = (��(��
���

�|��) + ��(��
���

�|��))264 

= (������ + ���)�� +  �[1 ���][1 ���] + ����[1 ��] 265 

 266 

The five subpopulations yielded 15 degrees of freedom (��) sufficient to estimate 11 parameters (Se 267 

and Sp of the two tests, five subpopulation prevalences and two conditional covariances). To the best of 268 

authors’ knowledge, there is no available literature/information on the diagnostic Se and Sp estimates 269 

for PCV-3 diagnostic tests. Thus, a vague uniform prior information was used for the Se and Sp of the 270 

quantitative PCR based on expert opinion [Sp and Se estimates in the range of 90-100%] on a TaqMan 271 

quantitative PCR assay. Such information was necessary to ensure identifiability of the model (Jones et 272 

al., 2010; Statisticat, 2015). The hypothesis: ���, ��� = 0, was evaluated using a Bayesian � value. 273 

The goodness-of-fit of the Bayesian model was evaluated using the posterior predictive � value. 274 

 275 

The model was initialised with two Markov Chain Monte Carlo chains with different values. Each 276 

chain comprised 200,000 samples, with the first 100,000 being discarded as the burn-in. Convergence 277 

of the chains was evaluated by visual appraisal of the time series plots of selected variables and the 278 

Gelman-Rubin diagnostic plots. The posterior distribution of the subpopulation prevalences and the Se 279 

and Sp of the two tests were reported as the median and the corresponding 95% posterior credible 280 

intervals (PCI) (Table S2). 281 
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Table 1. Cross-tabulated results for combinations of real time PCR and direct PCR assays used for 410 

identification of PCV3 in 116 samples collected from swine populations in Italy and stratified based on 411 

the region into five subpopulations. 412 

Population Test combinations (T1; real time PCR and T2; direct PCR) Total 

Pos/Pos Pos/Neg Neg/ Pos Neg/ Neg 

Pop 1 (Emilia Romagna) 1 0 0 5 6 

Pop 2 (Friuli Venezia Giulia) 0 0 0 2 2 

Pop 3 (Lombardia) 31 1 0 50 82 

Pop 4 (Piemonte) 0 0 0 3 3 

Pop 5 (Veneto) 7 0 0 16 23 

Total 39 1 0 76 116 

 413 

  414 
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Table 2. Posterior median and 95% posterior credibility interval (PCI) of test estimates and true 415 

prevalence of PCV3 diagnosed by real time PCR and direct PCR assays in 116 samples obtained from 416 

five populations representing different Italian regions. 417 

Item Median estimate 95% PCI 

������ 0.96 0.90 - 1.00 

������ 0.94 0.84 - 1.00 

������ 0.97 0.91 - 1.00 

������ 0.98 0.91 - 1.00 

��� 0.02 0.005 - 0.15 

��� 0.01 0.007 - 0.072 

�� (Emilia Romagna) 0.22 0.02 - 0.59 

�� (Friuli Venezia Giulia) 0.21 0.01 - 0.73 

��  (Lombardia) 0.38 0.27 - 0.50 

�� (Piemonte) 0.16 0.007 - 0.62 

�� (Veneto) 0.31 0.14 - 0.52 

 418 
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