
 
 
 
 

 
 
 
 
 
 
 

 

This is a post-peer-review, pre-copyedit version of an article published in Irrigation 
Science. The final authenticated version is available online at:   
https://doi.org/10.1007/s00271-018-0610-z 
 
 
Document downloaded from: 
 

 
 

 

http://repositori.irta.cat/


INFLUENCE OF WIND DIRECTION ON THE SURFACE ROUGHNESS OF VINEYARDS 

Joseph G. Alfieri1, William P. Kustas1, Hector Nieto2, John H. Prueger3, Lawrence E. Hipps4, 
Lynn G. McKee1, Feng Gao1, Sebastian Los4 

1USDA ARS, Hydrology and Remote Sensing Laboratory, Beltsville, MD 20705-2350 USA 
2Institute for Food and Agricultural Research & Technology, Parc de Gardeny, Edifici    
  Fruitcentre, 25003 Lleida, Spain 
3USDA ARS, National Laboratory for Agriculture and the Environment, Ames, IA 50011 USA 
4Plants, Soils and Climate Department, Utah State University, Logan, UT 84322-4820 USA 

Corresponding author: Joseph G. Alfieri; joe.alfieri@ars.usda.gov 

ABSTRACT 1 
Remote sensing-based models are the most viable means of collecting the high-resolution 2 

spatially distributed estimates of evaporative water loss needed to manage irrigation and ensure 3 

the effective use of limited water resources. However, due to the unique canopy structure and 4 

configuration of vineyards, these models may not be able to adequately describe the physical 5 

processes driving evapotranspiration from vineyards. Using data collected from 2014 to 2016 as 6 

a part of the Grape Remote sensing Atmospheric Profile and Evapotranspiration Experiment 7 

(GRAPEX), the twofold objective of this study was to i. identify the relationship between the 8 

roughness parameters, zero-plane displacement height (do) and roughness length for momentum 9 

(zo), and local environmental conditions, specifically wind direction and vegetation density and 10 

ii. determine the effect of using these relationships on the ability of the remote sensing-based 11 

Two-Source Energy Balance (TSEB) model to estimate the sensible (H) and latent (ȜE) heat 12 

fluxes. Although little variation in do was identified during the growing season, a well-defined 13 

sigmoidal relationship was observed between zo and wind direction. When the output from a 14 

version of the TSEB model incorporating these relationships (TSEBVIN) was compared to output 15 

from the standard model (TSEBSTD), there were large changes to the roughness parameters, 16 

particularly zo, but only modest changes in the turbulent fluxes. When the output from TSEBVIN 17 
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was compared to that of a version using a parameterization scheme representing open canopies 18 

(TSEBOPN), the mean absolute difference between the estimates of do and zo were 0.44 m and 19 

0.25 m, respectively. While these values represent differences in excess of 45%, the turbulent 20 

fluxes differed by just 13 W m-2 or 10%, on average. The results suggest that the TSEB model is 21 

largely insensitive to changes in the roughness parameters. This also suggests that the 22 

requirement for highly accurate roughness values has limited utility in the application of the 23 

TSEB model in vineyard systems. Since there is no significant advantage to using the more 24 

complex TSEBOPN and TSEBVIN models, it is recommended that the standard model be used. 25 
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INTRODUCTION 26 
 In terms of both quantity and value, California is among the largest wine producing 27 

regions in the world. According to statistics compiled by the US Department of the Treasury 28 

(2017), California’s average wine production during the last decade approaches 2.41 GL (638 29 

million gallons) of wine annually; this is nearly 90% of all US production. As a result, the 30 

California wine industry contributes nearly $60B to the state’s economy and $115B to the US 31 

economy each year according to industry analyses (MKF Research, 2007; John Dunham and 32 

Associates, 2016). In turn, the wine industry is dependent on the state’s wine grape growers. 33 

There are approximately 250,000 ha of wine grape vineyards in California producing 363 Gg of 34 

fruit valued at more than $3B each year (California Department of Food and Agriculture, 2017). 35 

 Since California, like many other wine-producing regions, is characterized by limited 36 

rainfall and high evaporative demand during the growing season, irrigation is critical to ensure 37 

vineyard productivity. However, the timing and amount of water available can significantly 38 

impact the vine vigor, crop yield, and fruit quality (Chapman et al. 2005; Chaves et al. 2007; 39 

Webb et al. 2007). For example, while adequate moisture is needed early in the growing season 40 

from bud burst to fruit set to ensure crop yield, moderate water stress is preferred later in the 41 

growing season to enhance fruit quality (Lobell et al. 2007; Zarrouk et al. 2012). Therefore, 42 

careful irrigation management is of paramount importance to wine grape production (Ojeda et al. 43 

2002; Pellegrino et al. 2005; Acevedo-Opazo et al. 2010; Bellvert et al. 2015). Moreover, the 44 

factors influencing water availability, water loss via evapotranspiration, and crop water stress are 45 

numerous and vary both spatially and temporally. Thus, as discussed by Arno et al. (2009), 46 

Campos et al. (2010), and Pagay (2016), among others, precision methods for scheduling 47 

irrigation at a sub-vineyard scale are needed so that both the timing and amount of water applied 48 

to the vines is appropriate to their individual needs. 49 
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 Remote sensing-based approaches are the most viable means to monitor the within-field 50 

variability in water loss and vine water stress needed for irrigation management decisions 51 

(Baluja et al. 2012; Semmens et al. 2016; Xia et al. 2016). However, remote sensing-based 52 

models also have limitations. One of these limitations is the simple empirical relations that are 53 

typically used to determine the parameters that describe the aerodynamic roughness of the 54 

surface which are used not only to calculate the wind profiles but also the resistance terms 55 

needed to calculate the fluxes of heat and moisture. For instance, the thermal remote sensing-56 

based two-source energy balance model (TSEB; Norman et al.1995; Kustas and Norman1997, 57 

1999, 2000), and the closely related ALEXI/DisALEXI modeling system (Anderson et al., 1997, 58 

2004, 2007), determine two key roughness parameters, namely the zero-plane displacement 59 

height (do; referred to as displacement height hereafter) and roughness length for momentum (zo; 60 

referred to as roughness length hereafter) as a fraction of vegetation height following the well-61 

known relationships given by Norman and Campbell (1980).  62 

 The surface roughness parameters, do and zo, describe the effect exerted by the surface on 63 

near-surface wind flow due to drag. They are often defined in terms of Monin-Obukhov 64 

Similarity Theory and the vertical profile of horizontal wind speed (Brutsaert 1982; Arya 2001). 65 

In this framework, zo is defined as the height above the lower boundary of the logarithmic profile 66 

where the horizontal wind speed goes to zero. Depending on the size and density of the 67 

roughness elements, the position of the lower boundary lies somewhere between the base and top 68 

of the roughness elements. As the name implies, the do accounts for the height of the lower 69 

boundary of the profile above the land surface. However, these quantities can also be defined in 70 

terms of momentum transfer. In this context, zo characterizes the efficiency of momentum 71 
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transport to the surface (Shaw and Pereira 1982) while do indicates the mean height of 72 

momentum transfer to the surface (Raupach 1992, 1994; Brunett et al. 1994) 73 

 The commonly-used relationships between do, zo and vegetation height, such as those 74 

used by TSEB and ALEXI/DisALEXI, neglect numerous other factors including the spacing, 75 

geometry, and frontal area that impact surface roughness by assuming dense closed canopy. (See 76 

Brutsaert (1982) for a concise discussion of the evolution of these empirical relationships.) In 77 

contrast, do and zo for sparse or open canopies are also influenced by the organizational structure 78 

of the canopy, i.e. the density and distribution of biomass (Shaw and Pereira 1982; Raupach 79 

1992, 1994; Verhoef et al. 1997). As discussed by Zeng and Wang (2007), failing to account for 80 

the factors beyond canopy height that can affect surface roughness, significant errors of up to 81 

50% can be introduced into the estimates of do and zo. Other studies, such as Pitman (1994) and 82 

Maurer et al. (2013, 2015) have shown errors in do and zo can result in significant errors in 83 

modeled fluxes of momentum, heat, and moisture. 84 

 Although the exact configuration varies from vineyard-to-vineyard, vineyards are 85 

generally characterized by trellised vines that are between 1 m and 2.5 m in height and separated 86 

by a broad inter-row space on the order of 3 m wide. Due to this design, it is likely that do and zo 87 

are influenced other factors beyond vine height. Although studies are limited, past research also 88 

suggests do and zo are impacted by wind direction and vegetation density. The observational 89 

studies of Hicks (1973) and Riou et al. (1987) suggests surface roughness varies with wind 90 

direction while the work of Sene (1994) suggests that the surface roughness increases with 91 

increasing vine density. These results are further supported by the work of Weiss and Allen 92 

(1976), who found that turbulent intensity was greater when the wind flow was perpendicular to 93 

the vine rows as opposed to parallel to them, and Padro et al. (1994), who found that the 94 



  5 
 

aerodynamic resistance over a vineyard changed as a function of wind direction. Most recently, 95 

the large eddy simulation (LES) studies of Chahine et al. (2014) indicates that both do and zo vary 96 

with wind direction with the lowest zo and largest do occurring when winds are parallel to the 97 

rows. 98 

 Building on these earlier studies, the objective of this study was twofold. The first aim 99 

was to identify a functional relationship between each of the roughness parameters, do and zo, 100 

and both wind direction and vegetation density as expressed in terms of leaf area index (LAI). 101 

The second objective was to evaluate the impact of allowing the roughness parameters to vary 102 

dynamically in response to changing environmental conditions on the surface fluxes computed 103 

by the TSEB model. The following section provides a description of field site, datasets, remote 104 

sensing-based ET model, and analysis techniques. The third section discusses the results of this 105 

study. Finally, the last section includes the conclusions and recommendations that can be drawn 106 

from this work. 107 

MATERIALS AND METHODS 108 
Site Description 109 

As can be seen in Figure 1, the study was conducted as a part of the Grape Remote 110 

sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) over a pair of 111 

adjacent vineyards located near the city of Lodi in California’s Central Valley, USA (38.29 N 112 

121.12 W). This region is characterized by warm, dry conditions and an evaporative demand 113 

ranging from 889 to 1270 mm of water during the growing season, which is defined here as April 114 

through August (Semmens et al. 2015). Also, the air temperature averages near 22°C and the 115 

total precipitation is typically 24 mm during the same period.116 
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 Both vineyards are planted with Pinot Noir vines and share similar trellis structure and 117 

vine management. The main shoots of the vines, which are planted every 1.52 m along the east-118 

west running trellising system, are attached to the quadrilateral cordon trellis at a height of 1.45 119 

m. Although the height of the vines ranges between 2.0 and 2.5 m, the plant biomass is 120 

concentrated in the upper third of the canopy. The rows are oriented east-west with an inter-row 121 

spacing between the trellises is 3.35 m. This inter-row space is planted with a grass cover crop to 122 

regulate soil moisture early in the growing season following the winter season when this region 123 

receives virtually all of it rainfall. The cover crop enters senescence in mid-March and is mowed 124 

in late April or early May. As a result, the cover crop is inactive during the period considered in 125 

this study. 126 

Other management practices shared by the two vineyards include the timing and amount 127 

of drip irrigation, pruning activities, and application of agrochemicals. 128 

 

Figure 1 The location of study area is shown. The northern (Site 1) and southern (Site 2) vineyards are 
outlined in red while the location of the micrometeorological towers are represented by the red dots. 
The photo of the two vineyards were taken on August 6th, 2013. 
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The primary difference between the two vineyards is the age of the vines. The vines at 129 

the northern vineyard (Site 1) were more mature having been planted in 2005 while the southern 130 

vineyard (Site 2) was planted in 2009. The northern vineyard, which has an area of 35 ha, is also 131 

somewhat larger than the southern vineyard; the latter has an area of 21 ha. 132 

Data Collection and Post-Processing 133 
The measurements of near-surface wind profiles, surface fluxes, meteorological 134 

conditions used in this study were collected using identical instrument packages. The wind 135 

velocity profiles were collected using four sonic anemometers (CSAT31, Campbell Scientific, 136 

Logan, Utah) mounted facing due west (270°) at 2.5 m, 3.75 m, 5 m and 8.0 m agl, respectively. 137 

The turbulent energy fluxes were determined via the eddy covariance method using a sonic 138 

anemometer (CSAT3, Campbell Scientific, Logan, Utah) to measure the orthogonal wind 139 

velocity components and an infrared gas analyzer (EC-150, Campbell Scientific) to measure the 140 

water vapor and carbon dioxide concentrations. Both sensors were mounted at 5 m agl facing due 141 

west and operated using a sampling frequency of 20 Hz. The net radiation was determined from 142 

measurements collected via a four-component radiometer (CNR-1, Kipp and Zonen, Delft, 143 

Netherlands) mounted 6 m agl. The soil heat flux was calculated as the average of 5 heat flux 144 

plates (HFT-3, Radiation Energy Balance Systems, Bellevue, Washington) deployed at a depth 8 145 

cm along a diagonal transect across the inter-row space. A pair of thermocouples, which were 146 

buried at depths of 2 cm and 6 cm, and a soil moisture sensor (HydraProbe, Stevens Water 147 

Monitoring System, Portland, Oregon), which was buried at a depth of 5 cm, was co-located with 148 

each heat flux plate. Additional auxiliary measurements were collected using a combined 149 

                                                 
1 The use of trade, firm, or corporation names in this article is for the information and convenience of the reader. 
Such use does not constitute official endorsement or approval by the US Department of Agriculture or the 
Agricultural Research Service of any product or service to the exclusion of others that may be suitable 
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humidity and temperature sensor (HMP45C, Vaisala, Helsinki, Finland) mounted 5 m agl, two 150 

thermal infrared thermometers (SI-111, Campbell Scientific) mounted 2.5 m agl at a 45° to the 151 

surface, and a tipping bucket rain gauge (TE525, Texas Electronics, Dallas, Texas),  152 

 The high-frequency (20 Hz) wind velocity data collected as a part of the wind profiles 153 

were post-processed by first screening the raw data to identify and remove without replacement 154 

nonphysical values and data spikes following the method of Goring and Nikora (2002). Then, the 155 

coordinate system of the wind velocity components was rotated to align with prevailing wind 156 

direction (Tanner and Thurtell, 1969; Kaimal and Finnigan, 1994). Finally, the hourly mean 157 

wind speed and direction was calculated. 158 

Similarly, the flux data were post-processed using the full suite of standard corrections 159 

and adjustments. Nonphysical values and data spikes were removed without replacement from 160 

the high frequency data and a two-dimensional coordinate rotation was applied to the wind 161 

velocity data following the same procedures as used with the wind profiles. Also, the sonic 162 

temperature was converted to air temperature by adjusting for humidity effects following the 163 

approach described by Liu et al. (2001). Third, the data were corrected for sensor displacement 164 

and frequency response attenuation according to the methods outlined by Massman (2000) and 165 

Massman and Lee (2002). Finally, hourly turbulent fluxes were calculated. The moisture and 166 

carbon dioxide fluxes were then corrected for the effects of buoyancy and water vapor density 167 

(Webb et al., 1980). 168 

Leaf Area Index 169 
 The leaf area index was estimated from satellite imagery for each year during the 170 

GRAPEX project using the reference-based technique of Gao et al. (2012). The technique uses 171 

the relationship between the LAI of homogenous MODIS pixels (500 m resolution) and the 172 
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surface reflectance of the corresponding Landsat pixels to develop a regression tree. The 173 

resulting regression tree was then applied to the Landsat imagery to generate a LAI map at 30-m 174 

spatial resolution. The LAI map was smoothed and gap-filled to generate daily LAI using the 175 

Savitzky-Golay filter approach (Jonsson and Eklundh 2004). Since the experimental sites locate 176 

in the overlapped area of two adjacent Landsat paths, over 60 clear Landsat 7 and 8 images were 177 

acquired each year from 2013 to 2016. The resulting LAI curves agreed with in-situ observation 178 

to within 5% to 10%, on average. Details of the procedure and resulting LAI product used in this 179 

study are provided in Sun et al (2017).  180 

Two-Source Energy Balance Model Description 181 
The two-source energy balance model (TSEB), which was originally developed by 182 

Norman et al. (1995) and Kustas and Norman (1997, 1999, 2000), uses radiometric surface 183 

temperature (Tr) to determine the surface energy fluxes while explicitly considering the separate 184 

contributions of the soil and canopy. More specifically, the model uses Tr, meteorological data 185 

such as wind speed (U), and vegetation characteristics such as leaf area index (LAI) to 186 

simultaneously solve a family of equations describing the energy fluxes from the soil and 187 

canopy. Although a detailed description of the model can found elsewhere, e.g. Kustas and 188 

Norman (2000) and Kustas et al. (2012), a brief overview is provided here. 189 

 To begin, TSEB defines the Tr as the area-weighted average of the temperatures of the 190 

canopy and soil surface: 191 

௥ܶሺ߶ሻ ൌ ሼ ௖݂ሺ߶ሻ ௖ܶ
ସ ൅ ሾ1െ ௖݂ሺ߶ሻሿ ௦ܶ

ସሽଵ ସ⁄   (1) 192 

where Tr(׋) is the radiometric surface temperature as a function of view angle ׋, fc(׋) is the 193 

fractional vegetation cover as a function of ׋, Tc is the canopy temperature, and Ts is the soil 194 

surface temperature. The fractional vegetation cover is derived from LAI according to: 195 
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௖݂ሺ߶ሻ ൌ 1െ EXP ቀെ ஐ୐୅୍
ଶ஼௢௦థ

ቁ  (2) 196 

where � is a dimensionless clumping index, which indicates the degree heterogeneity in the 197 

spatial distribution of the leaf area (Anderson et al., 2005) and the other terms are defined above. 198 

 Additionally, TSEB defines the energy budgets of the soil surface and canopy, 199 

respectively, as follows: 200 

ܴே௦ ൌ ௦ܪ ൅ ௦ܧߣ ൅  201 (3a)  ܩ

ܴே௖ ൌ ௖ܪ ൅  ௖  (3b) 202ܧߣ

where RN is the net radiation, H is the sensible heat flux, and ȜE is the latent heat flux. The 203 

subscript s refers to the soil surface while the subscript c refers the canopy.  204 

 The net radiation for the soil and canopy are determined using a simplified radiation 205 

transfer model (Kustas and Norman 2000) while G is computed following a modification of the 206 

method described by Santanello and Friedl (2003). Rather than using the sinusoidal function 207 

given by Santanello and Friedl (2003) to describe the relationship between G and Rn over time, a 208 

double asymmetric sigmoid function was used because it better fit the observed relationship at 209 

the study site (Nieto et al., this issue, a). That work showed the ratio of G to Rn varied from a 210 

minimum of -0.5 near sunrise/sunset to maximum near 0.35 at mid-day. 211 

 For the soil surface and canopy, respectively, H is calculated according to: 212 

௦ܪ ൌ ௣ܥߩ ೞ்ି்ೌ ೎
௥ೞ

  (4a) 213 

௖ܪ ൌ ௣ܥߩ ೎்ି்ೌ ೎
௥ೣ

  (4b) 214 

where ȡ is the air density, Cp is the specific heat of air, Tac is the within-canopy air temperature, 215 

rs is the resistance of the soil surface to heat exchange, rx is the resistance of the total canopy to 216 
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heat exchange, and the other terms are defined above. In turn, ȜEs is calculated as a residual 217 

while ȜEc is calculated according to: 218 

௖ܧߣ ൌ ߙ ௖݂
ο

οାఊ
ܴே௖  (5) 219 

where Į is the Priestley-Taylor coefficient (Priestley and Taylor 1972) which has an initial value 220 

of 1.26, ǻ is the slope of the saturation vapor pressure-temperature curve, Ȗ is the psychrometric 221 

constant, and the other terms are defined above.  222 

 The resistance of the soil surface to heat exchange (rs) was estimated based on a modified 223 

form of the empirical approach of Sauer et al. (1995) developed by Kustas and Norman (2000): 224 

௦ݎ ൌ ൣܽሺ ௦ܶ െ ௔ܶ௖ሻଵ ଷ⁄ ൅ ܾ ௦ܷ൧
ିଵ

  (6) 225 

where both a (0.0025 m K-1 s-1) and b (0.012) are constants, Us is the wind speed just above the 226 

soil surface where the effects of soil roughness is minimal, and the other terms are defined 227 

above. In turn, Us is calculated according to Goudriann (1977): 228 

௦ܷ ൌ ௖ܷܲܺܧ ቈെ0.28��ට
୐୅୍మ௛೎

κ

య
ቀ1െ ଵ

ଶ଴௛೎
ቁ቉  (7) 229 

where Uc is the wind speed at the top of the canopy, hc is the canopy height, Ɛ is the mean leaf 230 

size, and the other terms are defined above. Similarly, Uc calculated according to Goudriann 231 

(1977) as follows: 232 

௖ܷ ൌ ܷ ቈ
௟௡ቀ೓೎ష೏೚೥೚

ቁ

௟௡ቀ೥ష೏೚೥೚
ቁିஏ

቉�  (8) 233 

where U is the wind speed at height z above the canopy, do is the displacement height, zo is the 234 

roughness length for momentum, Ȍ is the correction for atmospheric stability, and the other 235 

terms are defined above. Finally, as described by Norman et al. (1995), rx is defined as: 236 

௫ݎ ൌ
௖ඥκ ௎೏⁄
୐୅୍

  (9) 237 
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where c (90 s1/2 m-1) is a constant and Ud is determined analogously to Us as: 238 

ܷௗ ൌ ௖ܷܲܺܧ ቈെ0.28��ට
୐୅୍మ௛೎

κ

య
ቀ1െ ௭೚ାௗ೚

௛೎
ቁ቉  (10) 239 

and the other terms are defined above.  240 

 For the standard version of the TSEB model (TSEBSTD), the roughness parameters, do 241 

and zo are estimated using the well-known empirical functions of hc given by Norman and 242 

Campbell (1980), among others: 243 

݀௢ ൌ
ଶ
ଷ
݄௖  (11a) 244 

௢ݖ ൌ
௛೎
଼

  (11b) 245 

For this study, hc of the vineyard that was used by the TSEB model was estimated as a function 246 

of LAI (see Nieto et al., this issue, b). Using a typical vines height of 2.25 m for the GRAPEX 247 

field sites, these relationships estimate do and zo as 1.50 m and 0.28 m, respectively.  248 

 Numerous studies, such as Shaw and Pereira (1982), has demonstrated that the roughness 249 

length is influenced by other factors beyond hc; this is particularly true of sparse open canopies. 250 

Thus, due to the configurations of vineyards, the standard approach for estimating the roughness 251 

parameters may not be the most appropriate. Therefore, an alternate version of the TSEB model 252 

(TSEBOPN) was also used in this study. This version of the model uses the approach of Schaudt 253 

and Dickinson (2000) to estimate the roughness parameters. The approach builds on the earlier 254 

work of Raupach (1992) and Lindroth (1993) to consider canopy shape and density, in addition 255 

to hc, when estimating do and zo.  256 

 The method of Schaudt and Dickinson (2000) begins with the assumption that the 257 

vegetation height of woody vegetation changes little over time. Instead, the roughness changes in 258 

response to changes in vegetation density, i.e. LAI, and the frontal area of the vegetation. The 259 



  13 
 

frontal area is the projected area of the canopy perpendicular to the wind direction of that 260 

intercept and interacts with the air flow; it is a function of the canopy height, width, and shape 261 

(Raupach 1992, 1994). From this Raupach (1994) proposed the frontal leaf area index (Ȝc) 262 

defined as: 263 

௖ߣ ൌ ௖݂
௛೎
௪೎

 (12) 264 

where fc is the fractional canopy cover, wc is the canopy width, and the other terms are defined as 265 

above. He further proposed the following relations for do and zo as a function of Ȝc: 266 

݀௢ ൌ ݄௖ ቈ1െ
ଵି௘షሺೌഊ೎ሻ

భ మ⁄

ሺ௔ఒ೎ሻభ మ⁄ ቉  (13a) 267 

௢ݖ ൌ ቐ
݄௖ ቂܾଵߣ௖

௖భ݁ିௗఒ೎
೐భ ൅ ଵ݂ቃ ௖ߣ ൑ 0.152

݄௖ ቂܾଶߣ௖
௖మ ቀ1െ ݁ିௗఒ೎

೐మቁ ൅ ଶ݂ቃ ௖ߣ ൐ 0.152
  (13b) 268 

where a (15.0), b1 (5.86), b2 (0.0537), c1 (1.33), c2 (-0.51), d (10.9), e1 (1.12), e2 (0.874),              269 

f1 (8.6 ×10-4), and f2 (3.68 ×10-3) are coefficients and the other terms are defined as above. 270 

Finally, using the Schaudt and Dickinson (2000) approach, the roughness parameters used by the 271 

model are calculated as the product of these initial estimates and a correction factor. The 272 

correction factor for do and zo, respectively, are: 273 

ௗ݂ ൌ 1െ ܽ݁ି௕୐୅୍  (14a) 274 

௭݂ ൌ ቊܿଵLAI
ଷ ଶ⁄ ൅ ݀ଵ LAI ൑ 0.8875

ܿଶ݁ିௗమ୐୅୍ ൅ 1 LAI ൐ 0.8875
  (14b) 275 

where a (0.3991), b (-0.1779), c1 (0.3299), c2 (1.6771, d1 (2.1713), and d2 (0.1717) are 276 

coefficients and the other terms are defined as above. 277 
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 Finally, a version of the TSEB model (TSEBVIN) that uses the relationships developed by 278 

this study was also used herein to evaluate the impact of the roughness parameterization on the 279 

modeled fluxes. 280 

Calculation of Roughness Parameters 281 
 Using the data collected during the 2014 to 2016 growing seasons as a part of the 282 

GRAPEX project, do and zo were calculated assuming a logarithmic wind profile and neutral 283 

atmospheric stability conditions. Under these conditions, the wind speed can be expressed as a 284 

function of height: 285 

ܷ ൌ ௨כ
௞
݈݊ ቀ௭ିௗ೚

௭೚
ቁ�  (15) 286 

where u* is the friction velocity, k is the von karmann constant, and the other terms are defined 287 

above (Stull, 1988; Arya, 2001). Based on this relation, the do can be determined using paired 288 

measurements of wind speed taken at two different heights as follows: 289 

݀௢ ൌ ଵݖ െ
ο௭

௘ೖοೆ ೠכ⁄ ିଵ
�  (16) 290 

where z1 is the lower measurement height, ǻz is the separation distance between the two 291 

measurements, ǻU is the difference in the measured wind speed, and the other terms are defined 292 

above. Once do is determined, zo can be calculated by rearranging Eq. (15): 293 

௢ݖ ൌ
௭ିௗ೚
௘ೖೆ ೠכ⁄ �  (17) 294 

 This approach, and particularly the determination of do, is highly sensitive to any errors in 295 

the measurements and any violations of the underlying assumptions (Brutsaert, 1982). For 296 

example, a preliminary sensitivity analysis for the GRAPEX study sites indicates a 5% error in 297 

ǻU results in a 5% to 15% error in the calculated do, depending on the measurement heights 298 
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used. Therefore, the data used were restricted to clear-sky days with near-neutral stability and 299 

sufficient turbulent mixing (See Table 1 for a complete listing of constraints).  300 

 For each vineyard and time period identified as valid, all possible measurement height 301 

combinations – for the purpose of this study, the wind speed measurements from the eddy 302 

covariance system were also included as a part of the profile - were used to estimate do following 303 

Eq. (16). As a further quality control step, the six estimates of do were compared. If they agreed 304 

to within 10%, do during the period was taken as the average of all of the do estimates. If there 305 

was disagreement among the estimates of do, the period was neglected in the subsequent analysis 306 

of do. Due to the constraints placed on the calculation of do, there were only a small number of do 307 

values obtained for each vineyard each year (see below for additional information). As a result, 308 

the mean do value (1.40 m) was used in the subsequent calculation of zo. 309 

 The roughness length was calculated in a similar manner. For each vineyard, the valid 310 

periods conforming to the constraints listed in Table1 were first identified. Then zo was estimated 311 

for each measurement height in the profile using Eq. (17). Again, as a further quality control 312 

step, the four estimates of zo for each period were compared and only if they agreed to within 313 

10% was the average used for subsequent analyses. 314 

Table 1 The conditions used to constrain the data used to calculate the displacement height and roughness length 
are listed. 

Condition Constraint for  
Displacement Height 

Constraint for 
Roughness Length 

Incident Solar Radiation (KĻ) KĻ � 100 W m-2 

Wind Speed (U)        U � 1 m s-1 

Wind Direction (ĳ)         | ĳ -270°| � 90° 

Friction Velocity (u*)        u* � 0.1 m s-1 

 Atmospheric Stability (ȗ) -0.02 � ȗ � 0.01 -0.04 � ȗ � 0.02 
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 The constraints used for determining the valid periods for calculating zo are relaxed 315 

somewhat compared to those used for estimating do. Specifically, the range of near-neutral 316 

conditions was extended slightly. Calculations of do are substantially more sensitive to 317 

departures from neutral conditions than the determination of zo. By using a u* (0.31 m s-1) typical 318 

of the sites and the stability corrections given by Paulson (1970) and Dyer (1974), the percent 319 

error of the estimates of the roughness parameters was calculated as a function of atmospheric 320 

stability. To account for the effects of atmospheric stability, Eq. (16) and Eq. 17 were modified 321 

to include the stability correction; respectively, for do and zo, the modified relationships are: 322 

݀௢௖ ൌ ଵݖ െ
ο௭

௘ೖοೆ ೠכ⁄ శοഗିଵ
�  (18a) 323 

௢௖ݖ ൌ ௭ିௗ೚
௘ೖೆ ೠכ⁄ శഗ�  (18b) 324 

where cdo and czo are the estimates of do and zo under non-neutral conditions, ȥ is the stability 325 

correction, and the other terms are defined as above. The percent error is then defined as: 326 

߳௣௖௧ ൌ 100 ห ௫೙ ି ௫೎ ห
௫೎

�  (19) 327 

where ׫pct is the percent error, nx is the estimate of the quantity of interest – either do and zo –  328 

assuming neutral conditions, and cx is the estimate of the quantity of interest calculated according 329 

to Eq. (18).  330 



  17 
 

As can be seen in Figure 2, the percent error introduced into the estimates of zo by non-neutral 331 

conditions is approximately half that introduced into the estimates of do. Thus, the range of ȗ 332 

allowed when estimating zo can be extended to -0.04 and 0.02 while introducing less than  10% 333 

error. While the impact of atmospheric stability on the estimates of do varies as a function of the 334 

measurement heights used, this is the same maximum error as was allowed for the estimates of 335 

do. 336 

Statistical Analysis 337 
 A pair of well-established statistics were used to evaluate the model output of both the 338 

standard and modified TSEB model. The first is the root mean square difference (RMSD) which 339 

is defined as: 340 

RMSD ൌ ටଵ
௡
σ ሺݔ௜ െ ௜ሻଶ௡ݕ
௜ୀଵ �  (20) 341 

 
Figure 2 The percent error of the estimates of a) displacement height and b) roughness length as a 
function of atmospheric stability.  
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where x and y are two estimates of some quantity of interest, n is the number of paired data 342 

points, and i is an index. The RMSD can be separated into random and systemic and components 343 

according to: 344 

RMSDோ ൌ ටଵ
௡
σ ሺݕ௜ െ ௜ሻଶ௡݌
௜ୀଵ �  (21a) 345 

RMSDௌ ൌ ටଵ
௡
σ ሺ݌௜ െ ௜ሻଶ௡ݔ
௜ୀଵ �  (21b) 346 

where p is the value predicted by ordinary least-squares regression of y against x and the 347 

remaining terms are defined above (Willmott 1982; Alfieri et al. 2011). 348 

 Since the squared difference terms in the RMSD tends to overemphasize the effects of 349 

large differences (Legates and McCabe, 1999; Willmott and Matsuura, 2005; Willmott et al., 350 

2012), the mean absolute difference (MAD) was also used. This second metric is defined as: 351 

MAD ൌ ଵ
௡
σ ௜ݔ| െ ௜|௡ݕ
௜ୀଵ �  (22) 352 

where the terms are defined as above. Note that if x and y are the actual (observed) and modeled 353 

flux, respectively, then RMSD and MAD, are indicative of the model error. The two metrics are 354 

equivalent to the root mean square error (RMSE) and mean absolute error (MAE). 355 

RESULTS AND DISCUSSION 356 
Estimates of the Displacement Height 357 
 After using the criteria in Table 1 to parse the data collected during the growing seasons 358 

from 2014 to 2016 over Vineyard 1, a total of 52 valid periods were identified. During the same 359 

timeframe only 10 valid periods were identified at Vineyard 2. While the valid periods identified 360 

over the two site differ in terms of wind speed, wind direction, and LAI, they all represent 361 

periods when H was near zero and the atmospheric stability was very close to neutral. The 362 

difference in the number of near-neutral periods at the two sites is likely due to differences in 363 
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vegetation density. During the growing season, the LAI of Vineyard 2 was approximately 0.25 364 

m2 m-2 or 10% to 25% less than the LAI at Vineyard 1. Because of the lower LAI, the amount of 365 

transpiration is reduced while the surface temperature is increased at Vineyard 2. Both of these 366 

effects act to increase H and, thereby, unstable atmospheric conditions over Vineyard 2. A 367 

comparison of the daytime H and atmospheric stability (ȗ) collected at each vineyard during the 368 

growing season further supports this hypothesis. Over the 4 years of GRAPEX, the daytime H at 369 

Vineyard 2 averaged 144 W m-2 or approximately 30 W m-2 greater than the mean at Vineyard 1. 370 

Similarly, for the same timeframe, ȗ, which is the ratio of measurement height to Obukhov 371 

length, was 0.09 lower at Vineyard 2 compared to Vineyard 1. 372 

 It. was not possible to determine the relationship between do and site characteristics, such 373 

as LAI, because only a limited range of environmental conditions are represented by the data due 374 

to the small number of valid periods, along with their tendency to be clustered in time. As an 375 

 
Figure 3 The a) histogram overlaid with corresponding probability density function and b) probability 
plot for the pooled estimates of the displacement height show that the quantity is normally 
distributed. 
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example of the clustering, half of the valid periods identified at Vineyard 1 during 2015 occurred 376 

on either 9 or 10-June. However, by pooling the data over both sites and all years, it was found 377 

that the estimates of do calculated for the valid periods, which ranged between 1.34 m and 1.47 378 

m, were normally distributed and averaged 1.40 m with a standard deviation of 0.03 m (Fig.3). 379 

The mean do estimate is very near the center of the vine biomass which is approximately1.45 m, 380 

the height where the vines are attached to the trellis. This agrees with the definition of do as the 381 

mean height of momentum absorption by a rough surface (Raupach 1992, 1994). The mean value 382 

of do was used for both the calculation of zo and the model simulations. 383 

Estimates of the Roughness Length    384 
 After relaxing the constraints, between 36 and 40 valid periods were identified each year 385 

at Vineyard 1 while between 8 and 28 valid periods were identified for Vineyard 2 (Table 2). To 386 

investigate the relationship between zo and LAI, the data from each year at Vineyard 1 was bin-387 

averaged based on the corresponding LAI. The same was done for the data collected at Vineyard 388 

2 for 2014 and 2016, the 2 years when sufficient valid periods were identified at this site. 389 

However, no relationship was evident. This is likely due to relatively small range of LAI 390 

represented by the periods identified as valid. An example using the data collect at Vineyard 1 391 

during 2015 is shown in Figure 4represented by the periods identified as valid. An example using 392 

the data collect at Vineyard 1 during 2015 is shown in Figure 4.  393 
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Table 2 Summary statistics for roughness length for each study site and year. 

Statistic 
Year 

2014 2015 2016 
Vineyard 1 

n 40 34 40 

Mean 0.244 0.242 0.237 

Standard 
Deviation 0.067 0.042 0.065 

Vineyard 2 

n 26 8 28 

Mean 0.226 0.183 0.232 

Standard 
Deviation 0.049 0.041 0.056 

 

 
Figure 4 A plot of the roughness length (zo) as a function of leaf area index (LAI) using the data 
collected at Vineyard 1 during 2015 showing the lack of a relationship between the two quantities. The 
error bars indicate ± 1 standard deviation. 
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 The same procedure was used to identify the potential linkage between zo and the wind 394 

direction relative to the row orientation. The relative wind direction (Ȧ) is defined as 0° when the 395 

wind direction was parallel to the row direction, i.e. east to west, and 90° when the wind 396 

direction was perpendicular to the row. In this case, clear sigmoidal relationships were identified 397 

(Fig. 5) with the minimum zo occurring when the winds were parallel to the row. These 398 

relationships can be expressed mathematically as: 399 

௢ݖ ൌ ௠௜௡ߦ ൅
క೘ೌೣିక೘೔೙
ଵା௘షഁሺഘషೢ೚ሻ

�  (23) 400 

w here ȟmin, ȟmax, ȕ, Ȧo are fitting coefficients representing the minimum zo, maximum zo, slope, 401 

and offset in Ȧ, respectively. Overall, with an average percent error of less than 1.5%, these 402 

relationships reproduced the observed zo quite well; the MAE ranges between 0.002 m and  403 

0.008 m while the RMSD ranges between 0.002 m and 0.014 m (Table 3).  404 

 
Figure 5 The best-fit sigmoidal relationships between roughness length (zo) and relative wind direction (Ȧ) is 
shown for a) Vineyard 1 and b) Vineyard 2. The error bars indicate ± 1 standard deviation. The composite curve  
was determined by fitting all data from Vineyard 1 and 2. 
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  Nonetheless, the relationships are unique both vineyard-to-vineyard and year-to-year. 405 

These variations are likely due to modest differences vine management practices that influence 406 

the amount and distribution of vine biomass, thus effective roughness of the surface. For 407 

example, pruning was more aggressive at Vineyard 1 in 2015 compared to other years. As a 408 

result, there were fewer vine shoots intruding into the inter-row space where they can interact 409 

with the wind flow. In turn, this decreases the effective roughness of the surface, particularly 410 

when Ȧ is parallel to the rows. Similarly, the lower biomass in Vineyard 2 – as discussed above, 411 

the LAI of Vineyard 2 is approximately 0.25 m2 m-2 lower than the LAI at Vineyard 1 –  implies 412 

there is less vegetation, i.e. roughness elements, for the vegetation to interact with and, therefore, 413 

a lower zo. 414 

 For the modeling purposes, a single composite relationship between zo and Ȧ was developed. 415 

The resulting function has the same sigmoidal form as the curves for the individual year with 416 

values of 0.1642, 0.3107, 0.1270, and 24.52 for ȟmin, ȟmax, ȕ, and Ȧo respectively (Fig. 5). While 417 

Table 3 The error in the estimates of the roughness length when using the best-fit relationship with relative wind 
direction is summarized in terms of both the mean absolute difference (MAD) and root mean square difference 
(RMSD). The root mean square error is also partitioned between the random and systemic components. 

 Vineyard 1 Vineyard 2 

Year 2014 2015 2016 2014 2016 

Individual Years 

MAD 0.002 0.002 0.002 0.008 0.002 

RMSD 0.003 0.002 0.002 0.014 0.002 

RMSDR 0.003 0.002 0.002 0.012 0.002 

RMSDS 0.000 0.001 0.000 0.008 0.001 

Composite 

MAD 0.012 0.021 0.022 0.035 0.027 

RMSD 0.015 0.023 0.025 0.036 0.028 

RMSDR 0.005 0.009 0.009 0.006 0.009 

RMSDS 0.015 0.021 0.024 0.035 0.027 
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the error, which averaged 8.3%, is greater than that seen for the individual years, it still suggests 418 

reasonable agreement. Not unexpectedly, the preponderance of the error is due to systemic bias 419 

when the composite relationship is used to determine zo. For example, the composite relationship 420 

systematically overestimates zo by approximately 0.039 m at Vineyard 2 during 2016. More 421 

generally, the effect of the systemic bias can be most easily seen through the decomposition of 422 

the RMSD (Table 3). For the best-fit relationships determined for individual years, between 72% 423 

and 100% of the error can be attributed to random error. If Vineyard 2 is neglected during 2014, 424 

this range is between 95% and 100%. In contrast when the composite relationship is used, only 425 

between 3% and 12% of the total error can be attributed to random error while between 88% and 426 

97% of the error is systemic in nature. 427 

Overview of the Model Intercomparison 428 
To investigate the impact of the roughness parameterization on the modeled fluxes of 429 

heat and moisture, the output from three variants of the TSEB model were compared. The first 430 

version of the model (TSEBSTD) uses the standard parameterization estimating the roughness 431 

parameters as a fraction of hc. The second version (TSEBOPN) also considers the canopy 432 

geometry and vegetation density following the approach of Schaudt and Dickinson (2000). The 433 

final version (TSEBVIN) uses the mean do estimated from the observations and the relationship 434 

between zo and Ȧ derived from the observational data. All other components of the three versions 435 

of the TSEB model are the same. The models were run over both vineyards for the years 2014 to 436 

2016. The comparative analysis focused on daytime non-advective periods during May through 437 

August each year. Herein, daytime is defined here as period when the incident solar radiation 438 

exceeded 100 W m-2. Since the onset of local advection typically occurred in mid-afternoon, the 439 

analysis considered the period nominally from 0700 to 1500 each day. This period includes 440 

stable to unstable atmospheric conditions. 441 
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Model Intercomparison of the Roughness Parameters 442 
As can be seen in Figure 6, the different versions of the TSEB model yielded very 443 

different estimates of do. For all years and both vineyards, the do estimates from TSTEBSTD 444 

typically ranged between 1.35 m and 1.55 m and averaged 1.46 m. Overall, the typical range of 445 

the do estimates from TSEBOPN, which averaged 0.96 m, was between 0.84 m and 1.07 m. In 446 

turn, the overall MAD between the do estimates from TSEBVIN and those from TSEBSTD and 447 

TSEBOPN were 0.08 m and 0.44 m, respectively. Equivalently, the estimates from TSEBVIN were 448 

6% lower than TSEBSTD, on average; at the same time, they were 46% greater than the do 449 

estimates from TSEBOPN. If the individual vineyards are considered, the estimates of do from the 450 

TSEBSTD and TSEBOPN are slightly lower at Vineyard 2 compared to Vineyard 1. In both cases, 451 

the difference is approximately 0.05 m and is due to the lower LAI at Vineyard 2. 452 

The roughness length calculated by TSEBVIN was typically less than zo calculated by 453 

either TSEBSTD or TSEBOPN (Fig. 7). The estimates of zo from TSEBSTD, which typically ranged 454 

between 0.26 m and 0.30 m, varied by approximately 7% about their mean of 0.28 m. while the 455 

estimates calculated by TSEBOPN, which typically ranged between 0.47 m and 0.49 m and 456 

averaged 0.48 m, varied by 2% about their mean. The estimates of zo determined by TSEBVIN 457 

ranged between 0.17 m and 0.31 m and averaged 0.23 m. As a result, the difference in the 458 

estimates of zo from TSEBSTD and TSEBVIN in terms of MAD was 0.06 m or, equivalently 21%. 459 

More strikingly, the difference in the estimates from TSEBOPN and TSEBVIN was 0.25 m or 460 

nearly 53%. Again, there is no evident seasonal trend in the discrepancy in the estimates. This is 461 

not unexpected since the variability in the zo calculated by TSEBVIN is linked to wind direction 462 

which changes on much shorter time scales. The variability in the wind direction for the hourly 463 

measurements, was typically between 5° and 30°. 464 
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Figure 6 The estimates of displacement height from each version of the TSEB model are shown.  
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Figure 7 The estimates of roughness length from each version of the TSEB model are shown.  
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Model Intercomparison of the Turbulent Fluxes 465 
The intercomparison of the model output showed consistent, albeit modest, differences in 466 

the turbulent fluxes, H and ȜE. Moreover, since the available energy calculated by all versions of 467 

the TSEB model is the same, the difference in one flux is counterbalance by a commensurate but 468 

opposite difference in the other. In other words, any increase (decrease) in H (ȜE) is balanced by 469 

a decrease (increase) in ȜE (H) of equal magnitude. Also, the fluxes from the canopy are 470 

unchanged by changes in the roughness parameters. This is due to the linkage between rx and Tc 471 

in the TSEB model physics; because the quantity rx is used in the calculation Tc, any change in rx 472 

results in compensatory change in Tc such that, all else being equal, the models yields the same 473 

turbulent fluxes. Therefore, the changes in the turbulent fluxes due to changes in the roughness 474 

parameters are the result in changes in the fluxes from the soil only.   475 

Given that any change in H results in an equivalent change in ȜE and canopy flux is 476 

unchanged by changes in the roughness parameters, the focus of this analysis is on the soil and 477 

total H. Superficially, with seasonal values of MAD and RMSD ranging from slightly more than 478 

1.4 W m-2 to 3.1 W m-2 and 1.7 W m-2 to 4.0 W m-2, respectively, the difference in H calculated 479 

by TSEBSTD and TSEBVIN appears trivial. This is equivalent to an average decrease in Hs and Htot 480 

calculated by TSEBVIN of 1.5% and nearly 3%, respectively. For the sake of comparison, the 481 

increases in both ȜEs and ȜEtot were less than 1%. Additionally, by partitioning the RMSD, it was 482 

found that approximately 87% of the difference can be attributed to systemic differences in the 483 

modelled fluxes. 484 

On an hourly timescale, however, the difference between TSEBSTD and TSEBVIN can be 485 

as much as 12 W m-2 or 7% and 13% and 7% for Hs and Htot, respectively. As can be seen in 486 

Figure 8, the largest differences occur near mid-day when the available energy is greatest. It can 487 
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also be seen that the differenced were more mixed; although the fraction varies somewhat with 488 

time of day, on average, the flux from TSEBVIN exceeded TSEBSTD for approximately 18% of 489 

the observational periods. This is particularly evident for Vineyard 2 where the magnitude of 490 

differences tended to be larger and more varied. For a given time of day, the range of differences 491 

in the fluxes from TSEBSTD and TSEBVIN was typically near 14 W m-2 at Vineyard 2 but only      492 

9 W m-2 at Vineyard 1. Finally, it can be seen that the peak difference occurred about an hour 493 

later in the day at Vineyard 2 compared to Vineyard 1. While the cause of the differences 494 

between the two vineyards is unclear, it is hypothesized that they due to differences in vegetation 495 

density and canopy geometry. They may also reflect the effect of using a composite function to 496 

estimate zo which compared to the individual observed relationships tended to underestimate zo 497 

for Vineyard 1 while overestimating it for Vineyard 2. 498 

 
Figure 8 The mean difference of the modeled sensible heat flux calculated by a) TSEBSTD and TSEBVIN 
and b) TSEBOPN and TSEBVIN is shown for each vineyard as a function of the time of day. The bars 
indicate the range of differences observed during each hourly period. Note, the data from each 
vineyard is staggered slightly in time to improve clarity. 
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 Similarly, Hs and Htot calculated by TSEBVIN was modestly lower than the flux calculated 499 

by TSEBOPN. On average, the seasonal MAD was 13 W m-2 and RMSD was 14 W m-2. This is 500 

equivalent to decrease in Hs and Htot of approximately 17% and 10%, respectively. However, 501 

when considered on an hourly basis, the difference in the modeled fluxes could be as large as   502 

32.0 W m-2 or, equivalently, 18% of Htot and 10% of ȜEtot. While the estimates of Hs, thus Htot, 503 

from TSEBOPN is always greater than TSEBVIN during the daytime period, the same vineyard-to-504 

vineyard differences are apparent for the fluxes output by TSEBVIN and TSEBOPN. In this case, 505 

the range of differences in the modeled fluxes averaged 21 W m-2 at Vineyard 1 and 24 W m-2 at 506 

Vineyard 2. Additionally, the hourly MAD and RMSD at Vineyard 2 averaged 15 W m-2 and 507 

17.0 W m-2, respectively, compared to 12 W m-2 and 13 W m-2, respectively, at Vineyard 1. 508 

Again, this indicates that the difference in the flux estimates are more varied at Vineyard 2. 509 

Finally, it can be seen in Figure 8 that the again peak difference occurred about an hour later in 510 

the day at Vineyard 2 compared to Vineyard 1. 511 

 Given the change in the roughness parameters, especially between TSEBOPN and 512 

TSEBVIN, the relatively small change in the turbulent fluxes might appear counterintuitive. While 513 

do calculated by TSEBOPN was, on average, 46% less than do calculated by TSEBVIN and zo 514 

calculated by TSEBOPN was, on average, 53% greater than that calculated by TSEBVIN, Htot 515 

changed by only 10%. The limited sensitivity of the TSEB model to the roughness parameters 516 

can be understood by recognizing that these quantities are primarily used to calculate the canopy 517 

level and sub-canopy wind speed terms used the TSEB model to determine rs and ultimately Hs 518 

and Htot (See Eq. 6 through 8 above). In the case of TSEBOPN and TSEBVIN, the roughness 519 

parameters move in opposite directions; in other words, do is greater while zo is lower for 520 

TSEBVIN compared to TSEBOPN. As a result, the changes in the roughness parameters partially 521 
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compensate for one another when calculating the logarithmic quantities in the relationship for Uc 522 

(Eq. 8). The sensitivity of the calculation of Uc to changes in the roughness parameters is further 523 

reduced because the logarithmic quantities change more slowly than their arguments. Moreover, 524 

while the wind speed just above the soil surface (Us) changes proportionally with Uc, the rate of 525 

change is lower because the exponential term in Eq. 7 must be between 0 and 1; for this study 526 

that quantity ranged between approximately 0.70 and 0.75.  527 

CONCLUSIONS AND FUTURE WORK 528 
 The results of this study demonstrate that zo varies as a function of Ȧ in open and highly 529 

structured canopies such as vineyard. Specifically, a clear sigmoidal relationship was found 530 

linking zo to Ȧ for the two vineyards considered in this study. It also showed that the relationship 531 

was unique for a given vineyard and year. This suggests that other factors, such as the vegetation 532 

density and vine management practices, also influence zo. However, further study is needed to 533 

identify the specific factors and quantify their role in controlling zo. It is also needed to further 534 

refine the relationships found in this study. 535 

 The work also showed that incorporating the methods for estimating the roughness 536 

parameter developed in this study into the TSEB model results significant changes in the 537 

modeled do and zo. The displacement height used by TSEBVIN was 1.40 m or 0.06 m less than the 538 

average do from TSEBSTD and 0.44 m greater than the average do from TSEBOPN. The effect on 539 

zo was more pronounce. Averaging 0.23 m, TSEBVIN typically produced the lowest estimates of 540 

zo, while TSEBOPN produced the highest estimates; these averaged 0.48 m. The average zo from 541 

TSEBSTD was 0.28 m. Although the differences in the roughness parameters could be large, the 542 

did not impact the fluxes from the canopy and had only a modest effect on the fluxes from the 543 

soil. Although the difference in flux estimates from TSEBSTD and TSEBVIN could be nearly 12 W 544 
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m-2 at midday, MAD averaged approximately 2 W m-2 with TSEBVIN partitioning slightly less 545 

energy in Hs, thus Htot, compared to TSEBSTD. Similarly, the difference in the flux from 546 

TSEBOPN and TSEBVIN approached 32 W m-2 at midday but, on average, MAD was 13 W m-2. 547 

Again, Hs and Htot calculated by TSEBVIN was lower than that calculated by TSEBOPN. 548 

 The results suggest that the TSEB model is largely insensitive to changes in the 549 

roughness parameters. Because of this, along with the need for additional inputs that may not be 550 

readily available and the site-specific nature of the relationship used to calculate zo, the utility of 551 

this approach may be limited for applications using the TSEB model. Given there is no clear 552 

advantage to using the modified versions of the TSEB model, it is recommended that TSEBSTD is 553 

used to model the fluxes over vineyards. Nonetheless, the approach may prove beneficial when 554 

used with the TSEB model over other structured canopies such as orchards. It may also prove 555 

valuable for improving other land surface models that are more sensitive to the roughness 556 

parameters (e.g., Timmermans et al., 2007; Zhan et al., 1996); these potential uses of 557 

relationships between environmental conditions and roughness deserve further evaluation. 558 
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