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Abstract 10 

Sliced dry-cured ham arranged in ready-to-eat packages is a convenient and widely consumed 11 

commodity characterised by heterogeneity in composition not only among different industrial 12 

batches but also through their horizontal and vertical profiles, making precise nutrition 13 

labelling of the packages a difficult task. Hyperspectral imaging techniques can serve as a 14 

steadfast solution not only to predict the overall composition of the major constituents of dry-15 

cured ham but also to visualise their distributions. The main aim of this study was to define 16 

the optimal protocol for pretreating hyperspectral images and selecting representative 17 

hyperspectral data for developing accurate predictive models in excessively heterogeneous 18 

samples, using sliced dry-cured ham as a case study. Hyperspectral images (400-1000 nm) 19 

were acquired for heterogeneous sliced dry-cured ham and homogeneous unsliced dry-cured 20 

muscles. Partial least squares (PLS) regression models to predict fat, water, salt and protein 21 

contents were developed and tested in an independent dataset. The PLS predictive models 22 

developed from the whole surface of sliced dry-cured ham were the most accurate ones for 23 

predicting fat, water, salt and protein contents with a determination coefficient in prediction 24 

(𝑅𝑝
2) of 0.89, 0.85, 83 and 0.63 and standard error in prediction (SEP) of 1.43, 1.21, 0.51 and 25 

1.57%, respectively. The chemical images resulting from the models gave advantages of 26 

hyperspectral imaging technique over traditional chemical methods to visualise the spatial 27 

distribution of different constituents within the packaged ham slices. 28 
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1. INTRODUCTION 32 

Information provided by food labels is sometimes not precise because it only specifies batch 33 

nutritional composition instead of the composition of each individual package. Where the 34 

composition differs due to raw material variations (e.g. water, fat and protein contents) or 35 

processing conditions (e.g. salting, drying, thermal treatment and ageing), the nutritional facts 36 

specified in the label of individual packages may exceed the error limits established by the 37 

European Union (Kaur, Rayner & Heike, 2016). The traditional methods used for the 38 

characterisation of food products depend basically on ordinary wet-chemistry assays in well-39 

equipped laboratories. Besides being destructive, costly and slow, these methods entail 40 

complex multi-phased procedures, require certain dangerous substances, and employ 41 

experienced personnel. Besides, the ordinary techniques give only one average value over the 42 

whole tested product without providing a measurement for every single portion in the 43 

product. Therefore, it becomes a great challenge to develop reliable, economic, fast, and 44 

environment friendly tools to overcome the limitations and disadvantages of these methods.  45 

Optical methods have gained popularity and become good candidates and viable options to be 46 

implemented for on-line applications in the food industry (Kamruzzaman, ElMasry & 47 

Nakauchi, 2015). Considerable amount of research endeavours have been directed in the past 48 

two decades towards using optical techniques and spectral imaging methods for different 49 

quality assessment scenarios in food science and technology, such as reagent-less 50 

determination of chemical composition of raw and processed meat (Craigie et al., 2017; 51 

ElMasry, Sun & Allen, 2013; Reis et al., 2018; Velásquez, Cruz-Tirado, Siche & Quevedo, 52 

2017), seed quality evaluation (Dumont et al., 2015; ElMasry, Mandour, Al-Rejaie, Belin & 53 

Rousseau, 2019a; ElMasry et al., 2019b; Wakholi et al., 2018), quality estimation of fruits 54 

and vegetables (ElMasry, Wang, ElSayed & Ngadi, 2007; ElMasry, Wang, Vigneault, Qiao 55 

& ElSayed, 2008; Pathmanaban, Gnanavel & Anandan, 2019), determination of food safety, 56 

authentication and microbiological evaluation (Barbin, ElMasry, Sun, Allen & Morsy, 2013; 57 

Crichton et al., 2017; ElMasry & Sun, 2010; Foca et al., 2016; Siripatrawan, 2018). 58 

Dry-cured ham as a convenient and widely consumed meat product in many countries with 59 

special organoleptic characteristics has received considerable interest in research by using 60 

different spectral imaging modalities for predicting the concentration and distribution of 61 

essential constituents (Garrido-Novell, Garrido-Varo, Pérez-Marín, Guerrero-Ginel & Kim, 62 

2015; Gou, Santos-Garcés, Høy, Wold, Liland & Fulladosa, 2013; Liu, Qu, Sun, Pu & Zeng, 63 

2013; Pérez-Santaescolástica et al., 2019). Generally, the characteristics of the raw meat, salt 64 
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content, amount and distribution of intramuscular fat (marbling) and dryness of the final dry-65 

cured hams have tremendous effect on the consumer preferences (Hersleth, Lengard, 66 

Verbeke, Guerrero & Næs, 2011; Resano, Sanjuán, Cilla, Roncalés & Albisu, 2010). In this 67 

sense, the recent research in examining dry-cured hams using hyperspectral imaging focused 68 

on monitoring the fundamental salting stages during its production as well as analysing the 69 

chemical composition during processing to correct any possible defects in the final product. 70 

Thus, developing a technology that explores the overall composition of the commercially 71 

packaged sliced ham to provide consumers with verified nutritional facts of the product is of 72 

great interest for the ham industry.  73 

The analysis of the spectral information residing in the hyperspectral images is often not an 74 

easy task and usually requires specific mathematical and statistical modelling for accurate 75 

estimation of the attributes in interest. Thus, for handling the complex spectral data with 76 

collinearity phenomenon among their variables (wavelengths), it is quite important to develop 77 

chemometric calibration models that best fit such spectral data of the samples being analysed 78 

with their reference chemical measurements (Garrido-Novell et al., 2015). However, the 79 

developed models might not be general and must be adjusted to new samples because the 80 

model probably will not work if there is a difference between the samples used in developing 81 

the models and those used in testing or validating the models (Alander, Bochko, 82 

Martinkauppi, Saranwong & Mantere, 2013). The same problem may be encountered if the 83 

regions from which the spectral data were extracted were biased or not representative of the 84 

sample under investigation. In general, to employ spectral techniques for routine quality 85 

evaluation scenarios, it is not enough to develop the calibration models because the 86 

techniques should be also optimised by considering some other factors that affect the quality 87 

of the calibration models and their reliability such as atmospheric conditions, sample 88 

geometry and the way by which the spectral data were extracted from the images.  89 

One of the challenging tasks in processing multi-dimensional hyperspectral images with high 90 

spectral and spatial resolutions is to extract useful information from the vast amount of data 91 

volume of numerous spectral bands (ElMasry et al., 2007). The quality of the acquired 92 

hyperspectral images, the way of extracting information from hyperspectral images, and its 93 

transformation into a useful representation, enables the description of intrinsic characteristics 94 

of the sample in the scene by relevant calibration models (Khan, Thomas & Hardeberg, 95 

2017). When the sample is heterogeneous (e.g. non-uniform meat cuts having different 96 

muscles), a reliable method for selecting representative regions from the sample is a critical 97 
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step before building such calibration models. Because the reference chemical measurements 98 

are not available in each individual pixel in the image, one global reference value for the 99 

whole sample is usually used to represent the content of the whole sample (Garrido-Novell et 100 

al., 2015). Thus, one major problem reported in all attempts at pixel-based prediction using 101 

models developed from hyperspectral images is posed by constructing models from 102 

individual spectra extracted from unrepresentative regions with the attendant risk of 103 

artificiality or overfitting. 104 

In case of packaged dry-cured ham slices, the problem is manifold because the ham slices 105 

contain different muscles (horizontal heterogeneity) with different composition of water, fat, 106 

protein and salt contents (Arnau, Guerrero, Casademont & Gou, 1995; Boadas, Gou, Valero 107 

& Arnau, 2001; Gou et al., 2013). In addition, for marketing reasons, the slices themselves 108 

are arranged inside the package in a telescopic form where the slices are slightly shifted from 109 

the slices underneath (vertical heterogeneity). This means that muscle portions appeared in 110 

the first (upper) slice are not necessarily corresponding to the same muscle portions in the 111 

rest of the slices in the package. This poses a great problem during selecting representative 112 

regions from the hyperspectral images of the dry-cured ham slices because a region of 113 

interest that appears representative in the first slice is entirely different from the rest of the 114 

slices. Previous studies conducted on hyperspectral experiments were performed either on 115 

completely homogeneous ham slices (ElMasry, Iqbal, Sun, Allen & Ward, 2011; Talens, 116 

Mora, Morsy, Barbin, ElMasry & Sun, 2013) or on thick horizontally heterogeneous ham 117 

samples (Garrido-Novell et al., 2015; Gou et al., 2013). In such studies, spectral data were 118 

extracted from the whole surface of the samples. However, when the samples are 119 

heterogeneous in composition in both horizontal and vertical profiles, other spectral selection 120 

options should be examined.  121 

Thus, the main aim of this study was to define the optimal protocol for pretreating 122 

hyperspectral images and selecting hyperspectral data required for developing accurate 123 

predictive models in excessively heterogeneous samples using sliced dry-cured ham as a case 124 

study. Three different options were used for selecting regions of interest (ROI) from the dry-125 

cured ham samples: (1) from the whole packaged slices (WholeROI), (2) from a small 126 

representative area of the packaged ham slices (SmallROI) and (3) from unsliced dry-cured 127 

muscles (MuscleROI). The WholeROI is heterogeneous in both horizontal and vertical 128 

profiles (Fully heterogeneous ROI), SmallROI is heterogeneous in vertical profile (semi-129 

homogeneous ROI) and the MuscleROI is completely homogeneous in the horizontal and 130 
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vertical profiles (Fully homogeneous ROI). The proposed strategy brings a comprehensive 131 

output for deciding the best protocol for analysing the packaged sliced hams that provides the 132 

highest and balanced performance. The possibility of using spectral data extracted from either 133 

semi-homogeneous portions (SmallROI) or unsliced fully-homogeneous cured muscles 134 

(MuscleROI) to build calibration models to predict the composition of the whole package of 135 

the sliced ham was also investigated. 136 

2. MATERIALS AND METHODS 137 

2.1. Dry-cured ham samples 138 

A total of 267 commercial packages of sliced dry-cured ham of approximately 250 g each 139 

were obtained from different producers in Spain. Inside each package, there were 12 slices of 140 

2 mm in thickness arranged one above another in a telescopic form where the slices were 141 

slightly shifted from the slices underneath. Each slice contains Semimembranous (SM), 142 

Semitendinosus (ST) and Biceps femoris (BF) muscles (Muñoz, Gou & Fulladosa, 2019; 143 

Muñoz, Rubio-Celorio, Garcia-Gil, Guàrdia & Fulladosa, 2015). Moreover, additional 52 144 

samples of 25 mm in thickness of fully unsliced dry-cured muscles (SM, ST and BF) were 145 

also collected from different ham producers. 146 

2.2. Acquisition of hyperspectral images 147 

Dry-cured ham was removed from its package, intimately wiped by using tissue paper to 148 

remove surficial water and residues and then immediately scanned as one unit in the 149 

hyperspectral imaging system in the reflectance sensing mode. By using a fully calibrated 150 

hyperspectral imaging system (Resonon Inc., Bozeman, MT, USA), a hyperspectral image 151 

was acquired for the whole content of the ham package (12 slices) at once without separating 152 

the slices from one another. It was important to scan the sample as soon as possible in order 153 

to ensure that the temperature did not significantly affect the sample during the acquisition. 154 

As the number of hydrogen bonds in the water molecules is temperature dependent, it is well 155 

documented (Büning-Pfaue, 2003; Maeda, Ozaki, Tanaka, Hayashi & Kojima, 1995) that 156 

water absorption bands in the NIR region may shift in both peak position and amplitude 157 

according to sample temperature. Thus, to maintain spectral consistency from the ham 158 

samples, the temperatures of the samples were kept around 10ºC during all image 159 

acquisitions.  160 
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The main configuration of the hyperspectral imaging system used in image acquisition is 161 

shown in Fig. 1. The system consisted of a camera, a spectrograph, a conveying platform, a 162 

computer supported with data acquisition software (SpectrononPro, Resonon Inc., Bozeman, 163 

MT, USA). The conveying platform set at a distance of 500 mm from the camera lens was 164 

driven by a stepping motor at a speed of 0.03 m s-1. The field of view of the camera was 165 

illuminated by four 50 W tungsten-halogen lamps. Using this push-broom hyperspectral 166 

imaging system, the spectral images were collected line by line in a wavelength range of 400-167 

1000 nm with 300 wavebands at 2 nm intervals in the spectral domain. The acquired 168 

hyperspectral image is a three-dimensional image called ‘hypercube’ having two spatial 169 

dimensions (x, y) and one spectral dimension (λ).  170 

2.3. Pre-processing of hyperspectral images 171 

To overcome the problem of spectral non-uniformity of the illumination and to make the 172 

acquired images independent from the spectral power distribution of the illumination source 173 

and from the spectral sensitivity of the camera sensor, all acquired images were dynamically 174 

corrected using two additional images. The first image is called a dark image (0% 175 

reflectance) taken when the light lamps were switched off, and the second image called a 176 

white image was taken for a white reference object of 80×200 mm made from Teflon 177 

(SpectrononPro, Resonon Inc., Bozeman, MT, USA) with reflectance values of 99.9% and 178 

using the following formula for correction: 179 

𝑅(𝜆) =
𝑅0(𝜆) − 𝑅𝐷𝑎𝑟𝑘(𝜆)

𝑅𝑊ℎ𝑖𝑡𝑒(𝜆) − 𝑅𝐷𝑎𝑟𝑘(𝜆)
                             (1) 180 

where 𝑅(𝜆), 𝑅0(𝜆), 𝑅𝐷𝑎𝑟𝑘(𝜆)and 𝑅𝑊ℎ𝑖𝑡𝑒(𝜆) are the corrected, raw, dark and white images at 181 

wavelength λ, respectively.  182 

Because poor image quality negatively affects not only the subsequent data processing steps 183 

but also building robust calibration models, noise and specular highlights that may appear in 184 

some spots of the acquired images were completely obviated. Because ham samples are 185 

inhomogeneous objects, the reflectance spectrum at any pixel in the image is a linear sum of 186 

diffuse and specular reflections (Koirala, Pant, Hauta-Kasari & Parkkinen, 2011; Shen & 187 

Zheng, 2013). The diffuse component shows the real reflectance related to the 188 

physicochemical properties of the ham sample in the scene. To keep only the diffuse 189 

reflection, it was necessary to apply a method to remove specular component from the 190 

acquired images (Akashi & Okatani, 2016). As the hyperspectral imaging system used in this 191 

study was not supported with a polarising filter either in front of the camera or at the light 192 
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source, a method based on dichromatic reflection model (Koirala et al., 2011) was utilised for 193 

wiping off the specular components from all pixels of the acquired hyperspectral images 194 

before spectral data being extracted. The dichromatic model applied for a hyperspectral 195 

image with Ω contiguous narrow bands centred at λ1, λ2......, 𝜆Ω, was used to calculate the 196 

reflectance spectrum 𝐼(𝑥) or the response of the camera receptor at a geometric pixel location 197 

(x) as described in equation 2: 198 

𝐼(𝑥) = 𝛼(𝑥) ∫ 𝑅𝑑(𝑥, 𝜆)𝐸(𝜆)𝑆(𝜆) 𝑑𝜆
Ω

+ 𝛽(𝑥)𝑅𝑠(𝑥) ∫ 𝐸(𝜆)𝑆(𝜆) 𝑑𝜆
Ω

                         (2) 199 

where 𝐼(𝑥) is the reflectance vector of image intensity at a pixel (x) having a spatial 200 

coordinates of 𝑥 = {𝑥, 𝑦} representing its 2D location. The factor 𝛼 is a factor for diffuse 201 

reflection and 𝛽 is the weighting specular factor. The terms 𝑅𝑑(𝑥, 𝜆) and 𝑅𝑆(𝑥 ) represent the 202 

diffuse and specular reflectance values at a pixel position (x) and wavelength λ, E(λ) is the 203 

spectral power distribution (SPD) of the illuminant at a wavelength λ and S(λ) is the camera 204 

sensor sensitivity at a wavelength λ.  205 

2.4. Extraction of hyperspectral data 206 

Due to its capability to provide both spatial and spectral information, the hyperspectral 207 

imaging system enables the flexibly to extract spectra of any spatial locations (i.e. regions of 208 

interest) in the sample. Three different options were tested for sampling representative 209 

spectral data. The selection of different regions of interests (ROIs) from the image was a 210 

critical step because it subsequently affects the performance of the developed prediction 211 

models. The first option was to select the whole imaged sample as the main region of interest 212 

from which spectral data were collected (Fully heterogeneous ROI). For isolating the whole 213 

sample from the background (the conveying platform), two grayscale images at bands 550 214 

nm and 690 nm were first picked up from the spectral space and then subtracted from each 215 

other. Because the reflectance values of the conveying platform were consistently stable at 216 

these particular bands as well as throughout the entire spectrum, the subtraction process lead 217 

to zero values at all pixels belonging to the conveying stage. Thus, the resulting grey image 218 

from the subtraction operation was segmented by a simple thresholding method to give a 219 

binary image in which the whole ham sample was appeared as white pixels (ones) 220 

representing the main region of interest (ROI) in a dark background (zeros). The resulting 221 

binary image was then treated by a median filter with a size of 5×5 pixels to fill all holes in 222 

the ROI. This extracted ROI called ‘WholeROI’ was acted as a mask from which spectral 223 
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signatures of all pixels within this area were collected and averaged to represent the spectral 224 

fingerprint of the whole ham sample. 225 

Selecting a small representative portion of the ham sample as the main region of interest was 226 

the second option used in extracting spectral signatures of ham samples. Because the ham 227 

sample contains different muscles (SM, ST and BF) and each of them has its own uniform 228 

characteristics (Muñoz et al., 2019), this option depends on collecting spectral data from only 229 

one portion from each sample instead of the whole ham to guarantee horizontal homogeneity 230 

within the selected area (Semi-Homogeneous ROI). The selected region of interest in this 231 

option was manually selected and called ‘SmallROI’ from which the spectral signature was 232 

extracted as the average spectrum of all pixels within the selected region. To avoid the 233 

problem of vertical heterogeneity between both sides of the same sliced ham sample observed 234 

in the abovementioned two options (WholeROI and SmallROI), the third option depended on 235 

using individual unsliced dry-cured muscles (SM, ST and BF) ) for extracting spectral 236 

signatures as a fully homogeneous ROI. The regions of interest from these unsliced muscles 237 

were individually collected and called ‘MuscleROI’. 238 

2.5. Reference measurements of chemical composition 239 

A total of 319 samples were collected from different regions of interest (178 WholeROIs, 89 240 

SmallROIs and 52 MuscleROIs) from the dry-cured ham samples. After image acquisition, 241 

each sample was individually minced in a mincing machine (La Picadoro, Moulinex, Spain) 242 

at its higher speed for 30 seconds, homogenised and its reference values of fat, water, salt and 243 

protein contents were determined in the laboratory. Total fat content was measured in 244 

duplicate by Soxtec extraction (Soxtec HT 6-1043 and Service Unit 1046). Water content was 245 

determined by the standard drying method; meanwhile protein and salt contents were 246 

determined by FoodScan spectral system (FOSS, Electric A/S, Hillerød, Denmark) in near 247 

infrared transmittance (NIT) mode by AOAC method 2007.04 (Anderson, 2007). 248 

2.6. Data modelling 249 

The average spectra of the ham samples extracted from each region of interest (WholeROI, 250 

SmallROI and MuscleROI) were arranged in three different matrixes (X1, X2 and X3) along 251 

with their reference measurements of the major chemical attributes. The rows in each data 252 

matrix of a specific region of interest (X1, X2 or X3) represent the number of samples 253 

involved and the columns represent the average reflectance magnitudes at 300 wavelengths 254 

(variables or predictors) in the range of 400-1000 nm. Each spectral data matrix (X) of the 255 
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ham samples and their corresponding reference chemical composition (Y) were concatenated 256 

and then divided randomly into two datasets: a training group with 2/3 of the initial data and 257 

a testing group with 1/3 of the initial data. To ensure fair partitioning of the data, t-test was 258 

carried for each group to ensure that there was no significant difference between the two 259 

groups in all examined chemical features. The main aim of data partitioning is to develop 260 

calibration models on the training group and then using such developed models in predicting 261 

the chemical compositions in the testing/prediction group. 262 

Partial least square (PLS) regression models were developed on the training dataset under full 263 

cross validation routine. The PLS Regression is a preferable modeling method in case of 264 

great number of independent variables (300 wavelebands in this case) because it has mean 265 

advantage of combining features from principal component analysis (PCA) and linear 266 

regression. As the spectral data are very noisy and great collinearity exists among the 300 267 

wavebands (predictors) involved in the test, PLS regression is suitable for this kind of data to 268 

predict the dependent variable (the chemical composition of the ham arranged in the vector 269 

Y) from the predictors (spectral data arranged in X). Thus, the PLS applying least square 270 

principle provides a solution to obtain regression coefficients of the predictors and by 271 

decomposing spectral data (X) and the reference chemical values (Y), the PLS modelling 272 

extracts a new set of orthogonal variables called principle components or latent factors (LFs) 273 

that have the best predictive power and removes noises from both of these matrices. The 274 

more LFs included in the model, the more complex the PLS model will be. Therefore, 275 

selecting the ideal number of latent factors in the model is critical for minimising the 276 

expected error and to avoid under-fitting and overfitting of the prediction process. Using a 277 

large number of latent factors may provide good performance in fitting the current attribute, 278 

but it usually leads to overfitting because the model considers significant amount of noise 279 

rather than the real spectral information. On the other hand, the under-fitting means the model 280 

does not have enough information for accurate prediction. In full cross validation using one-281 

leave-out method, one sample was left out at a time and the PLS model was built for the 282 

remaining samples. The model was then used to predict the chemical attribute of the sample 283 

left out, and the same routine was repeated until all samples removed once.  284 

For each chemical constituent, three different PLS regression models were developed for 285 

predicting this composition in the dry-cured ham samples, one PLS model for the data of 286 

each ROI. Besides the number of LFs used in building the model, PLS models were 287 

evaluated in terms of coefficient of determination in calibration (𝑅𝑐
2), coefficient of the 288 
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determination in cross validation (𝑅𝑐𝑣
2 ), the root mean squared error of calibration (RMSEC) 289 

and the root mean squared error under cross validation (RMSECV). Evaluating the model 290 

based on RMSEC only is not advised because a portion of the noise in the reference values is 291 

inadvertently modelled by the estimated parameters. Thus, applying cross-validation during 292 

the development of the calibration model provides a better estimate of its predictive ability. 293 

Moreover, the performance of the three developed PLS models were compared in predicting 294 

the same chemical attributes in an independent dataset (the testing set) in which the models 295 

were evaluated in terms of the coefficient of determination in prediction (𝑅𝑝
2) and the 296 

standard error of prediction (SEP). Fig. 2 shows the full scheme followed in this study to 297 

evaluate the three different models developed from different ROIs (WholeROI, SmallROI 298 

and MuscleROI) in predicting the main chemical composition of the dry-cured hams. 299 

All multivariate analyses for building and testing the calibration models were carried out by 300 

using The Unscrambler v9.7 (CAMO Software AS, OSLO, Norway). The open-source 301 

programming in Matlab® (The Mathworks Inc., Natick, Massachusetts, USA) was used to 302 

develop in-house script for image correction, spectral data extraction and for all subsequent 303 

processing regimes of the hyperspectral images. 304 

3. RESULTS AND DISCUSSION 305 

3.1. Characteristics of the selected regions of interests 306 

As shown in Fig. 3a, the selected area within the fully heterogeneous WholeROI was a 307 

mixture of lean and fat portions (i.e. horizontal heterogeneity). Also, when the sample was 308 

flipped into the other side (Fig. 3d), its appearance was entirely different and the sample 309 

looked full of fat portions compared to the upper side of the sample (i.e. vertical 310 

homogeneity) meaning that the concentrations of the chemical constituents through the 311 

vertical profile of the sample are not evenly distributed between the upper side, the sample 312 

core and the bottom side of the sample. Because the amount of fat and its distribution are 313 

different from both sides of the sample as shown in Fig. 3d, the spectral signatures of both 314 

sides were totally different from each other (Fig. 3e). In essence, when the sample was 315 

homogeneous in the vertical direction, its spectrum should not differ despite the imaged side 316 

of the sample as long as the chemical composition of a ham sample does not change during 317 

acquisition. This was not the case here of the fully heterogeneous WholeROI because the 318 

reflectance magnitudes of the upper side of WholeROI were lower than those of the bottom 319 

side of WholeROI because the second side had more fat that exhibited higher reflectance. 320 
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Because the tested samples are normally images from one side during inspection process, the 321 

spectrum of the upper side of WholeROI was used as the main spectral fingerprint of the 322 

whole ham sample that will be used for the subsequent model development.  323 

As shown in Fig. 3b, the semi-homogeneous SmallROI seems homogeneous from the upper 324 

side; meanwhile the other side of the same region was extremely heterogeneous due to the 325 

presence of fat edges within the selected area (vertical heterogeneity). This was resulted from 326 

the telescopic arrangement of the ham slices in the package. Due to vertical heterogeneity 327 

between both sides of SmallROI, the spectrum of the upper side of SmallROI was also 328 

different from the spectrum of the other bottom of the same region (Fig. 3f). The difference 329 

of reflectance magnitudes between both sides of the SmallROI (Fig. 3f) was much higher 330 

than that observed in both sides of the WholeROI (Fig. 3e).  331 

In case of fully homogeneous MuscleROI, both sides of the selected region were quite 332 

homogeneous (Fig. 3c) and exhibited similar spectral fingerprints as shown in Fig. 3g. The 333 

main variation in the average spectrum between the upper and bottom sides of the 334 

MuscleROI depends only on the relative amount and distribution of intramuscular fat and 335 

lean within the selected area. In this sense, it was assumed that the spectral signatures of the 336 

raw unsliced cured muscles could be used in estimating the major composition of the whole 337 

sliced ham package. However, the pattern of the spectral fingerprints of unsliced muscles 338 

(Fig. 3g) are substantially different from that of the sliced samples (Fig. 3e and Fig. 3f) in 339 

terms of reflectance magnitudes as well as the remarkable absorption peaks.  340 

3.2. Chemical characterization of dry-cured ham samples 341 

Table 1 shows the proximate composition from different regions of interest (WholeROI, 342 

SmallROI and MuscleROI) of dry-cured ham samples. As shown in Table 1, the salt content 343 

in the three different ROIs had consistent values in all ROIs with average values of 5.64 ± 344 

0.94%, 5.24 ± 0.38% and 4.67 ± 0.50% for WholeROI, SmallROI and MuscleROI, 345 

respectively. For fat, water and protein contents in the tested ROIs, there was a significant 346 

difference (𝑝 < 0.05) in the values of these constituents among the extracted ROIs. The 347 

average fat contents for the three ROIs were 8.55 ± 3.43, 6.77 ± 3.60 and 7.04 ± 4.35% and 348 

the average water contents were 50.78 ± 3.43, 53.37 ± 3.64 and 48.09 ± 4.14% and the 349 

average protein contents were 32.65 ± 2.51, 30.45 ± 2.39 and 38.23 ± 5.82% for WholeROI, 350 

SmallROI and MuscleROI, respectively. 351 
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Generally, the composition estimates of the ham samples in this study are in agreement with 352 

the existing literature (Bou, Llauger, Arnau & Fulladosa, 2018; Parolari, Aguzzoni & 353 

Toscani, 2016) for standard composition of the dry-cured hams. In general, the wide range of 354 

fat, water and protein contents found in the examined samples implies the possibility of 355 

obtaining good prediction models of these attributes using the proposed multivariate analysis. 356 

Because it is more desirable to make interpolations rather than extrapolations when making 357 

predictions from a calibration model, the range of concentrations in the calibration samples 358 

should have a fairly uniform coverage across the range of interest.  359 

Table 1 Proximate composition (%) of the major constituents of the dry-cured hams 360 

determined from different regions of interest (WholeROI, SmallROI and MuscleROI). 361 

ROI Attribute Min Max Mean* ± SD 

WholeROI 

𝑛 = 178 

Fat   3.10 18.70   8.55a ± 3.43 

Water 41.35 57.58 50.78a ± 3.43 

Protein 26.25 38.59 32.65a ± 2.51 

Salt   3.95   5.98   5.64a ± 0.94 

SmallROI 

𝑛 = 89 

Fat   2.16 19.44   6.77b ± 3.60 

Water 40.98 59.06 53.37b ± 3.64 

Protein 25.28 37.22 30.45b ± 2.39 

Salt   3.99   6.24   5.24b ± 0.38 

MuscleROI 

𝑛 = 52 

Fat   1.48 20.52   7.04b ± 4.35 

Water 36.61 54.29 48.09c ± 4.14 

Protein 27.76 50.42 38.23c ± 5.82 

Salt   3.38   5.87   4.67c ± 0.50 

* Different subscripted letters beside the mean value of a constituent indicate significant difference 362 
among the regions of interest (𝑝 < 0.05). SD: standard deviation. 363 

 364 

 365 
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3.3. Effect of specularity correction 366 

The quality of the acquired hyperspectral images, the way of extracting spectral fingerprints 367 

from the images and the methods of data modelling have substantial impacts on the outcomes 368 

of the subsequent data analyses. Because the hyperspectral images were acquired in the line-369 

scan reflectance mode at numerous contiguous wavelengths within the visible and NIR 370 

regions (400-1000 nm) of the electromagnetic spectrum, the hyperspectral images came also 371 

with a phenomenon of specular highlights in which some zones in the acquired images 372 

exhibit extreme reflectance values due to the relative arrangement between the illumination 373 

units and the ham samples (Khan et al., 2017; Washburn, Stormo, Skjelvareid & Heia, 374 

2017);. The assumption of ignoring this specularity problem (where it clearly exists) may 375 

reduce the robustness of the developed models (Khan et al., 2017). Therefore, it was 376 

extremely important to correct the acquired images for the specularity highlights. According 377 

to the process used for specularity correction routine implemented in this study, all pixels 378 

having extreme reflectance values in all wavelengths either in the ham sample itself or even 379 

in the background area (the conveying stage) were treated to exclude the specular component 380 

from the image and keep only the diffuse component. Consequently, all spectral data 381 

extracted from any regions of interest in the treated hyperspectral images will be specular-382 

free and contain only the diffuse reflectance values. In fact, this step was substantially useful 383 

for the next processing step because extreme values can lead to inaccurate results, false 384 

segmentations, deceptive object measurements, recognition errors or even calculation 385 

overflow. Fig. 4 shows an example of a hyperspectral image with this correction step, and it 386 

also illustrates the resulting spectra for all pixels in the image after being corrected. 387 

Because it is not possible to visualise the hyperspectral image in its current 3-D hypercube, a 388 

pseudo-colour image could be created to see the effect of the specular removal method on the 389 

overall appearance of the hyperspectral image. The pseudo-colour image could be built by 390 

gathering three different bands from the hyperspectral images across the spectrum to 391 

represent the red, green and blue channels. In the example shown in Fig. 4, the pseudo-colour 392 

image rendered from a hyperspectral image was formed by concatenating three bands at 640, 393 

550 and 460 nm. In general, the specular regions appeared in the image are characterised by 394 

their maximum intensity along all wavebands in the spectrum compared to the other normal 395 

(diffuse) regions. Thus, specular zones appeared in the pseudo-colour image shown in Fig. 4a 396 

are characterised by extreme reflectance intensities. The correction process was able to 397 

identify those pixels and isolate them as shown in the binary image depicted in Fig. 4b. It can 398 
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be seen that the process of removing specularity highlighting zones from hyperspectral 399 

images helps in removing all extreme values of any pixels in the image and retain only the 400 

useful diffuse reflectance as shown in Fig. 4c. The difference in spectral fingerprints of all 401 

pixels in the image before and after specular correction could be visualised as shown in Fig. 402 

4d and Fig. 4e, respectively. It is quite clear to notice that the specular problem appeared in 403 

some zones of the original image shown in Fig. 4 (as indicated by the arrows) were 404 

completely remedied, leaving diffuse only reflections. Instead of deleting specular pixels 405 

from the acquired raw hyperspectral images or even treating them as outliers, all pixels with 406 

peculiar fingerprints were corrected by keeping only their diffuse reflectance values and get 407 

rid of their specular components as shown in Fig. 4e. 408 

3.4. Spectral features of ham samples 409 

The specular correction step resulted in the separation of the specular component at every 410 

single pixel position to get only the diffuse component. The corrected spectra of any 411 

individual pixels in the hyperspectral image could be illustrated as a plot between 412 

wavelengths and the corresponding magnitudes of reflectance at the spatial location of these 413 

pixels. Thus, Fig. 5a shows the spectral signatures of some individual pixels before and after 414 

specular correction. It is very obvious to notice that the applied specular correction process 415 

preserved the shape and spectral patterns of these pixels by keeping the location of the 416 

absorption bands in the spectrum without any spatial shift. The specular correction operation 417 

only reduces the reflectance magnitudes for those pixels that exhibited specularity due to 418 

removing the specular components from such pixels. Once the specular correction was 419 

performed over all pixels in the acquired hyperspectral image, the average spectrum of any 420 

group of pixels (regions of interested) could be easily extracted for further investigations. 421 

Fig. 5b shows the raw average diffuse spectra of intermuscular fat, intramuscular fat and lean 422 

portions as the major areas appeared in the hyperspectral image of the dry-cured hams. In 423 

addition, the average spectrum of the whole ham sample (intermuscular fat + intramuscular 424 

fat + lean pixels) was also illustrated in the same figure.  425 

The average spectrum of all pixels belonging to one ham sample could be considered as the 426 

unique spectral signature of such a sample that depends basically on the physicochemical 427 

properties of this sample. The remarkable absorption bands noticed in all spectra are ascribed 428 

to some functional chemical groups due to bending and combination motions of different 429 

molecules (Morsy & Sun, 2013). In the visible region of the spectrum (400-680 nm), the 430 
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absorption bands are mostly related to different pigments presented in the sample. Thus, in all 431 

spectra illustrated in Fig. 5b, the sharp absorption band in the blue region of the spectrum at 432 

420 nm was related to Soret absorption due to erythrocyte haemoglobin or deoxymyoglobin, 433 

and the bands at 550 and 580 nm were associated with myoglobin or oxymyoglobin species 434 

(Cozzolino, Murray, Scaife & Paterson, 2000; Ortiz-Somovilla, España-España, Gaitán-435 

Jurado, Pérez-Aparicio & De Pedro-Sanz, 2007). Those bands in the visible range of the 436 

spectrum can be used efficiently for colour variation among ham samples. However, samples 437 

having the same colour cannot be discriminated only using the bands in the visible range 438 

only. In the NIR range, a weak band at 760 nm was from the third overtone of O-H vibration 439 

but it was very difficult to discern and an absorption band at 978 nm related to OH second 440 

stretching overtone is attributed to water content in the sample (Cozzolino, De Mattos & 441 

Martins, 2002; Ortiz-Somovilla et al., 2007). Therefore, this particular absorption band was 442 

clear in the lean spectrum compared to the spectra extracted from fat portions as lean portion 443 

contains more water content than fat portions. On the contrary, the absorption band at 930 nm 444 

related to the CH third stretching overtones (ElMasry, Sun & Allen, 2011; Osborne, Fearn & 445 

Hindle, 1993) is ascribed to the fat content in the ham sample. Thus, this specific band was 446 

very sharp in the spectra extracted from pure intermuscular or intramuscular fat portions, but 447 

it was not noticeable in the spectrum of the pure lean portion in the sample. 448 

Due to averaging the spectra of all pixels within a region of interest in the ham image (i.e. 449 

pixels from fat and lean portions altogether), some of the remarkable absorption bands were 450 

negatively affected. For instance, the sharp absorption bands appeared in the spectra of both 451 

intermuscular and intramuscular fat portions especially at 420 and 930 nm became either very 452 

weak or completely disappeared in the average spectrum of the sample as shown in Fig. 5b. 453 

This problem depends basically on the number of pixels of a particular component within the 454 

region of interest. For example, when the number of lean pixels within a region of interest 455 

was significantly higher than the number of fat pixels, the remarkable absorption bands of fat 456 

are washed out from the average spectrum and may completely disappear. The average 457 

spectrum of the ham sample drawn as a solid bold line in Fig. 5b represents this case, in 458 

which the absorption bands at 420 nm and 930 nm became very weak although the ham 459 

sample already contains fat pixels. 460 

 461 

 462 
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3.5. Effect of hyperspectral data selection on the prediction of major 463 

constituents in dry-cured ham 464 

Besides being redundant and collinear at contiguous wavebands, spectral data extracted from 465 

ham samples are very complex to interpret and much care should be taken during choosing 466 

the right multivariate modelling routines. In this study, PLS regression was chosen to model 467 

spectral data of the dry-cured samples with their reference chemical composition. The 468 

spectral data (X1, X2 and X3) being modelled were extracted from either the whole sliced 469 

ham sample (Fully heterogeneous WholeROI), from a small region of sliced ham sample 470 

(Semi-homogeneous SmallROI) or from unsliced cured muscles (Fully homogeneous 471 

MuscleROI). The first two data sets (X1 and X2) were extracted directly from sliced ham 472 

samples without separating the slices from each other; therefore, both sides of a sample were 473 

substantially heterogeneous (Fig. 3). Meanwhile, the third dataset (X3) was built from 474 

spectral data extracted from unsliced ham muscles in which both sides of the sample were 475 

vertically homogeneous. A separate PLS regression model was developed under cross 476 

validation from each dataset in the training samples and then tested in independent validation 477 

samples. Table 2 demonstrates the performance of the PLS regression models (Model I, 478 

Model II and Model III) developed in the training samples for different hyperspectral data 479 

extracted from different regions of interest (WholeROI, SmallROI and MuscleROI) in 480 

predicting major constituents (fat, water, salt and protein) in the dry-cured ham samples for 481 

calibration and cross validation conditions. The results revealed that the worst PLS model 482 

was obtained by using spectral data extracted from semi-homogeneous regions (Model II) 483 

with coefficient of determination under cross validation of 0.72, 0.71, 0.54 and 0.58 for the 484 

prediction of fat, water, salt and protein, respectively. This could be ascribed to the great 485 

variability between the two sides of the small ROIs in terms of spectral signatures and 486 

reference chemical composition. 487 

The performance of the PLS models developed from either large heterogeneous regions 488 

(Model I) or from fully homogenous muscles (Model III) was comparable to each other. The 489 

coefficient of determination under cross validation (𝑅𝑐𝑣
2 ) in Model I and Model III was 0.84 490 

and 0.92 for fat, 0.89 and 0.88 for water, 0.83 and 0.83 for salt and 0.74 and 0.88 for protein, 491 

respectively. These results are in agreement with those reported by Gou et al. (2013) and for 492 

predicting fat, water and salt in dry-cured ham using a hyperspectral imaging system 493 

employed in the interactance mode and with Garrido-Novell et al. (2015) for predicting salt 494 
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in dry-cured ham using a traditional line-scan hyperspectral imaging system in reflectance 495 

mode. In similar studies, ElMasry et al. (2013), Talens et al. (2013) and Iqbal et al. (2013) 496 

predicted the major chemical constituents (fat, water and protein) as well as colour and pH of 497 

sliced cooked hams with a degree of accuracy similar to that reported in this study. In the 498 

current study, the number of latent factors was higher in the models developed using large 499 

heterogeneous regions (WholeROI) compared to those models developed using the unsliced 500 

muscles (MuscleROI) for predicting water, salt and protein contents. 501 

Table 2 Performance statistics of the PLS regression models (Model I, Model II and Model 502 

III) developed in distinct training dataset for hyperspectral data from different regions on 503 

interests (WholeROI, SmallROI and MuscleROI) in predicting major constituents in dry-504 

cured ham samples. 505 

 

 

 

Attribute 

WholeROI ‘X1’ (n=119) 

Model I 

SmallROI ‘X2’(n=60) 

Model II 

MuscleROI ‘X3’ (n=34) 

Model III 

𝑅𝑐
2 𝑅𝑐𝑣

2  LF 𝑅𝑐
2 𝑅𝑐𝑣

2  LF 𝑅𝑐
2 𝑅𝑐𝑣

2  LF 

Fat 0.87 0.84 7 0.81 0.72 7 0.97 0.92 8 

Water 0.93 0.89 12 0.80 0.71 7 0.96 0.88 9 

Salt 0.92 0.83 15 0.85 0.54 12 0.97 0.83 9 

Protein 0.80 0.74 9 0.65 0.58 4 0.94 0.88 6 

 506 

The main criterion usually used by chemometricians to evaluate the overall accuracy of a 507 

certain multivariate model in predicting a specific attribute is usually identified as the 508 

capacity of this model for providing good prediction in an independent dataset that has not 509 

been 'seen' by the model during the training step. The validation step of the developed 510 

calibration model is critically important before implementing such a model for routine assays. 511 

Thus, the purpose of model validation is to determine the reproducibility of the developed 512 

calibration model and its long-term ruggedness. Accordingly, the three models developed 513 

from different hyperspectral data extracted from different regions of interest were tested in 514 

predicting the same chemical constituents (fat, water, salt and protein) in an independent 515 

validation dataset and the performance statistics of the three models are tabulated in Table 3. 516 

Similar to the results obtained in the calibration and cross validation conditions, the 517 
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performance statistics of the developed models in the validation data set indicated that the 518 

PLS model built using spectral data of semi-heterogeneous regions of interest (SmallROI) 519 

was the worst model compared to the other two models developed using either large 520 

heterogeneous regions (WholeROI) or unsliced fully-homogenous muscles (MuscleROI). 521 

Table 3 Performance statistics of the PLS regression models (Model I, Model II and Model 522 

III) in the validation dataset developed by different spectral data extracted from different 523 

regions of interest (WholeROI, SmallROI and MuscleROI) in predicting major constituents 524 

in dry-cured ham samples. 525 

 

Attribute 

WholeROI ‘X1’ (n=59) 

Model I 

SmallROI ‘X2’(n=29) 

Model II 

MuscleROI ‘X3’ (n=18) 

Model III 

𝑹𝒑
𝟐 𝑺𝑬𝑷(%) LF 𝑹𝒑

𝟐 𝑺𝑬𝑷(%) LF 𝑹𝒑
𝟐 𝑺𝑬𝑷(%) LF 

Fat 0.85 1.43 7 0.58 1.60 7 0.96 1.18 8 

Water 0.89 1.21 12 0.67 2.57 7 0.77 2.91 9 

Salt 0.83 0.51 15 0.49 0.26 12 0.35 0.58 9 

Protein 0.63 1.57 9 0.33 1.94 4 0.87 2.73 6 

The difference in the model performance might be ascribed to the number of samples used 526 

for each kind of ROIs (Tange et al., 2017). During the experiments of this study, the 527 

WholeROI samples were scanned and analysed in two rounds of 𝑛 = 89 samples each. To 528 

investigate the influence of sample size, the models developed from these 89 samples were 529 

compared with those models developed from SmallROI data (𝑛 = 89) and MuscelROI data 530 

(𝑛 = 52). In addition, when models developed from all WholeROI samples (𝑛 = 178) were 531 

compared with those ones developed from the SmallROIs (𝑛 = 89) and MuscelROIs (𝑛 =532 

52), the results did not change. This indicates the consistency of the obtained results of the 533 

examined samples. In general, the PLS models developed for predicting fat content using 534 

spectral data extracted from unsliced fully-homogeneous muscles (MuscleROI) was 535 

comparable with that one developed from the whole sliced ham sample (WholeROI) when 536 

tested in the independent validation datasets with coefficient of determination in prediction 537 

(𝑅𝑝
2), standard error in prediction (SEP) and number of latent factors of 0.96, 1.18% and 8, 538 

respectively. However, the PLS models developed using WholeROI in predicting water and 539 
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salt contents were much better than those ones developed from MuscleROI with higher 540 

coefficient of determination in prediction (𝑅𝑝
2), and lower standard error in prediction (SEP). 541 

These results indicated that to analyse a full package of sliced dry-cured ham directly using a 542 

hyperspectral imaging system, it is advised to use the whole sliced ham (WholeROI) as the 543 

main region of interest from which the spectral data should be extracted. By this way, the 544 

spectral fingerprints of all portions of the ham sample will have contributions on the average 545 

spectrum of the analysed sliced ham sample. These results are comparable with those 546 

reported by Liu et al. (2013) for predicting water and salt contents in different cuts of fresh 547 

pork at different stages in the salting process with coefficients of determination of 0.9 and 0.9 548 

and SEPs of 0.682 for water and 0.007 for salt. Fig. 6 shows the measured vs. predicted 549 

values of the four constituents (fat, water, salt and protein) in the validation data set using 550 

PLS model (Model I) developed from spectral data extracted from the whole sliced hams 551 

(WholeROI). 552 

The point that should be further investigated now in this context is the possibility of using the 553 

model developed from semi-homogeneous regions (SmallROI) and from unsliced fully-554 

homogenous cured muscles (MuscleROI) to predict the composition of the fully-555 

heterogeneous packages of the whole sliced ham. Therefore, the PLS calibration models 556 

developed from SmallROI data (Model II) and from MuscleROI data (Model III) were used 557 

to predict fat, water, salt and protein contents of the WholeROI samples by considering these 558 

samples as a validation dataset for these models. As expected, Model II developed from semi-559 

homogeneous regions was not accurate in predicting fat, water, salt and protein contents in 560 

the WholeROI samples. Although PLS models developed from MuscleROI was really 561 

efficient in predicting major compositions in the homogeneous unsliced muscles, the 562 

performance of these models was rather poor in predicting fat, water, salt and protein 563 

contents in the fully heterogeneous whole sliced ham packages with coefficient of 564 

determination of 0.29, 0.52, 0.37 and 0.36 and standard error of prediction of 4.01%, 6.19%, 565 

0.74 and 2.58%, respectively (Table 4). The bad behaviour of these models could be 566 

attributed to the difference in scattering patterns between the unsliced and sliced hams 567 

leading to different spectral signatures between the unsliced (MuscleROI) and sliced 568 

(WholeROI) samples as shown in Fig. 2g and Fig. 2e, respectively. The obtained results 569 

revealed that the models developed using spectral data from homogenous, unsliced muscles 570 

(Model III) cannot be used for the prediction of the main composition of the packaged sliced 571 
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hams due to difference in scattering pattern and difference in compositional heterogeneity 572 

between both types of datasets. 573 

 574 

Table 4 Performance statistics of the PLS regression models developed from semi- 575 

homogeneous regions (SmallROI) and from fully homogeneous, unsliced cured muscles 576 

(MuscleROI) data to predict the composition of the fully-heterogeneous packages of the 577 

sliced ham. 578 

Chemical attribute 

SmallROI Model  

(Model II) 

 MuscleROI Model  

(Model III) 

𝑅𝑝
2 SEP (%)  𝑅𝑝

2 SEP (%) 

Fat 0.36 2.81  0.29 4.01 

Water 0.42 2.70  0.52 6.19 

Salt 0.05 1.12  0.37 0.74 

Protein 0.53 1.77  0.36 2.58 

 579 

3.6. Mapping and identification of the ham samples 580 

Due to the availability of both spatial and spectral information in the image, the power of the 581 

hyperspectral imaging could be extended to visualise the distribution of certain constituent by 582 

showing its concentrations and distribution in all spots of the ham samples. This is 583 

mathematically performed by applying the PLS models in every single pixels in the image 584 

resulting in a distribution map called the chemical image. The major problem found in all 585 

trails of pixel-based prediction using the PLS prediction models developed from spectral data 586 

of hyperspectral images of meat and meat products is posed by developing such models from 587 

the mean spectra of the whole sample along with its mean reference chemicagl measurements 588 

(Garrido-Novell et al., 2015) because it is practically impossible to have reference 589 

determinations at the pixel level. The chemical images are pseudo-colour images in which 590 

each colour corresponds to a certain concentration of the mapped constituent. In the presented 591 

chemical images shown in Fig. 7 and Fig. 8, the blue colour indicates low concentrations and 592 

red colour denotes high concentrations of the constituent. Based on the number of calibration 593 

models developed from the same dataset, a number of chemical images are expected to be 594 

generated. In this regards, the PLS models developed using the whole sliced ham samples 595 

was used to produce chemical images to show the distribution of fat, water, salt and protein 596 
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contents in the whole sliced dry-cured ham samples. Because there was an independent PLS 597 

model for each constituent, four different chemical images were generated for each ham 598 

sample showing their spatial distributions throughout the whole sample as shown in Fig. 7. 599 

As the distributions of the constituents are visualised in all pixels within a ham sample to 600 

show the difference from portion to portion in the same image, it was also possible to 601 

demonstrate the difference among samples having different concentrations of these 602 

constituents. As demonstrated in Fig. 8, it is possible to recognise ham samples with low, 603 

intermediate and high concentrations of a certain constituent. The arrow drawn at the top of 604 

the figure indicates the direction of increasing the content of the estimated constituents in the 605 

ham samples. Accordingly, the chemical images shown in the left-hand side in Fig. 8 606 

represent ham samples with low contents of fat, water, salt and protein contents compared to 607 

the chemical images appeared in the right-hand side of Fig. 8 that show ham samples having 608 

high contents of these constituents. 609 

It is quite important to emphasize that all examined samples were commercial ham samples 610 

that are available in the market as final products from different producers without any prior 611 

treatments practiced in the laboratory. Also, the telescopic arrangement of the slices inside 612 

the scanned ham sample may explain why the chemical images shown in Fig. 7 and Fig. 8 613 

looked inhomogeneous in the constituents appeared in the chemical images compared to 614 

those ones illustrated by Liu et al (2013) and Liu et al. (2014) who analysed dry-cured ham 615 

samples at different periods after being salted in the lab and scanned these samples directly 616 

after preparation. In essence, the visualised forms of the distribution maps of the essential 617 

chemical constituents are very important for the developers and manufacturers to take the 618 

suitable action during ham processing to add better control of salting and drying processes 619 

during processing and production. This great capacity of hyperspectral image could not have 620 

been achieved by using either the point-scan spectrometer or traditional colour imaging 621 

alone. 622 

4. CONCLUSION 623 

The proposed models were extensively tested using three options of data extraction with 624 

promising performance; in which the highest performance was achieved by using the data 625 

extracted from the whole ham sample (WholeROI). The results revealed that when packed 626 

dry-cured ham slices are heterogeneous in the horizontal and vertical profiles, the size of the 627 

selected region of interest (ROI) should include the whole ham slices for better prediction 628 
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accuracy. Based on the good predictability of the multivariate models developed in this study, 629 

the practical applications of hyperspectral imaging for ham composition authentication seems 630 

to be possible especially for the retailing industry to ensure the compliance with the 631 

information reported in the produced packages. Besides being non-destructive and rapid 632 

technique, the application of four different predictive models (one for each chemical 633 

constituent) will help more in understanding the progress of certain process during ham 634 

processing and to guarantee the quality of the final product. The results could be also 635 

examined under important wavelengths instead of the whole spectral range by excluding 636 

redundant wavelengths that do not carry reliable spectral information. By selecting the proper 637 

wavelengths and in the scope of the promising results obtained, this study opens an 638 

opportunity to develop a simple state-of-the art spectral imaging module supported with 639 

relevant machine learning tool to contribute in the progression of non-invasive quality 640 

evolution of raw and processed meat products in real-time applications. Such a module can 641 

be implemented across every meat processing stages from preparation until counter. 642 
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Figure Captions 807 

 808 

Fig. 1 Configuration of the lab-based spectral imaging system used in acquiring spectral 809 

images of ham samples in the NIR spectral range of 400-1000 nm. 810 

Fig. 2 Procedure of predicting major chemical composition of dry-cured hams using spectra 811 

extracted from different regions of interest. (a) locating the main region of interest in 812 

the original images, (b) isolating different regions and extracting spectral data from 813 

these particular regions, (c) arranging spectral data for each ROI in a separate data 814 

matrix (X1, X2 & X3) along with their corresponding reference chemical 815 

measurements (Y), (d) development of PLS regression models for the data of each 816 

ROI, (e) plotting the measured vs. predicted values of each chemical attribute 817 

resulting from the PLS model for each ROI and (f) evaluating the performance of the 818 

three PLS models in predicting the chemical attributes under investigation for 819 

choosing the best model. 820 

Fig. 3 Regions of interests from hyperspectral images of dry cured-ham samples. (a) 821 

‘WholeROI’ includes the whole area of the sample (Fully heterogeneous ROI), (b) 822 

‘SmallROI’ including a small homogeneous lean region in one side but homogeneous 823 

fat from the other side (Semi-homogeneous ROI), (c) ‘MuscleROI’ includes a 824 

selected lean region in both sides of unsliced muscles (Fully homogeneous ROI), (d) 825 

both sides of the selected regions of interest and (e-g) spectral signatures of both sides 826 

of ROIs in the three cases (‘WholeROI’, ‘SmallROI’ and ‘MuscleROI’). 827 

Fig. 4 Removal of specular zones from hyperspectral images. (a) Pseudo-colour image 828 

rendered at 640 nm, 550 nm and 460 nm from the original hyperspectral image having 829 

a specular zone marked with yellow arrows, (b) locating specular zones  in the raw 830 

image (in white pixels), (c) pseudo-colour image of the hyperspectral image after 831 

specularity removal treatment in which all specular zones were significantly 832 

mitigated, (d) 3D visualization of the spectral fingerprints of all pixels in the original 833 

hyperspectral image with extreme reflectance values at the specular zones marked 834 

with red arrows and (e) spectral fingerprints of the same image after specularity 835 

removal treatment (the extreme reflectance value were mediated in this treated 836 

image). 837 

 838 
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Fig. 5 (a) Spectral signatures of some individual lean pixels before and after specular 839 

correction that significantly decreases the magnitudes of reflectance of the pixels 840 

throughout the spectrum, (b) Corrected average spectra of different regions 841 

(intermuscular fat, intramuscular fat and lean) in the hyperspectral image of a dry-842 

cured ham sample. The solid bold line stands for the overall mean spectrum of the 843 

whole ham sample including pixels from all regions (intermuscular fat + 844 

intramuscular fat + lean pixels). Arrows point to the remarkable absorption bands 845 

(420, 550, 580, 930 and 970 nm) of some essential functional chemical groups related 846 

to different pigment derivatives, fat and water contents in the ham sample. 847 

Fig. 6 Measured vs. predicted values of (a) fat, (b) water, (c) salt and (d) protein contents in 848 

the validation dataset (𝑛 = 59) resulting from the PLS calibration models (Model I) 849 

developed from spectral data extracted from the whole sliced hams (WholeROI). 850 

Fig. 7 Chemical images from two independent samples produced with the aid of Models I. 851 

The values written at the bottom of each chemical image designate the average 852 

measured value of a constituent in the whole sliced ham.  853 

Fig. 8 Chemical images produced from four different PLS models developed for predicting 854 

fat, water, salt and protein contents in packages of sliced ham samples having 855 

different contents of these attributes. The arrow at the top of the figure indicates the 856 

direction of increasing the concentration of the constituents in the sliced ham samples. 857 
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