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ABSTRACT:  

Wheat straw and animal wastes are important feedstock for biogas production in Europe.  

Yet, the high content of lignocellulosic and refractory materials causes the process to be 

relatively slow. Therefore, pretreatment methods have been proposed to shorten the 

hydrolysis phase. The present study examined the effectiveness of alkali pre-treatment (AP), 

ultrasonic pre-treatment (UP), and alkali-ultrasonic pre-treatment (AUP) applied on wheat 

straw (WS), solid fraction of cattle manure (SCM) and solid fraction of slaughterhouse waste 

(SSHW), by monitoring solubilisation ratio, anaerobic biodegradability and methane yield. 

The results indicate that the solubilisation ratio of the substrates improved regardless of the 

types of pre-treatment applied. Though, AP was more effective on WS and SSHW than other 

pre-treatments (UP and AUP), with approximately 47% and 17% extra methane, respectively. 

Moreover, AP of SCM caused an increased in methane production rate by 100% and 

minimised lag phase from 16 days to 1 day during anaerobic digestion. Based on Danish 

conditions, only AP of WS was economical prior to the biogas process due to high extra 

methane yield. A positive energy budget of 8 € t-1
VS

 was calculated. High-energy 

consumption during UP and AUP in laboratory scale hindered the positive benefits of these 

pre-treatments. 

 

KEYWORDS: Solubilisation ratio; Biodegradability; Modified Gompertz; Energy 

consumption; Cost-effective  
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SYMBOLS AND ABBREVIATIONS:  

 

µm Methane production rate KOH Potassium hydroxide 

e Euler’s number WS Wheat straw 

λ Lag phase  CM Cattle manure 

ξ Methane heating value  PS Pig slurry 

ŋ Efficiency energy 
conversion  

SHW Slaughterhouse waste 

t Time SCM Solid fraction of cattle manure 

P Ultrasonic power SSHW Solid fraction of slaughterhouse 
waste 

V Sample volume AP Alkali pre-treatment 

TS0 Initial TS concentration of 
sample 

UP Ultrasonic pre-treatment 

ΔP Net increase in methane 
content  

AUP Alkali – ultrasonic pre-treatment 

B0 Ultimate methane yield TS  Total solid 

Eo1 Energy output of 
pretreated substrates 

VS Volatile solid 

Eo2 Energy output of untreated 
substrates 

TAN Total ammonium nitrogen 

Eprocess Energy consumption 
during pre-treatment 

VFA Volatile fatty acids  

Ein Energy input tCOD Total chemical oxygen demand 

Eout Energy output sCOD Soluble chemical oxygen demand 

EUS Specific energy demand of 
sonication 

AB Anaerobic biodegradability 

A Initial tCOD converted into 
VFA at the end of the 
assay 

S Solubilisation ratio 

X Initial tCOD employed in 
biomass generation 

M 
 

Initial tCOD converted into methane 
at the end of the assay 
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1. INTRODUCTION 

Anaerobic digestion of animal wastes (manure) and by-products (slaughterhouse waste, 

SHW) offers multiple benefits including improvement of fertilizer quality (digestate), 

reducing odors and pathogens, and production of biogas [1]. In addition, treating the above-

mentioned wastes through anaerobic digestion may reduce greenhouse gases (GHG) 

emissions and minimize leaching of nutrients and organic matter to the environment [1]. 

However, these wastes often contain recalcitrant materials (e.g. straws or grasses from animal 

feed, and wood chips or straws from animal bedding) that has a poor biodegradability during 

anaerobic digestion [2]. To improve the degradability of the materials and increase methane 

production, pre-treatment is a key step.  

Applied pre-treatments alter the properties of lignocelluloses, increasing delignification 

and solubilisation of hemicelluloses, and promote accessibility of celluloses for enzymatic 

hydrolysis [3]. Among pre-treatment methods, alkali pre-treatment (AP) is widely 

investigated because of the efficacy of the treatment to solubilise hemicellulose and lignin [4-

5]. A study by Bruni et al. [6] confirmed that methane yield from digested biofibers was 

superior when AP was applied on the substrate compared to other methods such as biological, 

physical, steam and combined pre-treatment. Pre-treatment of biofibers using lime increased 

methane yield up to 66%. Despite the positive influence of AP, Bruni et al. [6] suggested that 

for a large-scale implementation, factors such as chemicals cost and the need for extra 

investment costs for storage tank and mixer should be taken into accounts. 

Besides AP, the application of ultrasonic waves on wastewater sludge to improve 

biogas production is widely known [7], and its application for solid wastes is emerging [8-9]. 

This technology has already been tested at full-scale system with positive energy balance, 

meaning there’s possibility for large-scale implementation [10]. During ultrasonic pre-

treatment (UP), the occurrence of acoustic cavitation, disrupt the cell walls of the substrates, 
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which increase the specific surface area for enzymatic attack, and reduce the degree of 

polymerisation [8-9, 11]. Zou et al. [9] reported positive benefits of UP on anaerobic co-

digestion of maize straw and dairy manure. Approximately 70% of extra biogas was 

determined due to the pre-treatment.  

Application of combined alkali and ultrasonic pre-treatment for treating lignocellulosic 

materials have also been reported by previous studies [5,12]. Velmurugan and Muthukumar 

[5] examined the increase in reducing sugar yield and delignification when alkaline assisted 

ultrasound pre-treatment was applied on sugarcane bagasse. In addition, Subhedar and 

Gogate [12] observed a two-fold increase in delignification of waste newspaper when 

combined pre-treatment was applied compared to alkaline pre-treatment alone  

Although some studies on AP, UP and AUP of lignocellulosic materials have been 

reported [2,5-6,11-12],  the knowledge of the above-mentioned pre-treatments for treating 

WS, solid fraction of cattle manure (SCM) and solid fraction of slaughterhouse waste 

(SSHW) for biogas production is still scarce. Therefore, the present study aimed to 

investigate the influence of AP, UP and AUP on selected substrates, through the change of 

organic matter solubilisation, biodegradability and methane yield, in comparison with non 

pre-treated substrates. Moreover, this study aimed to evaluate the feasibility of the studied 

pre-treatments in a biogas plant for the co-digestion of WS with pig slurry (PS), or for the 

mono-digestion of cattle manure (CM) or slaughterhouse waste (SHW). For that purpose, 

energy balance and preliminary cost calculation were included. 

 

2. MATERIAL AND METHODS 

2.1 Sample collection and preparation 

Cattle manure and WS were collected from a cow farm in Olot, Spain. The CM 

contained faeces, urine and bedding materials. The SHW consisted of animal blood, stomach 
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and intestinal content, and fibre from animal bedding; this waste was collected from a 

slaughterhouse (Soria, Spain) and sterilised by thermal treatment at 133oC, following the 

European Regulation 1069/2009/EC for sanitation purposes.The solid fraction from CM and 

SHW were obtained through sieving using 1mm mesh. The solid and liquid fraction were 

analyzed for chemical compositions and stored at 4oC until further usage. Wheat straw was 

shredded to a particle size of 1-2 mm using laboratory mincer (Molinex) and stored at room 

temperature. For batch test purposes, solid fraction from CM and SHW were mixed with the 

respective liquid fraction while WS was co-digested with pig slurry collected from a pig farm 

in Barcelona, Spain.  

 

2.2 Substrate pre-treatments 

Pre-treatments of the substrates were carried out at room temperature (25ºC). Pre-

treatment conditions such as alkali treatment time and alkali concentration were selected 

based on our previous work by Moset et al. [13]. Potassium hydroxide (KOH) was selected 

instead of sodium hydroxide (NaOH) for alkali pre-treatment, because KOH can be recycled 

and used as fertilizer [14]. The parameters for ultrasonic pre-treatment were selected based on 

Subhedar and Gogate [15].   

 

2.2.1 Ultrasonic pre-treatment  

The UP was performed using a Digital Sonifier Unit Model 250 (Branson Inc. Danbury, 

CT, USA; maximum output of 200 W) and the sonotrode was placed in the middle of a 200 

mL beaker. The ultrasonic energy was transmitted directly to the sample for 20 minutes, with 

an operation pattern of 40 seconds on and 40 seconds off, with 20 kHz and power density of 

2 W mL-1. The temperature of the samples raised between 30 to 36oC (from room 

temperature, 22-25oC) after sonication.  
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2.2.2 Alkali pre-treatment 

          The AP was conducted in a closed container. The solid substrates were soaked with 8% 

KOH (Sigma-Aldrich, Germany) with dilution ratio of 9:1 (water to solid ratio) and stirred 

manually. The container was closed and kept at room temperature (25oC) for 24 hours, 

without any stirring devices.   

 

2.2.3 Alkali-ultrasonic pre-treatment 

          The substrates were firstly treated with AP and then undergone UP. Similar AP and UP 

procedure were followed as mentioned in section 2.2.1 and 2.2.2. Each pre-treatment were 

performed in duplicates and the average of two measurement was presented. The pre-treated 

substrates were analyzed for chemical compositions and were kept at 4oC before prepared for 

batch test.  

 

2.3 Biochemical methane potential (BMP) test  

Batch test was conducted at mesophilic temperature (35ºC) for 39 days to determine the 

cumulative methane yield from the substrates, following Angelidaki et al. [16] and 

Rodriguez-Abalde et al. [17]. The inoculum was collected in a mesophilic digester of an 

urban wastewater treatment plant (WWTP) in Barcelona, Spain and stored for a week at 35ºC 

to ensure the consumption of residual organic matter. The untreated (three samples) and pre-

treated substrates (nine samples; 3 substrates x 3 pre-treatments) were analyzed in parallel 

and in duplicates, with the similar inoculum and inoculum to substrate ratio of 1:1. The solid 

fraction from CM and SHW were mixed with their corresponding liquid fraction and WS was 

co-digested with PS. The percentage of solid and liquid fraction added to the bottle was based 

on the ratio of solid to liquid after separation using sieve which was, 27:73 for CM, 14:86 for 

SHW while for WS, ratio of 50:50 was selected. The substrates, together with inoculum, 
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bicarbonate (1 g g-1
tCOD) and deionized water were weighed and added to 1.2 L bottles. The 

tCOD of the mixture was maintained at 5 g L-1 in each bottle. Two blank controls consisted 

only inoculum were also included.  

Methane content in biogas produced was determined using a gas chromatograph CP-

3800 (Varian, Palo Alto, CA, USA) fitted with Hayesep Q 80/100 Mesh (2m x 1/8” x 2.0 mm 

SS) packed column (Varian, Palo Alto, CA, USA) and TCD detection. The calculated 

methane yield was corrected to standard conditions at 273 K and 1013 hPa and expressed in 

term of L kg-1
COD.  

 

2.4 Analytical methods 

        The treated and untreated solid substrates, liquid manure and pig slurry were 

characterized by their content of total solids (TS) and volatile solids (VS) following APHA 

[18]. Total volatile fatty acids (VFA) concentration and individual acid profile (acetic, 

propionic, butyric, and valeric acids) were determined with a CP-3800 gas chromatograph 

(Varian, Palo Alto, CA, USA), fitted with TRB-FFAP (30 m x 0.32 mm x 0.25 µm) capillary 

column (Tecknokroma, Barcelona, Spain) and FID detection. Total chemical oxygen demand 

(tCOD) and soluble chemical oxygen demand (sCOD) were measured following method 

proposed by Noguerol-Arias et al. [19] . The elemental composition (C, H, O and N) was 

determined by catalytic oxidation, combined with gas chromatography (Elemental Analyser 

LECO Truspec CHNS, USA). Scanning electron microscope (SEM) analysis of the untreated 

substrates was performed with Nova Nano SEM 600 (FEI, USA), operated at 15kV, using a 

low vacuum detector during the analysis.  
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2.5 Mathematical 

Solubilisation ratio (S, %) was calculated as equation 1, following Jackowiak et al. 

[20]. 

S = (sCOD / tCOD) x 100                                                                                                       (Eq. 1)         

Where sCOD is soluble chemical oxygen demand of the wastes after pre-treatment (solid + 

liquid fraction) and tCOD is total chemical oxygen demand of the wastes.     

Anaerobic biodegradability (AB, %tCOD) was calculated with equation 2, following Rico 

et al. [21]. 

%AB = %M+ %A + %X                                                                                             (Eq. 2) 

Where, %AB is the percentage of anaerobic biodegradability; %M is the percentage of initial 

tCOD converted into methane at the end of the assay; %A is the percentage of initial tCOD 

converted into VFA at the end of the assay; %X is the percentage of tCOD employed in 

biomass generation. The details of the equation can be found in Rico et al. [21].          

         In order to examine the methane yield with different pre-treatments, a non-linear 

regression was utilised to achieve representative simulations and predictions. The modified 

Gompertz model (Eq.3) has been used widely by previous researchers in describing and 

predicting cumulative methane yield through the entire anaerobic digestion [22-24].  

B = B0 · exp {-exp [µm · e/B0 (λ – t) + 1]}                                                          (Eq. 3) 

Where, µm is the methane production rate (L kg-1
COD d-1); e is the Euler’s number (2.7182); λ 

is the lag phase period (days) or the minimum time required to produce methane. The B0, µm 

and λ were predicted using Eq. 3 with the aid of Solver function of the Microsoft Excel Tool 

Pak. The squared correlation coefficient (R2) was used to evaluate the precision of the model 

fit. The significance difference was statistically analyzed using Tukey test with JMP Pro 13 

software. 
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2.6 Energy balance   

       To assess the economic feasibility of the pre-treatments, the input (Ein) and output energy 

(Eout) were calculated and the net energy balance indicates the difference between Ein and 

Eout.  

 

2.6.1 Energy input from alkali pre-treatment 

         The energy input due to AP was made with an assumption that energy consumption of 

potassium was 7 MJ kg-1
K [25].  

 

2.6.2 Energy input from ultrasonic pre-treatment 

Energy input during UP was calculated following [26-27], using equation 4. 

EUS= P x t / (V x TS0)                                                                                                         (Eq. 4) 

Where, EUS is the specific energy demand of sonication (kJ kg-1
TS); P is the ultrasonic power 

(W); t is the ultrasonic treatment time (seconds); V is the sample volume (L); TS0 is the initial 

TS concentration of sample (gTS L-1).  

 

2.6.3 Energy output 

         Energy output was calculated following Passos et al. [28], expressed by multiplying net 

increase in methane content (ΔP; m3 g-1
VS) with methane heating value (ξ; 35.8 kJ L-1) and 

efficiency energy conversion (ŋ; 90). 

Eo = ∆P. ξ. ŋ                                                                                                                   (Eq. 5)       

 

2.6.4 Net energy balance 

         Net energy balance was expressed following equation 6.  

Net energy gain = (Eo1 – Eo2) – Eprocess                                                                      (Eq. 6)  
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Where, Eo1 and Eo2 are the energy output of pretreated and untreated substrates, and Eprocess 

is the energy consumption during pre-treatment.  

 

3. RESULTS AND DISCUSSIONS 

3.1 Substrates 

The characteristics of untreated WS, PS, CM and SHW are shown in Table 1. As 

observed, the substrates are different in their chemical characteristics. The carbon to nitrogen 

ratio of the solid wastes varied from 38 to 46. From the elemental analysis, the organic 

substrates WS, CM and SHW could be presented as C79H98O52N2, C75H80O43N2 and 

C91H108O52N2, respectively. Moreover, tCOD of WS+PS was higher (554 gO2 kg-1) than SHW 

(158 gO2 kg-1) and CM (115 gO2 kg-1). The solid content showing highest value for WS (427 

gTS kg-1 and 396 gVS kg-1), while the values were comparable for CM and SHW (91 gTS kg-1 

and 76 gVS kg-1 for CM, and 90 gTS kg-1 and 80 gVS kg-1 for SHW). The microstructure and 

morphology of untreated solid wastes were compared by the SEM images (Figure 1). 

Untreated WS (Figure 1a) exhibited intact structure with a regular texture as compared to 

SCM (Figure 1b) and SSHW (Figure 1c). The waxes and derivatives were also observed on 

the surface of WS. In contrast, the surface of solid CM and SSHW were uneven and broken. 

The broken structure was severe for CM than SSHW and small holes were visible on the 

surface of CM. The CM is a digested waste while SSHW consisted bedding materials 

(stepping effects by cow), attributed to uneven and broken structure. The SEM images 

confirmed the characteristics of WS, CM and SSHW.  

 

3.2 Solubilisation ratio 

Figure 2 presents solubilisation ratio (sCOD/tCOD) of untreated and pre-treated WS, CM 

and SHW. Regardless the types of pre-treatment, an increased in sCOD concentration was 
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observed after pre-treatment of the substrates. The increment was ranging from 14 to 17% for 

WS, 18 to 22% for solid CM and 16 to 17% for SSHW. It was observed that solubilisation 

ratio due to UP was lower compared to AP and AUP when the pre-treatment was applied on 

WS and solid CM. Similar results was reported by Frigon et al. [29], who observed that the 

alkali pre-treatment of summer harvest switch grass caused greater influence on sCOD 

concentration than sonication pre-treatment. In previous study, the sCOD concentration due to 

alkali pre-treatment at 35oC was increased by 5-fold, from 1.9 to 10.1 g L-1, while sonication 

increased the sCOD concentration from 0.7 to 4.8 g L-1. Solubilisation ratio of pre-treated 

SSHW was similar regardless pre-treatment applied. 

 

3.3 Methane yield  

3.3.1 Methane content 

         Methane content per unit percentage measured from the batch bottles were shown in 

Figure 3a. As observed, substrate types significantly influenced methane content (Figure 3b) 

and the maximum methane content was observed from SHW, followed by CM and WS+PS. 

Methane content of SHW varied from 72-73% while 65-66% and 58-61% were observed 

from CM and WS+PS, respectively. Pre-treatment methods itself did not influence methane 

content and comparable values were examined between untreated and pre-treated substrates.  

 

3.3.2 Cumulative methane yield 

Table 2 presents the cumulative methane yield of the respective substrates at 39 days of 

anaerobic digestion. The highest methane yield were obtained from WS+PS (203 to 284 L kg-

1
COD) and SHW (174 to 213 L kg-1

COD), followed by CM (100 to 122 L kg-1
COD). Pre-

treatment of WS using AP and AUP enhanced methane yield up to 40 and 19% respectively, 

while UP of WS did not influence methane yield. Likewise, AP and AUP of SCM increased 
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methane yield to 19% and 12%, and no significant influence of UP on SCM. All pre-

treatment applied on SSHW increased approximately 22% of methane yield.  

 

3.3.3 Modified Gompertz model 

The modified Gompertz model was used in this study to evaluate and compare the pre-

treatment performance on WS, CM and SHW. The mathematical model parameters were 

summarized in Table 2 and methane profile based on the model was shown in Figure 4. It can 

be observed that the modified Gompertz model (R2>0.97) can fit the experimental data well. 

It is noted that pre-treatment of WS and SSHW caused an increased in overall methane yield 

(B0) and did not influence methane production rate (µm). In contrast, pre-treatment of SCM 

enhanced methane production rate and reduced lag phase.  

The B0 values of untreated and pre-treated WS+PS were ranging from 188 to 277 L kg-

1
COD. Meanwhile, the µm values of pre-treated WS were comparable to untreated prior to high 

variation among duplicates. The lag phase of untreated WS was 1 day, which was similar as 

reported by Liu et al. [23]. The short lag phase time may likely due to soluble and easily 

digestible compound contains in untreated WS and lack of inhibitor [23]. 

           Pre-treatment of SCM using AP and AUP slightly increased B0 values, and 

significantly enhanced µm to two-fold, from 2 to 4 L kg-1
COD d-1. The B0 values for untreated 

CM was 118 L kg-1
COD while B0 of pre-treated CM were ranging from 121 to 133 L kg-1

COD. 

Long lag phase of untreated CM was reduced from 16 days to 1 day when AP and AUP were 

applied. It is noted that UP alone was not an effective on CM.  

           Regardless the type of pre-treatments applied on SSHW, B0 values were comparable 

and significantly influenced the untreated sample. The B0 values of pre-treated samples were 

increased from 168 to 196 (AP), 194 (UP) and 195 L kg-1
COD

 (AUP). Meanwhile, µm and λ 
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values of pre-treated SSHW were similar to untreated. The µm ranging from 22 to 28 L kg-

1
COD d-1 and λ was 2 days.  

 

3.4 Anaerobic biodegradability  

Table 3 presents the percentage of AB of WS+PS, CM and SHW, which comprises: 1) 

M-percentage of initial tCOD converted into methane, 2) A-percentage of initial tCOD converted 

into VFA and 3) X-percentage of initial tCOD used for biomass production. As observed, 

untreated samples of WS+PS and SHW present similar AB percentage (57%), while CM has 

lower AB value, approximately 35%. It is observed that large fraction of initial tCOD of 

untreated WS+PS was converted into methane (54%), 1% converted into VFA and 2% was 

employed for biomass production. Approximately 47% of initial tCOD of untreated SHW was 

converted into methane, 7% residual VFA and 3% was used by anaerobes for biomass 

production. Regarding untreated CM, only 29% of initial tCOD was transformed into methane, 

4% residual VFA and 2% was needed for biomass generation.  

Anaerobic degradability of untreated WS was improved up to 42% by means of AP. It 

was observed that approximately 77% of tCOD was converted into methane and, 1% of 

residual VFA and 3% was used for biomass production. Meanwhile, UP and AUP had no 

significant influenced on AB of WS. Slight increase in AB of CM was observed when AP and 

AUP was applied on SCM. The AB of untreated CM rise from 35% to 39% (AP) and to 45% 

(AUP). All pre-treatment significantly improved AB of SHW and the increment was around 

28 to 35%.  

 

3.5 Residual volatile fatty acid (VFA) 

Volatile fatty acid concentration is one of the most important parameter to indicate 

process stability during anaerobic digestion [30]. Accumulation of VFA is an indicator of a 
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kinetic uncoupling between acid producers and consumers (e.g. acetic acid vs. 

propionic/butyric acid) and is typical for stress conditions [30]. Figure 5a shows the VFA 

profile per unit mg-eqAceticacid L-1 at the end of batch assay. It can be noted that SHW had 

significantly higher residual VFA concentration than WS and CM (Figure 5b). The residual 

VFA concentration of SHW varied from 300 to 676 mg-eqAceticacid L-1, with maximum 

concentration examined when SSHW was treated with AUP. Meanwhile, residual VFA 

concentration of CM and SHW were ranging from 163 to 333 and 41 to 111 mg-eqAceticacid L-1 

respectively.  

Regardless substrate types, the influence of pre-treatments on residual VFA was not 

significant because of high variation in duplicates bottles. In all cases, residual VFA 

concentration was below the inhibition level reported in previous studies [31-32]. Acetic acid 

was the dominant fatty acid in all reactors and the amount of propionic and butyric acid were 

below 19 mg-eqAceticacid L-1 respectively. Propionate/acetate ratio was below the inhibitory 

limit (< 1.4) as suggested by previous studies [30,33], indicates the process was stable.  

 

3.6 Influence of substrate types on pre-treatment performance 

         In this study, the characteristics of selected substrates significantly influence 

solubilisation ratio, anaerobic degradability, methane content, methane yield, and chemical 

compositions. It is noted that WS+PS and SHW are much easier to be digested compared to 

CM, which corroborated to their nature characteristics. Cattle manure is a digested waste and 

mainly consisted of hardly degradable materials as the animals have taken up the easily 

digestible materials [34]. Cattle manure may also contain residues from the cattle food and 

bedding such as straw, sand and sawdust. These solids are either slowly degradable or not 

degradable [21]. Since WS and SSHW have never been digested before, single pre-treatment 

alone was sufficient to improve AB and increased methane production. On the other hand, 
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pre-treatments of SCM by AP and UP did not enhance overall methane yield rather increase 

methane production rate and shortened lag phase. The AUP may be an option for treating 

SCM if high-energy consumption due to ultrasonic system can be minimised.  

 

3.7 Energy balance  

Pre-treatment scalability is determined by the energetic and economic balance. Table 4 

shows an energy input and output for each substrates with regards to pre-treatment methods. 

Surplus of energy was only observed when AP was applied to the substrates. It is because AP 

consumed low energy and boosts methane yield more than UP and AUP. Energy input prior 

to AP was around 0.4 MJ kg-1
VS and additional methane from WS+PS, CM and SHW were 

119, 14 and 134 L kg-1
VS, respectively. The positive energy gains calculated were ranging 

from 0.06 to 3.92 MJ kg-1
VS

 1. Ultrasonic and AUP were not profitable due to high energy 

consumption (30 to 36 MJ kg-1
VS) leading to negative energy balance. 

 Dhar et al. [35] reported that UP was economically feasible when specific energy input 

of 1000 kJ kg-1
TSS was applied on municipal waste activated sludge and the treatment was not 

profitable at higher specific energy input (5000 and 10000 kJ kg-1
TSS) tested in the study. The 

observation supported the results examined in present study, as the energy consumed was 

over 50000 kJ kg-1
TS. However, the estimation of energy consumptions were probably 

overestimated as the calculations were based on laboratory scale conditions. As mentioned in 

Perez-Elvira et al. [10], laboratory ultrasonic systems are not efficient and often the specific 

energy required at laboratory scale is too high. It is noted that the energy supplied by 

ultrasonic equipment at full scale is much smaller than the laboratory devices, leading to 

positive energy budget [10].  

In present study, the cost of AP was estimated by assuming the price of KOH in 

Denmark equals to 0.94 € kg-1
KOH

 following Moset et al. [13]. The amount of KOH used for 
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treating the substrates were ranging from 83 to 86 gKOH kg-1
VS. It is calculated that the price of 

KOH used for AP of WS, SCM and SSHW were 81, 80 and 78 € t-1
VS, respectively. The 

selling price of methane from biogas in Denmark is equals to 0.67 € m-3
CH4 [13], meaning an 

extra income of 89 (WS+PS), 3 (CM) and 54 € t-1
VS (SHW). Yet, it is noted that only AP of 

WS was profitable and the net profit was 8 € t-1
VS. This net profit may be increased if the 

extra fertilizer value is considered in estimating the cost [13]. The fertilizer quality increase 

as KOH was added during anaerobic digestion, which will benefits the farmers, especially in 

the countries where potassium is imported [13]. Thus, it is expected that farmers will be 

willing to invest in potassium that returned with the digestate.  

The price of KOH and cost of KOH production may vary depending on the countries, 

thus the economic calculation may be differ. For large scale application, alkali may be apply 

to the substrates by using spraying system, which consists of piston pump connected to a 

spray nozzle in a mixing chamber [13]. This method reduces the usage of water for chemical 

soaking and minimised the extra investment cost e.g. storage tank. Besides, the system is 

simple and suitable to treat large amount of substrates. Combining AP and wet storage is also 

another option to provide a cost-effective method for producing homogenous delignified 

biomass [36]. In this case, long reaction time required during AP is not a problem as the 

substrates normally stored for months before use for biogas production.  

 

4. CONCLUSIONS 

This study presents the influence of alkali, ultrasonic and, alkali-ultrasonic pre-

treatment on wheat straw, solid fraction of cattle manure and solid fraction of slaughterhouse 

waste to improve biogas production. Anaerobic digestibility of the substrates were improved 

regardless types of pre-treatment applied, which either increased overall methane production 

or enhanced methane production rate. Yet, alkali pre-treatment was the best method due to 
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maximum extra methane yield and low energy consumption. Combination of alkali and 

ultrasonic may be an option for cattle manure, though further investigation is needed. Positive 

budget was only feasible when alkali pre-treatment was applied on wheat straw. At large 

scale, spraying system may be an option to reduce chemical usage, thus may minimize capital 

cost.  
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FIGURES 

Figure 1. Scanning electron microscope (SEM) images of (a) WS, (b) SCM and (c) SSHW 

Figure 2. Solubilisation ratio (%S) of untreated and pre-treated (a) WS (b) CM and (c) SSHW 

Figure 3. (a) Methane content of the substrates and (b) statistical analysis using Tukey test 

Figure 4: Methane profile of (a) WS + PS (b) CM and (c) SHW based on modified Gompertz 

model  

Figure 5: (a) Volatile fatty acid concentration of the substrates and (b) statistical analysis 

using Tukey test 
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Figure 1 
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Mean values bearing different lowercase (a, b and c) are significantly different at p < 0.05 (Tukey test).  
 
Figure 2 
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Figure 4 
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TABLES 

Table 1. Initial characteristics of untreated samples (solid and liquid fraction) 

Table 2. Mathematical model parameters using Modified Gompertz 

Table 3. Anaerobic biodegradability, AB of substrates at different pre-treatments 

Table 4. Energy profile of each substrates at different pre-treatments 
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Table 1 1 

 TS, g kg-1 VS, g kg-1 VS/TS (%) tCOD, g kg-1 C (%) H (%) N (%) O (%) C/N Distribution 
(%ww) 

WS 839±0 783±0 93 1097±5 91 108 2 52 46 50% 

PS 14±0 9.0±0 63 12±5 - - - - - 50% 

WS + PS 427 396 93 554 - - - - - - 

CM_solid 182±0 172±0 94 247±5 75 80 2 43 38 27% 

CM_liquid 58±0 41±0 71 66±4 - - - - - 73% 

CM 91 76 84 115 - - - - - - 

SHW_solid 224±1 215±0 96 315±5 79 98 2 52 40 14% 

SHW_liquid 69±0 59±0 85 133±5 - - - - - 86% 

SHW 90 80 89 158 - - - - - - 

Inoculum  2±0 1±0 64 18±0 - - - - - - 
Nomenclature: WS – wheat straw, PS – pig slurry, CM – cattle manure, SHW – slaughterhouse waste; ww – wet weight 2 

 3 

 4 
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Table 2 5 

   Modified Gompertz model 

  MY39 (L kg-1
COD) B0 (L kg-1

COD) µm (L kg-1
COD d-1)  (d) R2 

WS + 
PS 

Untreated 202.87±25.55  187.68±21.60 b 13.47±2.71  0.03±0.49 0.970 

AP 283.71±17.38*  276.59±20.79 a* 11.57±0.79 -0.57±0.67 0.984 

UP 216.03±14.63 209.66±9.00 ab 10.33±3.08 -0.03±0.89 0.985 

AUP 242.39±20.35 230.49±15.60 ab 15.78±3.07 0.78±0.25 0.990 

CM 

Untreated 102.82±0.34 ab 118.41±5.55  2.08±0.03 c 15.60±0.22 a 0.997 

AP 115.47±6.80 ab 124.46±8.34 4.12±0.20 a* 1.13±0.05 b* 0.990 

UP 99.93±3.75 b 121.41±18.63 2.53±0.07 b* 12.60±2.80 a 0.999 

AUP 122.44±7.69 a 132.64±9.79 4.22±0.05 a* 0.78±0.65 b* 0.989 

SHW 

Untreated 173.75±12.42 b 167.62±10.48 b 21.75±4.66  1.55±0.50 0.988 

AP 212.80±6.83 a* 195.81±5.14 a* 26.26±2.46 1.57±0.32 0.986 

UP 212.19±1.64 a* 193.76±0.41 a* 27.00±2.08 1.81±0.06 0.987 

AUP 212.39±5.22 a* 195.49±7.23 a* 28.27±3.47 1.97±0.41 0.987 

 6 
Nomenclature: WS – wheat straw, PS – pig slurry, CM – cattle manure, SHW – slaughterhouse waste; MY39 – Cumulative methane yield at 39 days; B0– ultimate 7 
methane yield; µm – methane production rate ;  - lag phase. 8 
Mean values bearing different lowercase (a, ab, b and c) in the same column are significantly different at p < 0.05 (Tukey test). * represents significant value at p < 9 
0.05 using Dunnett’s method (comparison with control).  10 
  11 
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Table 3 
 

  M A X AB 
WS+PS Untreated 53.54 % 1.21 % 2.03 % 56.79 % b 

 Alkali 76.66 % 1.15 % 2.58 % 80.39 % a 

 Sonication 58.68 % 1.34 % 2.09 % 62.10 % ab 

 AA-sonication 65.68 % 1.86 % 2.43 % 69.97 % ab 
CM Untreated 29.38 % 4.09 % 1.88 % 35.34 % 

 Alkali 32.49 % 4.77 % 2.14 % 39.40 % 

 Sonication 28.56 % 8.59 % 2.95 % 35.81 % 

 AA-sonication 34.26 % 8.14 % 3.01 % 45.42 % 
SHW Untreated 46.83 % 7.08 % 3.13 % 57.05 % b 

 Alkali 55.94 % 12.48 % 4.72 % 73.14 % a 

 Sonication 55.36 % 13.00 % 4.83 % 73.19 % a 

 AA-sonication 55.85 % 16.00 % 5.58 % 77.40% a 
 
AB is the percentage of anaerobic biodegradability at 39 days following modified Gompertz model; M is the percentage of initial tCOD converted into methane at the end of the assay; A is the percentage of initial tCOD converted into VFA at the end of the assay; X is 

the percentage of tCOD employed in biomass generation. 

Data presented represent an average of two measurements; mean values bearing different lowercase (a, ab and b) in the same column are significantly different at p < 0.05 (Tukey test).  
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Table 4 

Pre-treatment  Samples ID  Extra methane  
(Lkg-1

VS)* 
Energy Input  
(MJ kg-1

VS) 
Energy output 
 (MJ kg-1

VS) 
Ratio  

(Eout/Ein) 
Net energy gain 

(MJ kg-1
VS)  

AP WS + PS  119.23 0.42 3.84 9.25 3.43 
  CM 14.44 0.41 0.47 1.14 0.06 
  SHW 134.21 0.40 4.32 10.80 3.92 

UP WS + PS  29.45 30.63 0.95 0.03 -29.68 
  CM 9.36 30.28 0.30 0.01 -29.98 
  SHW 73.21 29.75 2.36 0.08 -27.39 

AUP WS + PS  49.80 32.14 1.60 0.05 -30.54 
  CM 12.34 34.02 0.40 0.01 -33.62 
  SHW 82.50 35.99 2.66 0.07 -33.33 

* Extra methane was calculated based on Bo values predicted from Modified Gompertz model  

 

 

 

 
 




