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Abstract: In viticulture, detailed spatial information about actual evapotranspiration (ETa) and vine
water status within a vineyard may be of particular utility when applying site-specific, precision
irrigation management. Over recent decades, extensive research has been carried out in the use of
remote sensing energy balance models to estimate and monitor ETa at the field level. However, one of
the major limitations remains the coarse spatial resolution in the thermal infrared (TIR) domain.
In this context, the recent advent of the Sentinel missions of the European Space Agency (ESA)
has greatly improved the possibility of monitoring crop parameters and estimating ETa at higher
temporal and spatial resolutions. In order to bridge the gap between the coarse-resolution Sentinel-3
thermal and the fine-resolution Sentinel-2 shortwave data, sharpening techniques have been used to
downscale the Sentinel-3 land surface temperature (LST) from 1 km to 20 m. However, the accurate
estimates of high-resolution LST through sharpening techniques are still unclear, particularly when
intended to be used for detecting crop water stress. The goal of this study was to assess the feasibility
of the two-source energy balance model (TSEB) using sharpened LST images from Sentinel-2
and Sentinel-3 (TSEB-PTS2+3) to estimate the spatio-temporal variability of actual transpiration (T)
and water stress in a vineyard. T and crop water stress index (CWSI) estimates were evaluated
against a vine water consumption model and regressed with in situ stem water potential (Ψstem).
Two different TSEB approaches, using very high-resolution airborne thermal imagery, were also
included in the analysis as benchmarks for TSEB-PTS2+3. One of them uses aggregated TIR data
at the vine+inter-row level (TSEB-PTairb), while the other is based on a contextual method that
directly, although separately, retrieves soil and canopy temperatures (TSEB-2T). The results obtained
demonstrated that when comparing airborne Trad and sharpened S2+3 LST, the latter tend to be
underestimated. This complicates the use of TSEB-PTS2+3 to detect crop water stress. TSEB-2T
appeared to outperform all the other methods. This was shown by a higher R2 and slightly lower
RMSD when compared with modelled T. In addition, regressions between T and CWSI-2T with Ψstem

also produced the highest R2.
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1. Introduction

In a scenario of climate change and water scarcity, viticulturists will have to rely more on
efficient irrigation management and adopting regulated deficit irrigation (RDI) strategies for successful
grape production and wine quality [1–4]. To achieve these targets, accurate estimates of actual
evapotranspiration (ETa) and water status at the sub-field scale are necessary, particularly for specialty
crops. Water requirements within a vineyard are variable due to differences in soil components [5–7]
and administering uniform irrigation may result in either the over- or under-watering of some areas
within the vineyard. Obtaining detailed spatial information about ETa and vine water status within a
given vineyard may therefore be of particular interest, particularly for applying site-specific, precision
irrigation management.

Over recent decades, remote sensing techniques have been widely used for mapping and
monitoring ETa at the field scale, using satellite and airborne imagery. Several satellites have been used
to estimate ETa based on thermal infrared (TIR) data, whose spatial and temporal resolutions may
vary [8]. Satellites such as Landsat (60-120 m), MODerate resolution Imaging Spectrometer (MODIS)
(1 km), ASTER (90 m) and GOES (4 km) have been widely applied for mapping ETa in irrigated
agricultural fields [9–12]. Although extensive research has been carried out on ETa estimates made with
satellites, one of the major limitations of this approach is the coarse spatial resolution of satellite TIR
images. In this context, the recent advent of Sentinel-2 and Sentinel-3 missions from the European Space
Agency (ESA), as part of the Copernicus program (http://www.copernicus.eu/), has greatly improved
the possibilities of monitoring crop parameters and estimating ETa at higher temporal and spatial
resolutions. Although Sentinel-3 carries a TIR sensor with a coarse spatial resolution of 1000 m at nadir,
several other techniques could be used to sharpen the lower spatial resolution TIR observations with
higher spatial resolution visible and near-infrared (VISNIR) observations [13–16]. These techniques
involve empirically relating TIR to VISNIR spectral signals within the same scene, at the coarse pixel
resolution of the thermal band, and then applying this relationship to the fine pixel resolution VISNIR
bands in order to produce sharpened thermal band imagery at the same, with high resolution [16].
Guzinski et al. [17] evaluated the feasibility of sharpening daily Sentinel-3 (SLSTR sensor ~1000 m
TIR data) satellite data with Sentinel-2 MIS (20 m VISNIR data). They obtained an acceptable level
of accuracy and improvements in the estimates of fluxes, with respect to low-resolution satellite
data. However, since the sharpened high-resolution land surface temperature (LST) is estimated from
statistical relations using optical data (e.g., the correlation between LST and the NIR band), low LST
used to correspond with pixels with high biomass and vice versa. One inherent limitation is the need to
detect crop water stress in cases in which crops, and particularly those with heterogeneous or complex
canopies, are stressed but without provoking a reduction in their leaf biomass.

On the other hand, very high-resolution thermal imagery, usually acquired from unmanned
aerial vehicles (UAVs) or manned aircrafts, can potentially provide the spatial resolutions required
for precision irrigation applications. Most current applications mainly focus on detecting crop water
status in various woody trees [18–21] or on scheduling irrigation based on estimates of leaf water
potential (ΨL) [22]. This last study estimated ΨL from a crop water stress index (CWSI) using an
empirical approach which consisted of developing a baseline by normalizing differences between the
canopy (Tc) and air temperatures (Ta) based on evaporative demand (by means of the vapor pressure
deficit) [23,24]. Other studies have also used very high-resolution thermal infrared and multispectral
data from airborne platforms to map ETa over a vineyard [25–27]. One of the main shortcomings
associated with using very high-resolution imagery would, however, be the need to provide this
information on a routine basis over relatively large regions, given the need to calibrate this by crop,
phenology and weather conditions [28].

Many different surface energy balance models have been widely used to estimate consumptive
water use from ETa (SEBAL, [29–31]; METRIC, [32]; TSEB, [33]; ALEXI, [34]; DISALEXI, [35]; DTD, [36];
ETEML, [37]). However, precision irrigation should focus on crop water fluxes and hence models are
required that have the ability to separate ETa into its component parts: soil evaporation (E) and canopy

http://www.copernicus.eu/


Remote Sens. 2020, 12, 2299 3 of 25

transpiration (T). One such model is the two-source energy balance (TSEB) land surface scheme [33],
which has proven be fairly robust for a wide range of landscape and weather conditions [38–40].
The performance of the TSEB with satellite data relies on accurate observations of directional radiometric
land surface temperature (LST). Canopy (Tc) and soil (Ts) temperatures are then estimated in an
iterative process in which it is first assumed that the green canopy (expressed as the fraction of LAI
that is green, fg) transpires at a potential rate, which is based on the Priestley–Taylor formulation [41]
(TSEB-PT), and that after that, a step-wise reduction of canopy transpiration can be performed until
realistic daytime fluxes for both soil and canopy values are retrieved.

While waiting for the launch of a high-resolution TIR mission with a high revisit time, and given
the open data access policies of the Copernicus satellites, it would seem reasonable to think—at least a
priori—that the use of the TSEB-PT approach with Sentinel data and the adoption of disaggregation
methods for downscaling spatial resolution could offer the most feasible option for a routine way of
assessing water status at serviceable spatial and temporal scales and be used for precision irrigation
purposes on an operational basis.

This paper evaluates the use of TSEB-PT with sharpened LST images from Sentinel-2 and Sentinel-3
for supporting operational irrigation decision-making in a vineyard throughout a full growing season.
It also evaluates the accuracy of ETa and T estimates with respect to very high-resolution airborne
imagery and in situ vine physiological measurements. To the best of our knowledge, no other study
has benchmarked the feasibility of using this methodology in an operational setting or quantified
the feasibility of using it to detect vines under water stress. Based on the previously mentioned
studies, which pointed to a good level of agreement between CWSI and ΨL using very high-resolution
airborne imagery and demonstrated its workability for scheduling irrigation, one hypothesis of this
study focuses on whether the theoretically based CWSI—which is defined as one minus the ratio of
T, over potential transpiration (T0) [24]—calculated with Sentinel data could provide an appropriate
approach for detecting differences in vine water status.

2. Materials and Methods

2.1. Retrieval of TSEB Approaches

This study first evaluated estimates of actual transpiration (T) obtained with the TSEB model.
We did this using three different methodologies which all make use of land surface temperature (LST):
(i) TSEB-PTS2+3 (PT for Priestley–Taylor), which uses sharpened LST from Sentinel-2 and Sentinel-3;
(ii) TSEB-PTairb, which is similar to TSEB-PTS2+3, but which obtains LST from very high-resolution
airborne thermal imagery; and (iii) TSEB-2T, which is a contextual approach that directly uses Tc and Ts,
obtained from very high-resolution thermal imagery. Due to the difficulty involved in validating ETa

and its separate components, owing to the lack of eddy covariance or sap flow sensors, a spatio-temporal
assessment of both actual and potential transpiration (T and T0 respectively) was conducted through a
vine water consumption model. Secondly, we analyzed different methodologies used to obtain the
crop water stress index (CWSI) and related the results to stem water potential (Ψstem) measurements.
We also used maps showing the spatial distribution of the ET components to assess the accumulated
water consumption of the whole vineyard.

2.2. Two-Source Energy Balance (TSEB) Model

The TSEB land surface energy balance scheme has the advantage that it partitions estimates of
sensible heat fluxes into canopy and soil layers. These depend on soil and canopy temperatures (Ts and
Tc, respectively). The approach is therefore able to estimate canopy transpiration and soil evaporation
separately. TSEB is based on the resistance network of the Shuttleworth and Wallace (1985) energy
combination model, which has also been used in this study for computing potential transpiration (T0).
For more information, the full Python code is available online (https://github.com/hectornieto/pyTSEB,
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last accessed 22.09.2019) and additional details of the model are provided by Nieto et al. [27],
Norman et al. [33] and Kustas et al. [42].

2.3. Priestley-Taylor Iterative Retrieval, TSEB-PT

The PT approach is used when TSEB is run at a coarse resolution and it is not possible to
separate temperatures from pure canopy (Tc) and bare soil (Ts) pixels. In such cases, the observed
directional radiometric temperature, TRAD(θ), is partitioned into soil and canopy temperature (Ts and
Tc, respectively), based on the vegetation cover fraction at the thermal sensor view angle, fc(θ):

σT4
RAD(θ) = fc(θ)σT4

c + [1− fc(θ)]σT4
s (1)

Tc and Ts are used to separately compute the surface energy budgets for the soil and
canopy components

RNS = HS + LES + G (2)

RNC = HC + LEC (3)

HS = ρcp(Ts − Tac)/rs (4)

HC = ρcp(Tc − Tac)/rx (5)

where RNS is the net radiation at the soil surface; RNC is the net radiation in the canopy layer; LES is the
soil evaporation rate; LEC is the canopy transpiration rate; G is the soil heat flux; and HS and HC are
the soil and canopy sensible heat fluxes (Equations (4) and (5)), which are directly related to Ts and Tc,
respectively. ρ is the air density; cp is the heat capacity of the air; Tac is the aerodynamic temperature,
or the air temperature at the sink–source height; and rs and rx are, respectively, the bulk canopy and
soil resistances to heat transport.

In order to derive Tc and Ts from Equation (1), TSEB uses a first approximation of canopy latent
heat flux, LEC. This includes a first guess of canopy transpiration at the potential rates retrieved from
the Priestley and Taylor model [33] (Equations (4) and (5)):

LEC = αPT fc
∆

∆ + γ
RNC (6)

where αPT is the Priestley–Taylor coefficient, which was initially set to 1.26 [43] but subsequently
automatically reduced for stress conditions; ∆ is the slope of the saturation vapor pressure vs.
temperature; and γ is the psychrometric constant. With this initial value of LEc, the other soil and
canopy flux components are retrieved from Equations (2)–(5). However, given that plants may be
water-limited, TSEB-PT iteratively reduces the canopy transpiration value until realistic fluxes are
obtained (i.e., allowing for non-negative latent heat fluxes during daytime, [33]) by looping between
Equations (1)–(5).

2.4. Data Sharpening Scheme

In this study, the PT approach was compared using LST obtained by sharpening Sentinel-2 and
Sentinel-3 images (TSEB-PTS2+3) and from very high-resolution airborne thermal images (TSEB-PTairb).
The data sharpening method used in this study was based on the data mining sharpener (DMS)
introduced by Gao et al. [16] and used by Guzinski et al. [13,17] with Sentinel 2 and Sentinel 3 data.
This approach was also used by the European Space Agency (ESA) to develop the evapotranspiration
plugin for the Sentinel Application Platform (SNAP) (www.esa-sen4et.org). The methodology consists
of improving the coarse spatial resolution in LST retrievals from Sentinel-3 by sharpening the thermal
band imagery using shortwave multispectral data. In addition, a regression tree approach was
used to relate LST to a suite of shortwave spectral reflectance and ancillary data (e.g., elevation,
illumination), at a coarse resolution, and then to apply it to a fine (shortwave band) pixel resolution
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to produce sharpened thermal band imagery. In this study, Sentinel-3 LST was sharpened to 20 m
using nine bands of Sentinel-2. More information about the approach and code used is available online
(https://github.com/radosuav/pyDMS, last accessed: 22 September 2019).

2.5. Contextual TSEB (TSEB-2T)

If high-resolution thermal imagery is available, it is possible to obtain Ts and Tc directly, without
the need to compute an initial canopy transpiration [27]. In this study, we obtained the average
canopy and soil temperature for each 20 × 20 m grid (coinciding with pixels of Sentinel-2) from very
high-resolution airborne thermal images acquired on three different dates. The selection of pure canopy
vegetation and soil pixels was obtained using a supervised classification method that took advantage
of the semi-automatic classification plugin (SCP) of QGIS (QGIS 2.18.22) [44]. More details of the
TSEB-2T model can be found in [27].

2.6. Biophysical Parameters of the Vegetation and Ancillary Data

The biophysical parameters of the vegetation, such as its leaf area index (LAI) and the fraction
of vegetation cover (fc) used for running the TSEB and Shuttleworth and Wallace (S–W) models,
were retrieved from atmospherically corrected Sentinel-2 reflectances with a spatial resolution of 20 m,
and by using the biophysical processor available in the SNAP software v.6.0.1 [45]. This method creates
a synthetic dataset of biophysical parameters covering the whole possible range of expected values;
the reflectances of these pixels are then simulated using radiative transfer models (Prospect+SAIL, [46])
and convolved to the Sentinel-2 bands. Once these two datasets (of biophysical parameters and
reflectances) have been generated, a neuronal network is built in order to predict the biophysical
parameters from the Sentinel-2 band reflectances. The resulting estimates were used with the three
methodologies tested (TSEB-PTS2+3, TSEB-PTairb and TSEB-2T). Other structural parameters of the
vegetation, including its canopy height (hc) and leaf width or canopy width to height ratio (w/hc),
were measured for the 32 vines that were distributed in the vineyard. Meteorological inputs were
obtained from the local weather station, which was located 1 km from the study site [47].

2.7. Study Site

The study was conducted during the 2018 growing season, at a 6.6-ha vineyard of the Tempranillo
grape variety, located at Raimat (Lleida, Spain) (41◦41′19.40” N; 0◦29′37.16” E, 280 m elevation)
(Figure 1). The climate in the area is Mediterranean, and its average accumulated rainfall and reference
evapotranspiration (ETref) during the growing season (1 April to 30 September) were 214 and 793 mm,
respectively. The vines were 21 years old and were planted with a spacing of 1.6 × 2.5 m and a NE-SW
row orientation. The vines were cordon-trained through a vertical shoot positioning (VSP) trellis
system, with a bilateral, spur-pruned cordon located at a height of 0.9 m above the ground. The soil
had a loamy texture, with an effective depth ranging from 0.6 to 1.2 m. The vines were drip-irrigated
using drippers spaced 0.60 m apart along a single drip line per vine row. These lines discharged 4 l h−1,
with an irrigation frequency which varied from 2 to 3 days per week. The vineyard had a single
irrigation sector and its irrigation scheduling was managed by the Raimat winery. The vine water
requirements were calculated based on a water balance method to replace crop evapotranspiration
(ETc), in which ETc was calculated from the ETref of Penman–Monteith [48] and crop coefficients
derived from previous experiments [49,50], as follows: Kc1 = 0.2 (bud break on 5 April), Kc2 = 0.5
(bloom on 25 May to fruit-set on 5 June), Kc3 = 0.8 (mid-season, from veraison on 20 July until
harvest) and Kc4 = 0.3 (at leaf fall at the end of October). During post-veraison, a regulated deficit
irrigation (RDI) strategy was applied that consisted of reducing the amount of water administered by
up to 50%. A water meter (CZ2000-3M Contazara, Zaragoza, Spain) was installed on the dripline to
measure the volume of irrigation water applied. The total amount of water applied in the vineyard
throughout the growing season was 280 mm. Disease control and vine nutrition management were
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conducted by the Raimat winery, following the protocols of the “Costers del Segre” Designation of
Origin (Catalonia, Spain).Remote Sens. 2020, 12, 2299  6 of 25 
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Figure 1. Location of the (a) study area at Raimat (Lleida, Spain). The white square in (b) shows the
location of the vineyard. This is shown in greater detail in (c), through a canopy temperature (Tc) map
obtained from a very high-resolution airborne thermal image. The white dots indicate the location
of the 32 measured vines within the vineyard. The black squares show each sharpened 20-m pixel
coinciding with the resolution of the biophysical parameters obtained from Sentinel-2.

2.8. Satellite Data and Outputs of the TSEB model

A total of 28 Sentinel-2 and 44 Sentinel-3 cloud-free scenes were downloaded for the period
25 March to 15 October 2018 (Table 1). Sentinel-2 images were downloaded at level-1 (top of atmosphere
reflectance) and atmospherically corrected using the Sen2Cor radiometric corrector [51]. These images
were then resampled at 20 m in order to obtain the biophysical parameters of the vegetation. The land
surface temperature (LST) was first obtained at the Sentinel-3 resolution, following the split-window
approach proposed by Sobrino et al. [52]. Land surface energy fluxes and LST sharpening were derived
for those days with available Sentinel-3 LST images that were within a 4-day difference of an S2
scene. The evapotranspiration components obtained were: actual evapotranspiration (ETa); actual
transpiration (T); soil evaporation (E); crop water stress index (CWSI), computed as one minus the
ratio between the actual and potential transpiration; and the partitioning of the evapotranspiration
expressed as the T/ETa ratio. All the fluxes and metrics were integrated into daily values. To achieve
this, the instantaneous latent flux estimates, expressed in W m−2, were upscaled to daily water fluxes,
expressed in units of mm/day, by multiplying the instantaneous ratio between the latent heat flux and
solar irradiance by the average daily solar irradiance [53].
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Table 1. Acquisition dates of the Sentinel 2 and Sentinel-3 cloud-free images used in the analysis
(Sentinel 2: tile 31TBG, Sentinel 3: 6059) and airborne thermal imagery. For each Sentinel 2 acquisition,
there is generally one or more Sentinel 3 acquisitions, with a maximum delay of 4 days relative to the
Sentinel-2 acquisition date.

Sentinel-2 and Biophysical Parameters Sentinel-3 and ET Products Airborne

03-27-2018
04-01-2018
04-21-2018 04-24-2018
04-26-2018 04-27-2018
05-11-2018 05-13-2018
05-16-2018 05-16-2018 05-17-2018
05-31-2018 05-31-2018 06-01-2018
06-15-2018 06-16-2018
06-20-2018 06-20-2018 06-24-2018
06-25-2018 06-27-2018
06-30-2018 07-01-2018 07-02-2018
07-05-2018 07-05-2018 07-06-2018
07-10-2018 07-10-2018 07-14-2018
07-15-2018 07-17-2018 07-18-2018 07-18-2018
07-20-2018 07-24-2018
07-25-2018 07-25-2018 07-29-2018
07-30-2018 07-31-2018 08-01-2018 08-02-2018 07-31-2018
08-04-2018 08-05-2018 08-06-2018
08-09-2018
08-14-2018 08-17-2018

08-19-2018
08-20-2018 08-21-2018 08-22-2018 08-22-2018
08-24-2018 08-29-2018 09-01-2018
09-02-2018

09-08-2018 09-09-2018
09-13-2018 09-13-2018
09-18-2018
09-23-2018 09-24-2018 09-25-2018
09-28-2018 09-28-2018 09-29-2018
10-03-2018 10-03-2018 10-06-2018
10-08-2018 10-10-2018

2.9. Shuttleworth-Wallace (S-W) Model and Crop Water Stress

In order to be consistent with TSEB, the two-layer Shuttleworth–Wallace (S–W) model [54]
was used to estimate the potential evapotranspiration (ET0) and to separate its component parts.
The theoretical base of the S–W model is provided by the Penman–Monteith energy combination
equation, which has two parts: one for the soil surface, and the other for the plant surface. The potential
evapotranspiration and transpiration were computed with the S–W model by setting a minimum
stomatal resistance value of 100 sm−1. These values were then used as the base for estimating the
theoretical CWSI.

The CWSI was then calculated as 1−T/T0, using the Priestley–Taylor approach with sharpened
S2+S3 LST (CWSI-PTS2+3) and airborne imagery (CWSI-PTairb) and applying the contextual approach
(CWSI-2T).

In this study, CWSI was also computed using a baseline empirical approach (CWSIe) [23].
This consisted of normalizing the difference between the air and canopy temperatures (Tc − Ta) using
the vapor pressure deficit (VPD). In this study, the following baselines, developed by Bellvert et al. [55]
for “Tempranillo” grapevines, were used to calculate the CWSIe:

Lower limit: y = −1.780x + 1.253 (7)

Upper limit: y = 0.466x + 5.317 (8)
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where y corresponds to Tc − Ta, and x represents VPD.
A seasonal spatio-temporal analysis was needed to better understand the feasibility of using this

methodology throughout a whole growing season. However, due to the lack of available S2 and S3
data for certain days in the growing season (due to cloud cover), gaps had to be filled using daily
continuous estimates of ET, which were obtained by calculating a crop water stress coefficient (Ks).
Ks was calculated as the ratio between ETa and ET0, or as T/T0, for those days with available satellite
data. It was then extrapolated for those days within the same week with gaps in satellite data. This was
achieved by multiplying the previously obtained value for Ks by the ET0 or T0 corresponding to dates
with cloud cover.

2.10. Airborne Campaign

The airborne campaign consisted of three flights conducted on 18 (DOY 199) and 31 July (DOY 212)
and 22 August (DOY 234) 2018. The vapor pressure deficits (VPD) and air temperatures (Ta) at the
moment of image acquisition were 2.49 kPa and 29.9 ºC for DOY 199, 2.18 kPa and 31.2 ºC for DOY 212
and 2.51 kPa and 31.4 ºC for DOY 234. It is important to highlight that during the period from 12 to
17 August, there was a series of rainfall events at the study site which accounted for a total of 20 mm of
precipitation. The aeroplane used was equipped with a thermal camera (FLIR SC655, FLIR Systems,
Wilsonville, OR, USA) with a resolution of 640 x 480 pixels and a 13.1 mm focal length, with an
FOV angle of 45◦. The spectral response was in the range of 7.5–13 µm. The times of acquisition
were between approximately 10:30 and 11:00 UTC (coordinated universal time), coinciding with the
S3 satellite passing overhead. The plane flew over at a height of 180 m agl, capturing images with
a resolution of 0.25 m pixels. At the beginning of each growing season, the thermal camera was
radiometrically calibrated by the manufacturer (FLIR Systems s.r.l) using a very stable blackbody
radiator. During the flight, in situ temperatures were acquired over homogeneous cold and hot targets,
using a portable IR-gun (Fluke 572 infrared thermometer, Everett, WA, USA) in order to correct the
atmospheric contribution to the signal. Image orthorectification and mosaicking were performed using
off-the-shelf photogrammetric software. This was completed with the aid of ground control point
(GCP) targets, after their geolocations on the ground had been collected with a handheld GPS (Global
Positioning System) (Geo7x, Trimble GeoExplorer series, Sunnyvale, CA, USA).

2.11. Field Measurements

Physiological and structural measurements of the vines were conducted at a total of 32 points
which were uniformly distributed across the vineyard. Each point related to three vines. Midday stem
water potential (Ψstem) was measured for each vine (two measurements per point), using a pressure
chamber (Soil Moisture plant water status console 3005 Corp. Sta. Barbara, CA, USA). To ensure a
balance between the leaf and the stem attached to it, shaded leaves located near the main trunk were
wrapped in plastic bags covered with aluminum foil for 1 h prior to taking the Ψstem measurements.
All the measurements were taken in less than 1 hour, with their timing coinciding with that of the image
acquisition on the airborne campaign days. The fraction of PAR light intercepted by the crop (fiPAR)
and the LAI were determined as indicators of vegetative development, using a portable ceptometer
(Accupar, Decagon Devices Inc., Pullman, WA, USA). Measurements were taken on each vine, using a
12-point grid that was measured at ground level and by covering the vine spacing distance. Incident
radiation readings were measured above the vines. There was a total of seven measuring days, three of
which coincided with the image acquisition dates. Daily fiPAR (fiPARd) was calculated using the hourly
model for light interception [56] and by adjusting the porosity parameter in Oyarzun’s model so that
the noon fiPAR value of the hourly simulation matched that measured in the field concomitant to where
the image was acquired. Structural parameters such as vine height, and vine width, both perpendicular
to and along rows, were also measured, using a ruler. Effective LAI was obtained from fiPAR, using the
approach presented by Norman et al. [57] and setting a leaf absorptivity for light of 0.85.
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2.12. Spatio-Temporal Validations with the Vine Water Consumption Model

The estimates of actual and potential transpiration obtained with the TSEB and S–W models
throughout the growing season were compared with those generated by a vine water consumption
crop model. This model has been developed for grapevines and successfully used for conducting
precision irrigation scheduling at a commercial vineyard over two consecutive growing seasons. A full
description of the model has been provided by Bellvert et al. [58]. Although this model is able to
simulate evapotranspiration, in this study, we only used it for estimates of transpiration. The reason
for this is that soil evaporation is related to the total size of the wet soil surface, and this depends on
the timing of applying irrigation. Since water meter readings were taken manually, on a weekly basis,
we did not have all the information required to accurately estimate the soil evaporation component.
In situ measurements of the fraction of intercepted radiation (fiPAR) and the midday stem water
potential (Ψstem) are required in order to obtain modelled values for T and T0.

The spatio-temporal assessments of crop stress using the different methodologies (TSEB-PTS2+3,
TSEB-PTairb and TSEB-2T) were conducted for 32 vines and on three different image acquisition dates
(DOY 199, 212 and 234). In addition, the temporal evaluation of TSEB-PTS2+3 was carried out at two
representative extreme zones within the vineyard. This was done throughout the growing season and
covered well-watered and stressed grapevines.

3. Results and Discussion

3.1. Spatial Assessment of Transpiration

Spatially distributed, remotely sensed estimates of actual and potential transpiration were obtained
using three different methodologies and compared with those modelled using a vine water consumption
model. Table 2 presents a summary of the statistics used to evaluate the performance of the different
methods. It shows that estimates of T0 obtained with the S–W model yielded results that closely
agreed with the modelled T0 values for all three dates and that when the data were analyzed together,
R2 ranged from 0.71 to 0.78. TSEB-2T also appeared to outperform all the other models, yielding closer
agreement with modelled T. This was shown by the higher R2 value and slightly lower root mean
square deviation (RMSD) for the three measured dates and also by encompassing all the data together.
This suggested that whenever it is possible to retrieve Tc and Ts directly from very high-resolution
thermal imagery, the accuracy of the estimates of T could significantly improve in comparison with
other tested methodologies. Although the transpiration derived from TSEB-PTairb did not provide
the same accuracy as fluxes derived from TSEB-2T, it provided improved values compared with
TSEB-PTS2+3. In addition to lower R2 values, the latter also exhibited slopes that significantly differed
from 1 in all cases, suggesting that this approach tends to overestimate low transpiration rates. We also
noted that all three methodologies (TSEB-PTS2+3, TSEB-PTairb and TSEB-2T) tended to give slightly
lower T values at rates higher than approximately 2.5 mm day−1, with this bias being more pronounced
for the two methods which used airborne thermal imagery. This could probably be explained as
follows: (i) in TSEB-2T, the average Tc for all the vines within the 20 × 20 m pixel (~20 vines) could have
been higher than it should have been for the three measured vines due to either the selection of mixed
pixels combining vegetation and soil or because of within-pixel spatial variability in water status; (ii) as
TSEB-PTairb uses the Priestley–Taylor approach and this is based upon an initial guess that assumes that
the vines transpire at their potential rate, it is essential to have a robust characterization of the canopy
potential transpiration; and (iii) bias is more pronounced in methods which use airborne thermal
imagery (TSEB-2T and TSEB-PTairb) than in TSEB-PTS2+3 because the sharpened LST of the latter tends
to be overestimated (Figure 2) and, as a consequence, the estimated T rates tend to be higher.
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Table 2. Accuracy statistics for regressions between modelled transpiration, obtained from the vine water consumption model, and estimates of potential and actual
transpiration. The latter were respectively estimated using: the Shuttleworth and Wallace model (T0 S–W); two-source energy balance (TSEB) with (i) Priestley–Taylor
with sharpened LST from Sentinel-2 and Sentinel-3 (T TSEB-PTS2+3), (ii) PT with LST obtained from very high-resolution airborne thermal imagery resampled at
20 m (T TSEB-PTairb) and (iii) the separation of canopy (Tc) and soil (Ts) temperatures obtained from very high-resolution airborne thermal imagery (T TSEB-2T),
and correlations with the crop water stress index (CWSI), calculated as 1-T/T0. CWSIe represents the CWSI obtained with the empirical baseline approach for
cv.Tempranillo, using the following equations: y = −1.780x + 1.253 and y = 0.466x + 5.317 (Bellvert et al. 2015), to establish the lower and upper limits. Root mean
square deviation (RMSD) and bias (modelled without the estimated values) are expressed in mm day−1; the coefficient of variation (CV—RMSE divided by the mean
of the modelled values), equation (estimated = a modelled + b) and coefficient of determination (R2) are unitless. Only statistically significant regressions between the
remote sensing results and water consumption model are shown.

DOY 199 DOY 212 DOY 234 All

RMSD Bias CV Equation R2 RMSD Bias CV Equation R2 RMSD Bias CV Equation R2 RMSD Bias Cv Equation R2

T0 S-W 0.24 0.02 0.07 0.86x + 0.37 0.78 0.35 −0.09 0.10 1.12x − 0.26 0.74 0.44 −0.34 0.16 0.89x + 0.66 0.71 0.27 −0.06 0.12 0.95x + 0.17 0.73

T TSEB-PTS2+3 0.47 0.02 0.23 0.25x + 1.63 0.47 0.53 0.47 0.22 0.40x + 1.52 0.61 0.51 −0.23 0.21 0.44x + 1.51 0.55 0.49 0.07 0.21 0.38x + 1.51 0.48
T TSEB-PTairb 0.72 0.59 0.32 0.35x + 0.81 0.69 0.73 0.60 0.30 0.51x + 0.55 0.72 0.68 0.58 0.30 0.51x + 0.52 0.63 0.71 0.20 0.31 0.47x + 0.60 0.67

T TSEB-2T 0.41 0.26 0.18 0.53x + 0.74 0.82 0.50 0.27 0.18 0.59x + 0.52 0.77 0.43 0.23 0.19 0.55x + 0.80 0.65 0.49 0.33 0.22 0.55x + 0.70 0.72

CWSI-PTS2+3 0.13 0.00 0.43 - - 0.18 0.09 0.90 - - 0.07 0.01 0.22 0.27x + 0.23 0.43 0.15 0.01 0.52 0.25x + 0.19 0.18
CWSI-PTairb 0.20 −0.16 0.69 0.14x + 0.44 0.41 0.27 −0.22 1.34 0.15x + 0.41 0.32 0.18 −0.16 0.52 0.25x + 0.41 0.25 0.23 −0.19 0.84 0.18x + 0.42 0.36

CWSI-2T 0.11 −0.07 0.40 0.36x + 0.27 0.66 0.22 −0.18 1.08 0.31x + 0.32 0.57 0.11 −0.07 0.33 0.22x + 0.33 0.18 0.18 −0.06 0.63 0.28x + 0.31 0.47
CWSIe 0.11 −0.07 0.37 1.03x − 0.08 0.65 0.22 −0.19 1.05 1.37x − 0.34 0.71 0.15 0.08 0.46 - - 0.17 −0.12 0.62 0.28x + 0.25 0.20
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Figure 2. Scatterplots comparing the land surface temperature (LST) of the vineyard obtained with
(a) the data mining sharpening (DMS) approach using Sentinel-2 and Sentinel-3 images and very
high-resolution airborne imagery, and (b) the root mean square error (RMSE) of sharpened and airborne
LST against airborne LST.
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As with transpiration, the modelled CWSI also agreed with the values obtained using the contextual
(CWSI-2T) method, although the closest agreement was obtained using the baseline empirical approach
(CWSIe) (Table 2). In both cases, the results were robust for DOY 199 and 212 with the RMSD and R2

respectively ranging from 0.11 to 0.22 and from 0.57 to 0.71. When the data for all three dates were
encompassed, CWSI-2T was also the approach with the highest R2 and lowest RMSD values. However,
DOY 234 showed only a low level of agreement for all the methodologies except CWSI-PTS2+3. This was
possibly due to the effect of the 20 mm of rainfall received in the week before the image was acquired.
The effects of convective rainfall occurring a few days before image acquisition on the CWSI have
been previously described by Bellvert et al. [22], who observed that rainfall may modify the VPD and
air temperature within the vineyard as the amount of water evaporated from the soil and vegetation
surfaces is high. In consequence, the evaporative demand within the vineyard may be lower than at
the location where the meteorological data were gathered and this may affect the accuracy of estimates
of CWSI. Another hypothesis was that Ts was clearly lower than for previous days due to the soil
being wetter: this was detected by very high-resolution imagery. Partitioning readings into E and
T would have probably tended to overestimate E and to underestimate T, thereby resulting in an
overestimation of the CWSI values. The regressions obtained using the CWSI-PTS2+3 method were
not significant, with the partial exception of DOY 234 and when all three dates were plotted together.
It seems that although the overall RMSD values were low, they tended to increase as the CWSI increased.
This suggests that this approach was unable to detect severely water-stressed vines. On the other hand,
the result for DOY 234 was significant, probably because of there being a lower degree of water stress,
as apparently reflected by the smaller range in CWSI values associated with the rainfall event. In fact,
Figure 2 shows the regression between LST with sharpened S2 and S3 and airborne LST, resampled at
20 m. This shows that estimates of high-resolution satellite LST obtained using the DMS approach
tended to be underestimated, which tended to increase with higher LST values. The average RMSE
values were 3.8 ºC, 3.1 ºC and 3.7 ºC, for DOY 199, 212 and 234, respectively. Figure 2b also shows
that there was quite a strong correlation between RMSE and LST. This tended to increase as the LST
values increased, with similar slopes for all three dates. In agreement with this, it is interesting to
note that the LST values for DOY 234 were significantly lower than for the other two days. The good
correlation between the sharpened and actual LST values shown in Figure 2b highlights the fact that
sharpening the LST from 1 km to 20 m was able to resolve some of the spatial variability in surface
temperature at the farm scale. However, its major underestimation shows that this sharpening was
unable to capture the full range of temperatures registered under water-stressed conditions. This was
probably due to the fact that the actual dynamic range of LST at 1 km was smaller than at 20 m and,
in particular, when different rainfed and irrigated areas were present within the coarse-resolution pixel.
The decision tree regression model was therefore trained using a set of temperatures with a narrower
range than should normally be used to predict a larger range of temperatures.

3.2. Temporal Evaluation of T (TSEB-PTS2+3) And T0 in Well-Watered And Stressed Vines

Figure 3 illustrates the temporal evolution of T (TSEB-PTS2+3) and T0 (S-W) for well-watered
(Figure 3a) and stressed vines (Figure 3b) in the vineyard. It also shows comparisons with values
modelled based on the vine water consumption model. The figure also includes the seasonal evolution of
LAI and FAPAR estimated from Sentinel-2 using the biophysical processor and the modelled values for
daily fiPAR (fiPARd) and the measured value for Ψstem. Ψfc and Ψwilt respectively correspond to the stem
water potential at field capacity and the lowest plant water potential at wilting point, when transpiration
is null. Both these parameters are obtained from the vine water consumption model [58].



Remote Sens. 2020, 12, 2299 13 of 25
Remote Sens. 2020, 12, 2299  14 of 25 

 

 

Figure 3. Seasonal variations in actual and potential transpiration (T, T0) estimated by the TSEB‐PTS2+3 

and S–W models, respectively, and validated against the vine consumption model for a) well‐watered 

and b) stressed vines. a.2) and b.2) show seasonal measurements and simulations of stem and daily 

fiPAR, and estimates of leaf area index (LAI) and FAPAR based on the biophysical processor of S2. 

RMSD  represents  the  root  mean  square  deviation  (mm  season‐1).  ETref  is  the  reference 

evapotranspiration obtained from the weather station using the Penman–Monteith equation. fc and 

wilt respectively correspond to the soil water potential at field capacity and to the lowest plant water 

potential at wilting point, when transpiration is null. 

3.3. Comparison Between Methodologies 

Estimates of actual evapotranspiration  (ETa) and  transpiration  (T) obtained with TSEB‐PTS2+3 

showed a significant level of correlation with other methodologies. R2 values of 0.83 and 0.65 (ETa) 

and of 0.78 and 0.70  (T) were obtained when  they were compared with TSEB‐PTairb and TSEB‐2T, 

respectively (Figure 4). Although the regression between TSEB‐PTS2+3 and TSEB PTairb indicated a low 

RMSD, it tended to increase at lower ETa values (Figure 4a). This mostly occurred for DOY 199, which 

had the lowest evapotranspiration rates. In line with the previously mentioned underestimation of 

LST  at  high  temperatures  when  using  the  TSEB‐PTS2+3  method,  this  probably  also  caused  an 

overestimation of the ETa values, particularly when the vines were subject to water stress. In fact, the 

sharpened S2+3 LST value was slightly lower for DOY 199 than DOY 212 (Figure 2). Estimates of T 

obtained using other approaches  significantly declined  in  comparison with ETa. For  instance,  the 

averaged estimates of T for DOY 234 obtained using the TSEB‐PTS2+3 approach accounted for 54% of 

Figure 3. Seasonal variations in actual and potential transpiration (T, T0) estimated by the TSEB-PTS2+3

and S–W models, respectively, and validated against the vine consumption model for (a) well-watered
and (b) stressed vines. (a.2) and (b.2) show seasonal measurements and simulations of Ψstem and
daily fiPAR, and estimates of leaf area index (LAI) and FAPAR based on the biophysical processor
of S2. RMSD represents the root mean square deviation (mm season−1). ETref is the reference
evapotranspiration obtained from the weather station using the Penman–Monteith equation. Ψfc and
Ψwilt respectively correspond to the soil water potential at field capacity and to the lowest plant water
potential at wilting point, when transpiration is null.

The well-watered vines must have been transpiring at near to full potential rates. This was shown
by the small differences between T0 and T throughout the growing season and by the fact that the
Ψstem values were close to Ψfc (Figure 3a). The seasonal average RMSDs for T and T0 were 0.46 and
0.64 mm day−1, respectively. Transpiration tended to increase sharply from DOY 100 (beginning of
April) to 160 (mid-June), when maximum values of 4.2 mm day−1 for T0 and 3.8 mm day−1 for T were
registered. After DOY 230 (mid-August), transpiration began to moderately decline until senescence.
When we compared the modelled and estimated values of T and T0 between well-watered and stressed
vines, as expected, we found significantly lower rates for the latter throughout the growing season.
Although the RMSD values for T and T0 were similar, the seasonal averaged R2 values of the stressed
vines were significantly lower (Figure 3b). The T values of stressed vines were slightly overestimated
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throughout the growing season, although the largest differences with respect to the modelled T values
were detected during the period of highest water stress (from DOY 180 to 240). Figure 3b.2 shows
how the Ψstem values were lower during that particular period. This confirmed the hypothesis that the
underestimation of sharpened satellite S2+3 LST for high LST values (Figure 2) would be reflected in
an overestimation of T. Under both water regimes, the highest RMSD values were concentrated at the
beginning and at the end of the growing season. This was probably because during these two periods,
the cover cropping between rows tended to be higher and this was reflected in the higher estimates of
satellite LAI. This was probably also linked to the fact that TSEB is only able to account for a single,
actively transpiring canopy layer [59]. A similar consideration was reported by Semmens et al. [10].
Despite this, if we assume that most of the intercepted PAR was actually absorbed during the growing
season, the R2 between the estimates of FAPAR made with Sentinel-2 and the modelled fiPARd would
have been 0.92. Few studies have validated Sentinel-2 FAPAR products in heterogeneous crops such as
grapevines. Although the correlation obtained probably depended on the training system, spacing
distance and/or row orientation, and further research will be needed to adapt FAPAR estimates to these
conditions, the preliminary results seem promising.

3.3. Comparison Between Methodologies

Estimates of actual evapotranspiration (ETa) and transpiration (T) obtained with TSEB-PTS2+3

showed a significant level of correlation with other methodologies. R2 values of 0.83 and 0.65 (ETa)
and of 0.78 and 0.70 (T) were obtained when they were compared with TSEB-PTairb and TSEB-2T,
respectively (Figure 4). Although the regression between TSEB-PTS2+3 and TSEB PTairb indicated a
low RMSD, it tended to increase at lower ETa values (Figure 4a). This mostly occurred for DOY 199,
which had the lowest evapotranspiration rates. In line with the previously mentioned underestimation
of LST at high temperatures when using the TSEB-PTS2+3 method, this probably also caused an
overestimation of the ETa values, particularly when the vines were subject to water stress. In fact,
the sharpened S2+3 LST value was slightly lower for DOY 199 than DOY 212 (Figure 2). Estimates
of T obtained using other approaches significantly declined in comparison with ETa. For instance,
the averaged estimates of T for DOY 234 obtained using the TSEB-PTS2+3 approach accounted for
54% of the total ETa and for 68% and 62%, respectively, for DOY 199 and DOY 212 (Figure 4c). The T
TSEB-PTS2+3 values were slightly overestimated with respect to TSEB-PTairb and TSEB-2T over their full
range (Figure 4c,d). Furthermore, the T estimates obtained with TSEB-2T tended to be somewhat lower
than those obtained with TSEB-PTairb (RMSD: 0.27 mm day−1). This overestimation of T could possibly
be explained by the underestimation of LST which, in the case of the TSEB-PTS2+3 model, caused the
iterative process to stop earlier at higher transpiration rates than it should have: TSEB-PTS2+3 barely
reduced the initial αPT value from its original a priori value of 1.26.

Figure 4 also shows that estimates of ETa and T made with TSEB-2T were lower than those
obtained with the Priestley–Taylor (PT) approach over the full range of values, independently of
whether S2+3 (Figure 4b) or airborne imagery (TSEB-PTairb, RMSD = 1.05 mm day−1) were used.
In addition to the underestimation of LST with TSEB-PTS2+3, another potential reason for this could
have been the fact that when Tc and Ts are obtained from very high-resolution thermal images
using a contextual approach, we are actually separating low-temperature pixels, corresponding to
Tc, from high-temperature pixels, corresponding to bare soil exposed to sunlight in the inter-row
space of the vineyard. It is likely that in such a case, the estimated Ts value would be higher than it
should be, since the actual Ts value should also include information relating to the shadowed soil and
wet bulb surface because of the drip irrigation system below the vines. As TSEB-2T may have been
overestimating Ts in comparison with TSEB-PTS2+S3 and TSEB-PTairb (which assumed an effective Ts

value for the entire pixel, considering both the shaded and sunlit areas), the soil sensible heat flux
(Hs) obtained was also higher and, as a consequence, both the E and ETa values would be lower
than TSEB-PTS2+3 and TSEB-PTairb. This has previously been confirmed by the results obtained by
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Nieto et al. [27] for a Californian vineyard: they showed that TSEB-2T produced greater T/ETa and Ts

values than TSEB-PT when no active cover crop was present in the inter-row space.
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Figure 4. Scatterplots comparing estimates of actual daily evapotranspiration (ETa) and transpiration
(T) with the Priestley–Taylor approach using sharpened LST from Sentinel-2 and Sentinel-3 images
(TSEB-PTS2+3) against (a,c) TSEB-PTairb and (b,d) TSEB-2T. The data were validated in the pixels
containing the 32 measured vines relating to three dates: 18 July (DOY 199), 3 July (DOY 212) and
22 August (DOY 234).

3.4. Regressions of ETa with Stem Water Potential

Stem water potential (Ψstem) is the most widely used plant water status indicator proposed for
irrigation scheduling involving fruit trees and grapevines [60–62]. In this study, midday Ψstem ranged
from −0.5 to −1.3 MPa throughout the vineyard, indicating a high spatial variability in water status.
However, the midday Ψstem values for DOY 234 were not as low as for the other two days. Midday
Ψstem was significantly linearly related to ETa and T for all three dates (Figure 5). The regressions
indicated a clear tendency for both ETa and T to decrease with lower Ψstem values. The maximum ETa

values for vines transpiring at their potential rates (Ψstem = −0.4 MPa) were found in TSEB-PTS2+3,
with values ranging from ~3.9 to 4.4 mm day−1 in vines with a fiPAR of 0.4 and days with VPDs of 2.18
(DOY 212) and 2.49 kPa (DOY 199). Two other methods (TSEB-2T and TSEB-PTairb) produced lower
ETa and T estimates over the full range: this was because the sharpened S2+3 LST was also slightly
underestimated at low values (Figure 2). The slopes of the ETa TSEB-PTS2+3 vs. Ψstem regressions
were gentler than those obtained using other methods and revealed that the highest minimum ETa

values (~2.6 mm day−1) corresponded to a Ψstem of −1.3 MPa. On the other hand, the lowest ETa,
corresponding to a Ψstem = −1.3 MPa, was estimated using the contextual approach (~1.2 mm day−1).
These differences in evapotranspiration rates, of about 1.4 mm day−1 for water-stressed vines, called
into question the feasibility of using TSEB-PTS2+3 to detect vines under severe water-stressed conditions.
Although the regressions were significant for all three dates, the y-intercept varied, which was probably
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due to differences in soil evaporation or atmospheric water demand. In all cases, DOY 234 produced
the highest ETa values (probably due to the rainfall event) and DOY 199 produced the lowest when PT
was used with either satellite or airborne imagery (TSEB-PTS2+3 and TSEB-PTairb).
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Figure 5. Scatterplots of the regression between midday stem water potential and actual evapotranspiration
(ETa) and transpiration (T) for three dates: 18 July (DOY 199), 31 July (DOY 212) and 22 August (DOY 234),
and using the (a,b) TSEB-PTS2+3, (c,d) TSEB-PTairb and (e,f) TSEB-2T methodologies. Validation was
conducted with pixels containing the 32 measured vines.

As previously explained, the ETa values estimated using TSEB-2T were clearly lower than those
obtained using other methods. In addition, this method was only able to distinguish the higher ETa

rates corresponding to DOY 234 due to the soil wetness and lower Ts, but was not able to note the
differences between days with lower soil evaporation rates (DOY 199 and 212). This confirms the
previous hypothesis that the selection of bare soil exposed to sunlit pixels with high Ts values, tends to
overestimate the actual soil sensible heat fluxes (Hs) and that it is therefore difficult to detect differences
in soil evaporation (E) between specific days. On the other hand, the regressions between T and Ψstem

showed similar patterns and non-significant differences were detected between days (Figure 5b,c,f).
With the partial exception of DOY 234, the differences between ETa and T in TSEB-2T were very few:
this confirmed the hypothesis that transpiration is a better indicator of crop water stress than bulk
evapotranspiration, but it also suggested a significant relationship between the stem water potential
and stomatal conductance in Tempranillo grapevines.
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3.5. The Feasibility of Using the CWSI

Adopting regulated deficit irrigation (RDI) strategies is a common practice in grapevines in order
to obtain high-quality berries. It is therefore necessary to have reliable information not only about T,
but also about vine water status, in order to schedule irrigation. In this respect, the crop water stress
index (CWSI) has been identified as a good crop water status indicator and proposed as a possible
substitute for Ψstem [22] due to the latter being both time-consuming and costly, particularly when
used for scheduling irrigation in large vineyards. Figure 6 shows the regressions between Ψstem and
CWSI obtained with different methodologies. The results obtained produced significant correlations
in all cases, with R2 values of 0.29, 0.32 and 0.39, respectively, for CWSI-PTS2+3, CWSI-PTairb and
CWSI-2T (Figure 6a–c). As expected, the CWSI-PTS2+3 method had the lowest R2 and produced a
poor and non-linear response to the separation between well-watered and stressed vines (Figure 6a).
The probable reason for the low CWSI corresponding to the vines in the vineyard which were
water-stressed is that the sharpened S2+3 LST values tended to be underestimated, provoking the
overestimation of T. Furthermore, shallower soil zones within the vineyard had much smaller soil
water reservoirs and their vines were therefore more prone to suffer sustained water deficit. Such vines
are likely to have a lower leaf area index (LAI) and this can be observed in Figure 7a. Under these
conditions, it is also probable that vines will gradually modify both their hydraulic system and stomatal
conductance to improve their acclimation to water deficits [63], with the net effect of modifying their
LAI (i.e., their evaporative surface). Such adjustments are also driven to enable vines to maintain higher
gas exchanges under conditions of low stem water potential [64]. These acclimation modifications
could, at least in part, explain why the differences between T and T0 in those zones where vines had low
LAI were minimal and also why the CWSI values for low Ψstem were not as high as expected. This could
also partially explain the differences detected between the modelled and estimated T values in stressed
vines (Figure 3b). Despite the low measured daily Ψstem, vines growing under these circumstances
(low LAI due to prolonged water stress conditions) probably still have high transpiration rates. As a
result, in such cases, the modelled T values could also be a potential source of error.

When very high-resolution airborne imagery was used to calculate the averaged CWSI
(CWSI-PTairb and CWSI-2T) of each 20 m pixel, it seems that there was a slight increase in the
R2 and CWSI values (Figure 6b,c) and, in particular, a more linear response of CWSI to Ψstem in the
case of CWSI-2T. In this case, the increase in CWSI was proportional for all levels of Ψstem; however,
as a result, the estimated CWSI values for high Ψstem were probably too high. This could probably be
explained by the fact that the estimates of CWSI were obtained from a 20 by 20 m pixel (~20 vines),
while those for Ψstem were measured from three vines. The natural variability of the vines captured
within a given pixel is likely to have a greater range of Ψstem. This would tend to reduce the average
Ψstem and improve the regression with CWSI. In fact, the correlation between Ψstem and the CWSI
obtained using the empirical baseline approach (CWSIe), which only used Tc obtained from measured
vines, produced the best R2 value (R2 = 0.55) and a steeper slope (Figure 6d).

Although the CWSI-Ψstem regression using the Priestley–Taylor approach (CWSI-PTS2+3 and
CWSI-PTairb) did not produce the most desirable results in terms of absolute values, its regression was
significant. This opens the door to the possibility of analyzing data in relative terms and calculating a
relative CWSI (CWSI-PTS2+3,rel), using either the highest T0 value for the whole vineyard or irrigation
management zone for each pixel. Although this methodology calculates the CWSI using the T0

values of vines with different LAIs, it can also be used to obtain relative maps of CWSI using Sentinel
imagery and distinguish zones with different levels of water status. In all our cases, the CWSIrel

significantly improved the R2 value, which increased from 0.29 to 0.61 for CWSI-PTS2+3, from 0.32
to 0.56 for CWSI-PTairb and from 0.39 to 0.57 for CWSI-2T. In fact, Figure 7b compares the spatial
distribution of the estimates of CWSI using two different approaches: (i) CWSIe resampled at 20 m,
and (ii) CWSI-PTS2+3,rel. Our results indicated a similar spatio-temporal pattern between the two
methods, with averaged RMSE values of 0.07, 0.12 and 0.12 for DOY 199, 212 and 234, respectively.
These results support the argument that CWSI-PTS2+3,rel maps could be used as tools for mapping
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spatial variability in water status when no other thermal infrared data sources, such as airborne or
Landsat imagery, are available.
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Figure 6. Scatterplots of the regression between stem water potential and the crop water stress index
(CWSI), calculated as 1-T/T0 for three dates: 18 July (DOY 199), 31 July (DOY 212) and 22 August
(DOY 234). T0 was obtained using the Shuttleworth and Wallace method and T was obtained from
(a) TSEB-PTS2+3, (b) TSEB-PTairb, (c) TSEB-2T and (d) the baseline empirical approach of Bellvert et al.
(2016). (e–g) show a relative CWSI (CWSIrel) using the highest T0 of the vineyard. Validation was
conducted with pixels containing the 32 measured vines.
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Figure 7. (a) Maps of LAI obtained with Sentinel-2 for DOY 199, 212 and 234, and (b) comparison
of spatial variability in the vineyard’s crop water stress index (CWSI) for the same dates, using the
empirical baseline approach with very high-resolution thermal images (CWSIe) vs. the relative CWSI
(CWSI-PTS2+3,rel) obtained with sharpened S2 and S3 images and the Priestley–Taylor model.

3.6. The Spatial Distribution of Biophysical and ET Parameters Within the Vineyard

Maps of the spatial distribution of the biophysical parameters of the vegetation and ET components
in the vineyard are shown in Figure 8. Overall, there was a positive spatial agreement between the
LAI or FAPAR and the ET components. One of the main advantages of TSEB is its ability to obtain
separate soil evaporation and canopy transpiration values. As a result, this vineyard had a seasonal
accumulated ETa of 470 ± 26 mm, 32% of which was lost through evaporation (150 ± 26 mm) and
68% due to transpiration (320 ± 33 mm). These values agreed with those presented in other studies
conducted in drip-irrigated vineyards which reported E/ETa ratios of ~0.3 ± 0.12 [26]. The partitioning
of E/T ranged from 0.64 (in areas of the vineyard with low LAI and high evaporation) to 0.33 (in areas
with high LAI and low evaporation). The total amount of water applied to the vineyard through
irrigation (280 mm) and rainfall (214 mm) accounted for a total of 494 mm over the whole growing
season (1 April to 30 September). Considering that the differences in annual ETa across the vineyard
varied from 397 to 576 mm, it is therefore clear that some areas of the vineyard were over-irrigated,
with water being lost through evaporation or runoff, while others were subject to water stress during
certain periods of the growing season. Finally, the seasonal averaged CWSI-PTS2+3,rel showed that
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the maximum values for the stressed vines was 0.43 and that these were located in the areas with the
lowest LAI or FAPAR values, which also coincided with the lowest Ψstem.
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Figure 8. Seasonal maps of the vineyard illustrating the spatial variability in the average (a) leaf area
index (LAI) and (b) fraction of absorbed photosynthetically active radiation (FAPAR), and accumulated
(c) potential transpiration (T0), (d) actual evapotranspiration (ETa), (e) actual transpiration (T), (f) soil
evaporation (E), (g) relative crop water stress index (CWSI-PTS2+3, rel), obtained as 1-T/T0 with Sentinel
data, and (h) T/ETa ratio. Cv represents the coefficient of variation.

4. Conclusions and Future Perspectives

This study demonstrates that the use of TSEB with sharpened LST obtained from the Sentinel-3 and
Sentinel-2 satellites and the S–W model was adequate for estimating both actual and potential transpiration
from grapevines throughout a growing season. However, the T values estimated with TSEB-PTS2+3

tended to be overestimated, particularly at low transpiration rates. In contrast, the CWSI-PTS2+3

values obtained for vines under severe water stress were excessively low. This study also explains
that the main reason for this was that the data mining sharpening (DMS) approach used to estimate
high-resolution LST in TSEB exhibited certain limitations in its ability to capture the full range of
temperatures and therefore to identify crops suffering water stress, particularly where water stress did
not reduce the amount of biomass. A regression between the airborne LST and sharpened S2+3 LST
values demonstrated that the latter tended to be underestimated. In this context, it is possible that the
ET products derived by SEN-ET [65] (TSEB-PTS2+3) are still not valid for use in applications in which
regulated deficit irrigation (RDI) strategies have to be adopted in almost real-time. This could probably,
however, be a good option when these data are assimilated into crop models which either prescribe
irrigation recommendations or evaluate water consumption at the regional level over medium- or
long-term periods. The lack of high-resolution TIR remains an important issue at the operational setting.

Of the three methodologies tested (TSEB-PTS2+3, TSEB-PTairb and TSEB-2T), TSEB-2T was the one
that appeared to perform the best. This was shown by the higher R2 and slightly lower RMSD when it
was evaluated against modelled T. The regressions between T and CWSI-2T with stem water potential
(Ψstem) also produced the highest R2 values. The only constraint detected in TSEB-2T was that the
selection of pixels corresponding to Ts was related to bare soil that was well-exposed to sunlight in the
inter-row space of the vineyard. This resulted in an overestimation of the soil sensible heat flux (HS)
and therefore a reduction in estimated soil evaporation in comparison with other methods which used
the Priestley–Taylor approach, either with satellite or airborne LST. Further studies should focus on the
evaluation of TSEB where vegetation and the soil temperature of shaded and unshaded areas and wet
bulb surfaces created by drip irrigation are taken into account.
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With regard to the use of CWSI as a plant water status indicator, the baseline empirical approach
seemed to be the method which provided the best results: this was indicated by the highest R2

value obtained in the regression with Ψstem. When very high-resolution thermal imagery is available,
this study suggests that CWSIe followed by CWSI-2T are probably the best approaches to use in order
to detect differences in water status affecting grapevines. Even so, as the use of airborne thermal
imagery is still far from becoming an operational reality, immediate improvements should focus on
using LST satellite imagery.

This study demonstrates that to relativize CWSI-PTS2+3, a feasible option could be to emphasize
the significant spatial differences in water status that it can detect. However, it is also true that in some
cases, this approach could exacerbate water stress in vines which are relatively well-watered. As this
study demonstrates that TSEB-PTairb significatively improved estimates of T and CWSI compared
with those made with TSEB-PTS2+3, it is realistic to suggest that the Priestley–Taylor (PT) approach,
combined with certain improvements to its parametrization of potential transpiration estimates,
could potentially provide a good alternative. This could perhaps be tested in some other on-going or
future satellite missions incorporating higher spatio-temporal resolution TIR imaging, such as Landsat
9, ESA-LSTM, ECOSTRESS [66] or TRISHINA [67].

There is interest in testing this methodology with other crops and environments in order to assess
whether the results found in this study are repeated in other conditions. Several current works are also
focused on modifying the decision tree analysis used in the DMS approach by giving greater strength to
the SWIR bands in order to capture canopy water content and by merging optical and microwave SAR
data. Furthermore, as one of the main requirements for obtaining accurate estimates of Tc and Ts is to
have a good parametrization of transpiration under potential conditions, research is currently being
undertaken to improve estimates of T0, considering different phenological stomatal responses to vapor
pressure. This could also help to promote a better characterization of crop water needs. This would be
achieved through the direct incorporation of satellite-derived biophysical products (such as LAI or
albedo) into energy combination equations, such as those of Penman and Monteith and Shuttleworth
and Wallace, and by avoiding the use of more controversial empirical crop coefficients to define crop
potential ET.
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