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Essential oils (EOs) are promising alternatives to chemotherapeutics in animal production

due to their immunostimulant, antimicrobial, and antioxidant properties, without

associated environmental or hazardous side effects. In the present study, the modulation

of the transcriptional immune response (microarray analysis) and microbiota [16S

Ribosomal RNA (rRNA) sequencing] in the intestine of the euryhaline fish gilthead

seabream (Sparus aurata) fed a dietary supplementation of garlic, carvacrol, and thymol

EOs was evaluated. The transcriptomic functional analysis showed the regulation of

genes related to processes of proteolysis and inflammatory modulation, immunity,

transport and secretion, response to cyclic compounds, symbiosis, and RNAmetabolism

in fish fed the EOs-supplemented diet. Particularly, the activation of leukocytes, such

as acidophilic granulocytes, was suggested to be the primary actors of the innate

immune response promoted by the tested functional feed additive in the gut. Fish

growth performance and gut microbiota alpha diversity indices were not affected,

while dietary EOs promoted alterations in bacterial abundances in terms of phylum,

class, and genus. Subtle, but significant alterations in microbiota composition, such

as the decrease in Bacteroidia and Clostridia classes, were suggested to participate

in the modulation of the intestine transcriptional immune profile observed in fish fed the

EOs diet. Moreover, regarding microbiota functionality, increased bacterial sequences

associated with glutathione and lipid metabolisms, among others, detected in fish fed

the EOs supported the metabolic alterations suggested to potentially affect the observed
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FIGURE 6 | Comparison of the relative abundance of PICRUSt generated

functions profile in the anterior (A,B) and posterior (C,D) intestinal microbiota

of gilthead seabream (S. aurata) fed the control and the garlic, carvacrol, and

thymol essential oils (EOs)-supplemented diet. Box plots show the relative

abundances of significant changes in level 2 Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways in the anterior (A) and posterior (C) intestinal

microbiota. Box plot central lines indicate the median and star symbols

indicate the mean of the data. Significant KEGG pathways at level 3 pathways

in the anterior (B) and posterior (D) intestinal microbiota, by ANOVA with a

post-hoc Tukey–Kramer multiple-comparison test (p < 0.05).

thus, protecting not only tissues from damage at inflammatory
sites during stress or infection, but also the neutrophil itself
(21). SERPINB1 also limits the activity of inflammatory caspases
during inflammation by suppressing their caspase-recruitment
domain oligomerization and enzymatic activation, representing
an important regulator of tissue inflammation (22). Under
current experimental conditions, these results may indicate
a well-balanced intestinal immunity, where both immune
effector cells activation and an anti-inflammatory response
were promoted.

The expression of several genes associated with adaptive
immunity was modulated by the EOs-supplemented diet as well.
For instance, perforin-1 (prf1) was upregulated in the intestine
of fish fed the EOs-diet. Perforin is a pore-forming cytolytic
protein found in the granules of cytotoxic T lymphocytes (CTLs)
and natural killer (NK) cells, playing a key role in killing other
cells that are recognized as non-self by the immune system
(23). In fish, studies have reported the upregulation of prf1 in
response to viral stimulation (24). Furthermore, the upregulation
of adenosine deaminase (ada) was also promoted by the tested
EOs-supplemented diet. In particular, ada acts as a positive
regulator of T-cell co-activation, participates in the regulation
of lymphocyte-epithelial cell adhesion, and enhances dendritic
cell immunogenicity (25, 26). Additionally, cd9 and cd81 were
both upregulated in the fish fed the EOs-supplemented diet.
These genes encode tetraspanins, key players in the processes
of adhesion, extravasation, and recruitment of leukocytes into
inflammation sites, regulating several steps of the immune
response (27). CD9 and CD81 were found to be extensively
present in Atlantic salmon (Salmo salar) IgM+ B-cells (28). Last
but not least, tetraspanins were considered to be required for
bacteria adhesion to the epithelial cells (29); which may be in
agreement with the presence of both DEGs in the symbiosis-
related processes from our transcriptional analysis, as discussed
below. Therefore, the regulation of genes involved in both B
and T lymphocytes activity may suggest the stimulation of not
only the innate, but also the adaptive immune response as well,
although further research is needed to confirm this hypothesis.

The proportion of up to downregulated genes related to an
immune response was not as marked as the observed for the
remaining biological processes activated by the inclusion of EOs
in diet, indicating an effective and balanced proinflammatory and
anti-inflammatory regulation of the induced immune response,
as previously suggested. Nonetheless, it is legitimate to assume
that due to its immunostimulatory characteristics, the EOs-based
functional feed might have an impact on the composition of
the gilthead seabream intestinal microbiota, which in turn may
also have played a critical role in mediating the abovementioned
immune response. In fact, numerous studies have indicated
that diet is an important factor in the modulation of the
gut microbiome composition in vertebrates, dictating also the
role of that microbiome in fish health status (2). Regarding
the EOs tested, garlic (4), carvacrol, and/or thymol (5) were
previously reported to modulate fish microbiota composition,
exerting beneficial effects (30), and improving significantly its
resistance to Vibrio anguillarum after intestinal infection and
stress challenge (31). The administration of similar functional
diets with immunostimulatory and/or antimicrobial properties
have been also reported to reduce gut microbial diversity (30);
however, in our study, alpha diversity was not significantly
altered by the dietary EOs, which may be associated with the
heterogeneity of analyzed samples, as observed in CV values
for the Chao1 index. Under present experimental conditions,
the only phylum that showed significant differences among
dietary treatments was the Spirochaetes. This phylum contains
important gut pathogenic species, such as Brachyspira species,
for livestock and humans (32). Nonetheless, the impact of
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this phylum modulation upon gilthead seabream intestine
homeostasis is not clear yet, and further studies should be
performed in order to assess whichmembers of the phylum could
be participating in the immune response observed.

Effect of Garlic, Carvacrol, and Thymol
EOs Additive on Immune-Related
Transport and Secretion Processes
The obtained immune-related biological processes were observed
to share 77% of DEGs with the transport and secretion category,
which genes were observed to be positively affected, in its
majority, by the dietary EOs. The substantial amount of DEGs
shared among the two categories clearly indicates a common role
in the overall observed transcriptional response. In this sense,
similar vesicle-mediated transport processes associated with
active biogenesis and neutrophil-mediated immune response
were observed in the gills of gilthead seabream fed the same EOs-
supplemented diet (9), which seemed to indicate a similar action
of this functional additive on different mucosal tissues. Epithelial
cells are also directly involved in the initiation of the immune
response, such as the one mediated by neutrophils. Accordingly,
several genes encoding RAS-related GTPases (nras, rab1a,
rab5a, rab10, and arhgap1), recognized as leading regulators
of membrane trafficking directing immunity and inflammation
cellular responses (33), were upregulated in the intestine of fish
fed the functional feed additive. On the other hand, the hypoxia
inducible factor 1 subunit alpha (hif1a) was downregulated in the
fish fed the EOs-supplemented diet. HIF1a functions as a master
transcriptional regulator of the adaptive response to hypoxia
and it was observed to be transcriptionally induced by ROS
through NF-kB (34), contributing in the intestinal mucosa to
inflammatory resolution. The decrease in hif1a expression by
the EOs dietary administration corroborated once again, that
although neutrophil activation and vesicle-mediated transport
processes were stimulated in the intestine of fish, inflammation
derived from ROS release was probably not occurring.

Furthermore, the serine protease 3 (prss3) was another
gene positively regulated in the intestine of fish fed the
EOs-supplemented diet. This protease is involved in the
synthesis of antibacterial substances (35); thus, we hypothesized
that prss3 may be involved in the regulation of intestinal
immunity. PRSS3 is also a digestive protease specialized for
the degradation of trypsin inhibitors (36). Trypsin inhibitors
are anti-nutritional factors found in plant-protein sources that
impair diet digestibility and generate digestive and metabolic
disorders (37). Although the substitution of fishmeal by plant-
derived protein sources was not in the scope of our study, prss3
upregulation in the EOs-supplemented might indicate that the
tested EOs could enhance diet digestibility.

Moreover, the expression of the gene coding for the fatty acid
binding protein 6 (fabp6) was the most positively affected gene by
the dietary EOs. Similarly, FABP6 was significantly increased in
the intestine of gilthead seabream fed a combination of carvacrol,
thymol, and a prebiotic (38), while this gene was downregulated
in response to enteritis induced by a parasitic pathogen (39).
Furthermore, FABP6 is involved in the transport of bile acids

in ileal enterocytes (40). Besides, the influence of the intestinal
microbiota on the activity of FABP6 was suggested in zebrafish,
since fabp6 expression decreased significantly after antibiotic
treatment (41). Interestingly, in our study, the abundance of
Bacteroidia class (Bacteroidetes) decreased significantly in the
posterior intestine of fish fed the EOs-supplemented diet. Within
the Bacteroidia class, Bacteroides genus bacterial metabolism of
bile acids was observed to modulate gut T-cells homeostasis
(42). Particularly, shifts toward the phylum Bacteroidetes
including the Bacteroidia class coincides with mucosal CD4+

T-cell depletion and enterocyte damage (43). Therefore, the
upregulation of fabp6 and the decrease of Bacteroidia class might
indicate a modulation of the bile acids secretion by the tested
EOs, potentially affecting lipids metabolism. Since bile acids are
recognized as signaling molecules between the host microbiota
and the innate immunity (44), alterations in its secretion could
have a role in our observed immune-related transcriptional
response previously discussed. Nevertheless, further studies need
to be addressed in order to evaluate the impact of the EOs-
based feed additive in the digestive secretions and metabolism of
gilthead seabream.

Under the transport and secretion context, gut microbiota
mediate the metabolism and transport of dietary xenobiotics
through the modulation of metabolites of the host or through
microbial secretion (45). Accordingly, our functional analysis
of KEGG pathways of the posterior intestine microbiota of
individuals fed the EOs-supplemented diet showed a decrease in
bacterial sequences related to membrane transport. Considering
that membrane transport in prokaryotes is associated with
bacterial secretion, this decrease could indicate a lower export of
enzymes and bacterial toxins, commonly present in the intestinal
tract of different fish species (2), representing a potential
beneficial effect of the EOs administration in the gut health.

Effect of Garlic, Carvacrol, and Thymol
EOs Additive on the Response to Lipids
and Hormones
Under a complex neuroendocrine regulation, the gut microbiota
also regulate the metabolism of carbohydrates, lipids, and amino
acids, whose composition, in turn, is susceptible to diet, health
status, and drugs (46). Formerly, we suggested that the dietary
administration of the EOs might affect the secretion of bile
acids. If right, this could be inducing a response that could be
affecting lipid metabolism and/or steroid hormone signaling.
In accordance with this hypothesis, some biological processes
related to responses to cyclic compounds, such as lipids and
hormones, were positively affected by the inclusion of the EOs-
based feed additive in the intestinal mucosa of gilthead seabream.
For instance, the ATPase Na+/K+ transporting subunit alpha
1 (atp1a1) was significantly upregulated in the intestine of
fish fed the EOs-supplemented diet. In other studies, diet-
induced lipid alterations dramatically affected enterocytes lipid
profile in gilthead seabream, reducing significantly Na+/K+

ATPase specific activity, suggesting a regulatory role of the lipid
microenvironment on the enzyme activity (47). Additionally,
tribbles pseudokinase 1 (trib1) gene expression was upregulated
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in the gilthead seabream fed the EOs-supplemented diet. This
gene is known to beneficially affect plasma lipid concentration,
playing also major roles in myeloid cells, improving macrophage
lipid metabolism, and counteracting inflammation (48). On
the other hand, the glutamic-oxaloacetic transaminase 2 (got2)
gene was downregulated in the fish fed the EOs-supplemented
diet. A study in rats suggested that leptin downregulates
got2 in adipocytes (49). Likewise, the adiponectin receptor 1
(adipor1) was also downregulated in the fish fed the EOs diet.
Adiponectin is an essential hormone predominantly secreted by
adipocytes that regulates glucose and lipid metabolism, which
along with leptin are considered to be potential proinflammatory
adipocytokines (50). Under current experimental conditions,
the regulation of genes involved in the cellular response to
lipids might suggest the modulation of lipid-related intracellular
signaling pathways in the fish fed the EOs-supplemented
diet, with a potential role on the immune-inflammatory
profile obtained.

Lipids affect the gut microbiota both as substrates for bacterial
metabolic processes and by inhibiting bacterial growth by toxic
influence (51). In turn, gut microbiota are also pointed as
one of the key elements affecting inflammation associated with
lipid metabolism dysfunction (2). In fish, the gut microbiota
are also recognized to affect considerably the lipid metabolism
of the host (41). In agreement to our transcriptional analysis
and to the abovementioned findings, the PICRUSt analysis of
the microbiota from the anterior intestine of fish fed the EOs-
supplemented diet showed a higher abundance of sequences
associated with lipid metabolism when compared to the control
group. In fact, garlic and its derivatives are widely recognized
for their hypolipidemic effect. For instance, one of the primary
components of garlic, diallyl disulfide, was suggested to affect
both lipid metabolism and gut microbiota in mice through the
regulation of the expression of genes associated with lipogenesis
and lipid metabolism (52). In other studies, the combined dietary
administration of thymol and carvacrol have demonstrated to
modulate the intestinal microbiota in piglets, changes that were
correlated with an increase in lipid metabolism, among others
metabolic effects (53). In this context, our taxonomical analysis
at the genus level showed a significant increase in the abundance
of Corynebacterium (Actinobacteria) in the anterior intestine of
fish fed the EOs-supplemented diet. This genus has been reported
as a predominant one along the whole digestive tract of gilthead
seabream, while its abundance may be modulated by functional
diets (54) and dietary lipid levels (55). These results are of
special relevance since Corynebacterium species are reputed for
contributing tomanganese acquisition and producing superoxide
dismutase and lipases to form organic fatty acids and thioalcohols
(56). This genus also showed a higher presence in rainbow trout
(Oncorhynchus mykiss) intestinal microbiota when the fish were
fed high lipid diets (55), evidencing the impact of the tested EOs
on the host and microbial lipid metabolism.

Furthermore, a decrease in the abundance of Rothia was
also detected in the posterior intestine of fish fed the EOs-
supplemented diet. Rothia abundance was observed to be affected
by fish age and sex hormones in gilthead sea bream (14). In effect,
the results from our transcriptional analysis revealed a positive

regulation of processes related with a response to hormone
stimulus. Changes in hormone secretion, such as cortisol, may
interfere with the gut immune response (57) and microbiome
(58), which could explain the obtained immunity activation
and regulation of hormone-sensitive bacteria, such as those
belonging to Rothia (14). Moreover, stress and stress-related
hormones are known to affect carbohydrate, protein, and lipid
metabolisms in fish (59), which in turn are also regulated in the
host by the gut microbiota. In this sense, a similar feed additive
containing garlic and labiatae plant EOs (0.02% inclusion) was
demonstrated to reduce significantly plasma cortisol levels in
European seabass (Dicentrarchus labrax) (60); thus, the potential
regulation of stress-related hormones by the tested EOs could
explain the response to steroid hormones processes obtained in
our functional analysis.

In the present study, the administration of the garlic,
carvacrol, and thymol EOs positively affected the expression of
growth hormone 2 (gh2), although no significant differences in
somatic growth were observed at the end of the 65 days of feeding
trial. However, GH is not only involved in somatic growth;
this hormone also directly stimulates several fish immune
factors (61), and participates in the epithelial osmoregulation
of euryhaline fish, interacting with cortisol to increase secretory
chloride cells and ion transporters involved in salt secretion, such
Na+/K+ ATPase (62). As a matter of fact, besides immunity
and digestion, the gastrointestinal tract of marine teleost fish
also plays an important role in osmoregulation. Under this
context, the carbonic anhydrase 2 (ca2) was the second most
positively affected gene by the EOs inclusion in the diet, playing
an active role in acid–base regulation through bicarbonate
secretion and facilitating epithelial water transport (63). In fact,
osmoregulation has been linked to endocrine secretory factors
with a significant impact on the fish immune system and
microbiota (64).

As previously referred, the Bacteroidia class (Bacteroidetes)
decreased significantly in the posterior intestine of fish fed
the EOs diet. Kan et al. (65) demonstrated that within the
Bacteroidia class, Bacteroides genus abundance increased
in goldfish (Carassius auratus) when exposed to a toxic
environment. Interestingly, our microbiota analysis showed a
higher abundance of bacterial 16S rRNA sequences associated
with the metabolism of glutathione in the anterior intestine.
Glutathione is one of the most important intracellular
antioxidant and antitoxin enzymes, whereas its metabolism
is regulated by the gut microbiota through the modulation of the
amino acidmetabolism of the host (66) and tissue oxidative stress
(67). Furthermore, glutathione plays important roles in nutrient
metabolism and in the regulation of cellular events, such as gene
expression, DNA and protein synthesis, cell proliferation and
apoptosis, immune response, among others (67). Glutathione
S-transferase is one of the key enzymes involved in the second
phase of xenobiotics’ metabolism and cellular detoxification,
catalyzing the conjugation of reduced glutathione to various
substances; thus, suggesting a key role in the host immune
response modulation (68). Accordingly, in our transcriptional
analysis, the glutathione S-transferase theta 2B (gstt2b) gene was
observed to be upregulated in the intestine of gilthead seabream
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following the administration of dietary EOs. The differences
observed regarding both transcriptional and microbiota analysis
between our experimental diets suggested an improvement of
the enterocytes’ lipid metabolism and detoxification potential
promoted by the additive.

The microbiota analysis also showed a reduction in the
proportion of bacterial sequences related to drug metabolism.
Accordingly, the EOs-supplemented diet promoted the increase
of the cytochrome P450 2J2 (cyp2j2) gene transcripts in the
intestine of the gilthead seabream. In fish, the cytochrome P450
proteins, and CYP2 family members, in particular, participate
in the metabolism of steroidal hormones and other lipids,
besides their role in the metabolism of exogenous compounds
like drugs and pharmaceuticals (69). Several garlic organosulfur
compounds, as well as carvacrol, have been described to
selectively modulate the levels of cytochrome P450 genes and
proteins (70, 71). Moreover, the mitochondrial peroxiredoxin
3 (prdx3) and cathepsin B (ctsb) genes were downregulated.
Both prdx3 and ctsb are biomarkers of fish stressors (72), whose
downregulation might indicate a decrease of the oxidative stress
in the fish intestine and a positive impact of the tested additive on
fish welfare. Overall, our results indicate that the administrated
EOs promotes the enhancement of the antioxidative status in the
fish intestine, supporting the gut homeostasis under an immune
stimulation scenario.

Effect of Garlic, Carvacrol, and Thymol
EOs Additive on the Response to Organic
Nitrogen and Aromatic Compounds
In our transcriptional analysis, several genes comprising a
response to nitrogenous compounds related processes were
also observed to be positively regulated by the presence of
garlic, carvacrol, and thymol EOs in the diet. Interestingly, the
inclusion of the EOs in the gilthead seabream diet showed a
significant decrease in the abundance of the genera Paracoccus
(Proteobacteria), Prevotella (Bacteroidetes) in the posterior
intestine, and Comamonas (Proteobacteria) in the anterior
intestine of fish. All these bacteria are reputed for their capacity
for nitrate reduction, as well as being potentially involved in
the metabolism of nitrogenous compounds (73). In particular,
Prevotella, are members of the anaerobic, hydrogen sulfide
producing bacterial community (73) that have been previously
detected in the intestine of gilthead seabream (54). In humans, an
increase in Pretovella species at mucosal sites is often associated
with chronic inflammation (74). In our study, the PICRUSt
analysis showed a lower abundance of predicted carbohydrate
degradation pathway in the anterior intestine of fish fed the EOs-
supplemented diet, which may be associated with a reduction
in Prevotella abundance. Paracoccus is a genus in the family
Rhodobacteraceae previously reported in gilthead seabream gut
and described as a potential probiotic for this species (75).
The relevance of the decrease in the abundance of Paracoccus
genus needs further investigations in terms of its impact on the
condition of the host as no negative effects on gut conditions were
observed under present nutritional conditions.

Furthermore, some Comamonas strains are also known to
have genes for naphthalene degradation (76). The posterior
intestine of fish fed the EOs-supplemented diet showed
an increase in bacterial sequences related to naphthalene
degradation. Naphthalene is an aromatic hydrocarbon present
in many EOs with antibacterial, antioxidant, and antiparasitic
properties (77). Although suggested to have a positive impact
at low concentrations by decreasing DNA damage in some
fish species (78), an enhancement in naphthalene and similar
compounds degradation is crucial in order to avoid a potential
toxicity of the EOs for the host.

The transcriptional analysis showed the positive regulation
of the response to alkaloids biological process in the fish fed
the EOs-supplemented diet. Alkaloids are versatile heterocyclic
nitrogen compounds produced by plants, that along with
EOs and phenolic compounds, provide antipathogenic and
antioxidant protection (79). This response may not only
be associated with the previously referred alteration in the
metabolism of nitrogen and carbohydrates induced by the
microbiota reshaping, but also with the direct response of the
intestinal mucosa to the phenolic monoterpenes carvacrol and
thymol (80) and other cyclic compounds derived from garlic
(81) with recognized immunomodulatory properties. Moreover,
allicin, the main antimicrobial compound in garlic, is also
a sulfoxide that bacteria can use in the sulfur-relay system
(82). This is in agreement with the observed increase in
sequences associated with genes of the sulfur-relay system in
the posterior intestine of fish fed the EOs-supplemented diet.
Thereafter, considering the complexity of the EOs biochemistry,
the transcriptional and bacterial response to those compounds
is equally multifaceted. Further studies should be addressed in
order to clarify the impact of these potential metabolic alterations
in the gilthead seabream gut immune status.

Effect of Garlic, Carvacrol, and Thymol
EOs Additive on Symbiosis Processes
The intricate host-microbiota symbiosis in the fish is still
substantially unexplored when compared with mammals,
and considering its complex challenges to define an “ideal”
microbiome for each species since microbiota are strongly
modulated by environmental and dietary factors (2). Even though
both transcriptional and microbiota modulations by the EOs
supplementation were observed, our results fit within the farmed
gilthead seabream gut microbiome profile in terms of dominant
phyla bacterial composition (14), discarding warnings of a
diet-induced dysbiosis. The transcriptomic functional analysis
was able to particularly detect such interactions through the
expression of several genes related to symbiotic, multi-organism
processes, and interspecies interaction between organisms.

For instance, the microbiota taxonomical analysis at the genus
level showed an increase in the abundance of Photobacterium
(Proteobacteria, Vibrionaceae) in the anterior intestine of fish
fed the EOs diet. Although some members of this genus, such
as Photobacterium damselae subsp piscicida and P. damselae
subsp damselae have been reported as important pathogens
for gilthead seabream (83), they are generally detected in the
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intestine of healthy specimens (84, 85). Most species of the
Photobacterium genus are non-pathogenic and are usually in
a symbiotic relationship with marine organisms as enteric
commensals. In fact, Photobacterium spp. have been even found
to be beneficial as a member of the fish intestinal microbiota
by its ability to aid with digestion of compounds, such as
chitin (86), to produce polyunsaturated fatty acids or even
antibacterial secondary metabolites that could inhibit the growth
of other pathogenic bacteria (87). This genus has been reported
as a member of the intestinal microbiota of marine farmed
fish, including gilthead seabream (54, 85), and it has been
demonstrated that this genus is one of themostmodulated genera
in the fish when applying functional diets (88). Regarding the
antimicrobial effect of the EOs-supplemented diet, an in vitro
study demonstrated that the ethanolic extracts of oregano leaves,
predominantly composed of carvacrol and thymol, presented a
strong bactericidal activity against several pathogens including
Photobacterium damselae, besides its immunostimulatory effect
on gilthead seabream head kidney leukocytes (89). Therefore,
our results might suggest a selective antimicrobial effect of the
compounds administrated, evidencing the importance of the
host-microbiota symbiotic relationship in the modulation of the
response to a dietary change.

Additionally, in our transcriptional analysis, the retinoic acid
receptor alpha (rara) and the retinoic X receptor beta (rxrb)
genes were both up and downregulated, respectively, in the
gut of fish fed the EOs-supplemented diet. The retinoic acid
(RA) is the most important transcriptionally active component
of the vitamin A, an essential dietary nutrient for fish that
plays a significant role in a range of physiological processes
including the differentiation and maintenance of epithelial
cells and immunity (90). Under this context, another case
of symbiotic interaction between organisms is the relation
between vitamin A metabolism of the host and its commensal
microbiota. Remarkably, Clostridia (Firmicutes) abundance was
significantly reduced in gilthead seabream fed the EOs diet,
which could then be positively affecting the RA availability
and the observed regulation of the nuclear receptors (90),
potentially participating in the local immunity boost observed
in our study. In fact, dietary garlic powder was demonstrated
to have an antimicrobial effect on Clostridium human bacteria,
being suggested to temporarily modulate the gut microbiota (91).
In rainbow trout, different levels of garlic extract (1%, 1.5%,
and 2%) positively affected the abundance of this genus (4).
Curiously, a similar dietary additive composed of garlic and
labiatae plants oils was observed to enrich the Clostridia class
in European seabass fed a low fishmeal and fish oil diet (30).
However, carvacrol and thymol, in particular, were numerously
observed to exert an antimicrobial effect on Clostridium species,
proving beneficial for the gut health of several organisms (92);
thus, attributing to carvacrol and thymol the main role in the
observed reduction of the genus. Given the significance of this
symbiosis, themanipulation of RA signaling derived from dietary
components acting directly on nuclear receptors and/or on the
intestinal microbiota might represent a strategy to promote
gut immunostimulation.

Effect of Garlic, Carvacrol, and Thymol
EOs Additive on Gene Expression and RNA
Processing
Dietary manipulations are widely recognized to directly or
indirectly influence the regulation of the fish gut gene expression,
in order to reshape its metabolic and physiological responses to
different requirements. Indeed, the utmost upregulated biological
processes in the intestine of fish fed the functional feed additive
tested in our study, in terms of the number of DEGs, were
those related to gene expression and processes involved in
RNA processing, RNA splicing, mRNA metabolism, and mRNA
and ribonucleoprotein export from nucleus. The regulation of
gene expression comprises diverse cell mechanisms in order to
increase or decrease the production of a specific gene product,
either RNA or a protein. For instance, several zinc finger
proteins were up (znf572, zeb2, znf74, zc3h11a, and znf214) and
down (znf133, znf551) regulated in our transcriptional analysis.
Besides the stimulation of the transcriptional machinery (93),
several genes involved in the spliceosome-mediated splicing
(snrnp200, sart1, hnrnpu, and prpf8) were also observed to
be upregulated by dietary EOs. The spliceosome splicing
complex removes intronic non-coding sequences from pre-
mRNA to form mature mRNA that can be translated into
protein (94).

In another hand, the intestine is per se a highly regenerative
organ characterized by its continual cell renewal, allowing the
epithelium to bear the constant exertion of food digestion,
nutrient absorption, and waste elimination (6). Either tissue
damage or microbial invasion promotes inflammation and
possible DNA damage, so its repair plays a vital role in
maintaining genomic integrity during the cell cycle. For instance,
DNA damage responses may be induced by proinflammatory
cytokines (95), in which transcriptional response appeared
not to be promoted by the EOs in our study, as previously
discussed. However, genes coding DNA damage checkpoint
proteins were up (fbxo31, gltscr2, wisp1, usp10, and cdk5rap3)
and down (nbn) regulated by the EOs-supplemented diet,
evidencing a regulation of the cell turnover independent from
inflammatory stimuli. This hypothesis is reinforced by the
upregulation of cdk5rap3, the gene encoding CDK5 regulatory
subunit associated protein 3, an interactor controlling cell
proliferation that among other functions negatively regulates
NF-kB mediated gene transcription (96), as initially suggested.
Our results also evidence the tight functional connection
and coordination between DNA damage responses and
immunity, a link that is recognized by its involvement in
the protection of the host from infectious microorganisms
and surveillance against malignant diseases (97). Therefore,
the upregulation of a substantial number of genes that
modulates others’ expression and that has an implication
in transcriptional, translational and DNA repair processes
validates the effect of the EOs-supplemented diet on the
direct transcriptional regulation of several intestinal cellular
processes, including the modulation of the inflammatory and
immune response.
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CONCLUSIONS

The present complementary analysis of the intestinal
transcriptomic profiling and microbiota response to a diet
supplemented with garlic, carvacrol, and thymol EOs aimed
to take a further step in the evaluation of functional feeds
in an attempt to understand how diet-induced shifts can
affect the overall gut status of farmed fish from an integrative
perspective. This kind of integrative analysis can lead to the
“chicken or egg” causality dilemma, and exact mechanisms
are still elusive. Nevertheless, the present work suggested that
the dietary administration of garlic, carvacrol, and thymol
EOs modulated the immune transcriptional response of the
mid-anterior intestinal mucosa per se, but also its microbiota
composition, resulting in complex interactions that resulted
in the activation of significant biological processes. Taken
together, the combined regulation of the referred pathways
could suggest the promotion of an immune reinforcement
by the EOs dietary administration in situ, most probably
induced by host-microbial co-metabolism, which could further
attenuate the processes of pathogenesis, putting in evidence
the re-adaptation response of the intestinal mucosa to the
changes observed in the microbiota composition, and vice
versa. Moreover, no indications of an inflammation associated
with the immunostimulation, which could compromise the
intestine integrity, were observed. Since no interference
with fish growth was observed, promoted changes in both
the intestine mucosa and microbiota were assumed to not
significantly affect the gut overall metabolism and nutritional
status. Thus, the use of the tested EOs is suggested as a
promising alternative to chemotherapeutics to be further
evaluated in functional diets under the presence of biotic or
abiotic stressors.
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