
genes
G C A T

T A C G

G C A T

Article

Deciphering the Monilinia fructicola Genome to Discover
Effector Genes Possibly Involved in Virulence

Laura Vilanova 1,2 , Claudio A. Valero-Jiménez 1 and Jan A.L. van Kan 1,*

����������
�������

Citation: Vilanova, L.;

Valero-Jiménez, C.A.; van Kan, J.A.L.

Deciphering the Monilinia fructicola

Genome to Discover Effector Genes

Possibly Involved in Virulence. Genes

2021, 12, 568. https://doi.org/

10.3390/genes12040568

Academic Editors: Peter van Baarlen

and Juan Francisco Martín

Received: 1 March 2021

Accepted: 8 April 2021

Published: 14 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands;
laura.vilanova@irta.cat (L.V.); claudiovalero@gmail.com (C.A.V.-J.)

2 IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida,
Parc de Gardeny, 25003 Lleida, Catalonia, Spain

* Correspondence: jan.vankan@wur.nl

Abstract: Brown rot is the most economically important fungal disease of stone fruits and is primarily
caused by Monilinia laxa and Monlinia fructicola. Both species co-occur in European orchards although
M. fructicola is considered to cause the most severe yield losses in stone fruit. This study aimed
to generate a high-quality genome of M. fructicola and to exploit it to identify genes that may
contribute to pathogen virulence. PacBio sequencing technology was used to assemble the genome
of M. fructicola. Manual structural curation of gene models, supported by RNA-Seq, and functional
annotation of the proteome yielded 10,086 trustworthy gene models. The genome was examined
for the presence of genes that encode secreted proteins and more specifically effector proteins. A
set of 134 putative effectors was defined. Several effector genes were cloned into Agrobacterium
tumefaciens for transient expression in Nicotiana benthamiana plants, and some of them triggered
necrotic lesions. Studying effectors and their biological properties will help to better understand the
interaction between M. fructicola and its stone fruit host plants.

Keywords: brown rot; stone fruit; annotation; necrosis; cell-death

1. Introduction

Brown rot is an economically important fungal disease that mainly affects stone fruit
such as peaches, nectarines, cherries and apricots and nowadays is also causing important
problems in almond [1]. This disease affects blossom, twig, and ripe as well as unripe
fruit during pre- or post-harvest handling. Mummified fruit that remains on trees or the
orchard floor during the winter generate the inoculum for newly emerging flowers and
fruit in the subsequent spring. During unfavourable environmental conditions and/or in
unripe fruits, primary infections can remain latent until favourable conditions develop that
facilitate disease progression and fruit decay. Moreover, decayed fruit can serve as a source
for secondary infection during the summer season. Despite the infection occurring in the
field, the main economic losses of brown rot appear during postharvest handling, storage
and transport.

Several fungal species are responsible of stone fruit brown rot disease including
Monilinia fructicola, M. laxa and M. fructigena. M. fructigena is more common in pome fruit
and has lower incidence in stone fruit. Like M. fructigena, M. laxa is endemic in Europe
and is a quarantine pathogen in China and the United States. In contrast, M. fructicola is
endemic in North America, Australia and Japan and was a quarantine pathogen in Europe
for several years [2] until it was spread across the continent [3]. Nowadays, all three species
co-occur in European orchards although M. fructicola is considered to cause the most severe
yield losses in stone fruit [4].

The control of the disease is mainly attempted in the field since there are only a few
registered postharvest fungicides available to control Monilinia spp. A key step is the
application of fungicides during blossom blight to reduce fruit decay and thereby prevent
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primary infections. The public concern about health problems, the impact on the environ-
ment and the appearance of fungicide-resistant fungal strains have stimulated research to
develop new methods to control brown rot in stone fruits. Some of the alternatives focused
on the use of physical methods and the application of biological control agents [5–7]. De-
spite all the efforts deployed to find new strategies to control Monilinia spp. none of them
were able to replace fungicides until now.

The genus Monilinia belongs to the family Sclerotiniaceae and comprises ~25 species,
the majority of which are plant pathogens with a necrotrophic lifestyle. Fungi with a
necrotrophic lifestyle were initially considered to act as brutal killers who degrade plant
tissue with the secretion of a battery of cell wall-degrading enzymes and toxins in an
indiscriminate manner [8]. Lately, however, it was revealed that many necrotrophic
fungi actively manipulate the programmed cell death machinery of the host for their
own benefit by secreting effector proteins and/or secondary metabolites [9,10]. There
are several well-studied effectors secreted by necrotrophic pathogens infecting wheat
like Parastagonospora nodorum and Pyrenophora tritici-repentis. P. nodorum uses effectors
to induce plant programmed cell death and facilitate the infection of hosts that contain
susceptibility genes [11–14]. In the case of P. tritici-repentis, Tan et al. [15] reported that
the effector ToxA had a major impact on cultivar choice and breeding strategies. In many
cases, plant sensitivity to necrotrophic effectors is determined by a dominant gene, and
disease does not occur in the absence of effector sensitivity [11,13,14]. Until now, the
research on necrotrophic effectors was mainly focused on fungal pathogens affecting ex-
tensive, arable crops such as wheat, barley and maize. In the case of Botrytis cinerea (the
most intensely studied species in the Sclerotiniaceae), several cell death-inducing effector
molecules (proteins or metabolites) were identified, however, none of them were essential
for virulence [16–18]. The genus Monilinia is characterized to less extent because both the
fungi and their hosts have long been less amenable to molecular-genetic studies. There are
only a few reports on Monilinia spp. virulence factors [19,20] but none focusing on the role
of effector proteins inducing cell death in stone fruit leaves or fruits.

The advent of high throughput “omics” technologies such as mRNA sequencing
(RNA-Seq), has provided unprecedented access to the fine structure of the transcriptome.
The analyses of fungal pathogen genome and transcriptome sequences offer options to
perform an identification and functional analysis of substances that are specifically toxic
to their respective hosts, and thereby confer on the fungi their host specificity. In recent
years, many fungal genomes were analysed mainly because of the decrease in sequencing
costs. In the case of plant pathogenic fungi, many species have been sequenced to establish
evolutionary lineages and to focus on the virulence factors that participate in the plant
infection process [21]. The genome sequences of different M. fructicola strains [22,23] as well
as the M. fructicola mitochondrial DNA sequence [24] were recently published however,
none of these were yet used to get new insights into the pathogen biology or to study the
interaction of M. fructicola with host plants.

The aim of this study was to generate a high-quality genome of M. fructicola using
PacBio sequencing and perform a manual structural curation from the annotated protein-
coding genes. In genome curation, we paid specific attention to genes that may contribute
to pathogen virulence, such as genes encoding secreted plant cell wall-degrading enzymes
and genes encoding effector proteins. Identifying protein effectors and studying their
biological functions will help to better understand the interaction between necrotrophic
fungi and host plants.

2. Materials and Methods
2.1. Strains and Culture Conditions

The strain M. fructicola CPMC6 used in this work belongs to the collection of the
Postharvest Pathology group of IRTA (Lleida, Spain) and was isolated in September 2010
from a latent infection in peaches harvested in Alfarràs orchards (Spain). This strain was
identified by the Department of Plant Protection, INIA (Madrid, Spain) and deposited
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in the Spanish Culture Type Collection (CECT 21105). For long-term storage, the isolate
was kept as conidial suspension in 20% glycerol at −80 ◦C and was grown on malt extract
plates (MEA) at 20 ◦C in darkness for 10–12 days.

2.2. DNA and RNA Isolation

Mycelium was grown on cellophane sheets on malt extract agar and high-molecular-
weight DNA was extracted from freeze-dried mycelium using a Puregene DNA purification
kit from Qiagen (Venlo, The Netherlands) using manufacturer’s recommendations. Briefly,
mycelium was treated with cell lysis solution, proteinase K and protein precipitation
solution. DNA was precipitated with isopropanol, and after washing with 70% ethanol
and drying, it was dissolved in TE buffer amended with RNase. To increase purity, DNA
was cleaned by a salt:chloroform wash (Pacific Biosciences shared protocol).

RNA-Seq libraries were generated from pools of RNA isolated from in vitro and
in vivo samples. In vitro samples included 2-day-old mycelia grown in liquid minimal
media and spores collected from a 10-day-old culture grown on potato dextrose agar
supplemented with blended tomato leaves. In vivo samples included infected peaches and
nectarines (with or without wounding before inoculation) and infected peach leaves. Total
RNA was extracted as described by Vilanova et al. [25] based on the conventional CTAB
method. RNA quality was checked with an Agilent 2100 system.

2.3. Sequencing and de Novo Assembly of the Genome

M. fructicola DNA was sequenced using PacBio sequencing technology on a Sequel
instrument by Keygene N.V. (Wageningen, the Netherlands). De novo assembly was
performed using HGAP [26] and CANU [27] using default settings. Results from the
assembly were combined with Quickmerge [28], and two steps of corrections were run
with Arrow. A visual inspection was done to manually correct contigs that were erroneously
merged. Completeness of the assembly was assessed using the Benchmarking Universal
Single-Copy Orthologs (BUSCO) tool [29]. The transcriptome of M. fructicola (in vitro and
infected plant samples) was sequenced using paired-end libraries with Illumina HiSeq-TM

4000 (read lengths of 2 × 150 bp) at the Beijing Genome Institute (BGI, Hong Kong, China).
The number of reads for the in vitro RNA libraries and the infected plant samples was 79.5
and 66.3 M, respectively. More than 96.5% of the base calls exceeded a quality score of 20.

2.4. Genome Annotation and Expression Quantification

After genome assembly, gene models were predicted following the FunGAP pipeline [30],
which uses MAKER [31], AUGUSTUS [32] and BRAKER [33] supported by evidence from
RNA-Seq data from in vitro and infected plant samples. To obtain more accurate gene
prediction, we aligned the M. fructicola gene models to the manually curated B. cinerea
genome [34,35] and to all fungal proteins available in the SwissProt database. M. fructicola
predicted proteins were manually curated when needed and functionally annotated using
the pipeline funannotate [36]. RNA-Seq reads were mapped on the M. fructicola CPMC6
genome using HISAT v.2.0.3-beta. Read counts for each gene model were normalized to
the total amount of mapped reads in the sample (Counts Per Million). Since RNA samples
consisted of mixtures of different tissues and cell types, there were no biological replicates
and the results could not be statistically analysed.

2.5. Secondary Metabolite Gene Cluster Analysis

The prediction of secondary metabolite gene clusters in the genome of M. fructicola
was performed as described by Valero-Jiménez et al. [37]. Gene clusters predicted to
be involved in the biosynthesis of secondary metabolites (BGCs) were identified using
AntiSMASH, version 4.1.0 using default settings [38]. The BGCs were analysed using
BIG-SCAPE version 2018.10.05 [39] with a cutoff of 0.65 and the MIBiG parameter, which
contained annotated secondary metabolites clusters (MIBiG repository version 1.4 [40]).
A manual filtration was done to remove clusters containing mainly enzymes with low
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bitscore. Finally, protein–protein BLAST (version 2.7.1+) was used to calculate identity
scores of M. fructicola proteins against the proteins of B. cinerea.

2.6. Secretome and Effector Prediction

Genes encoding secreted proteins in the M. fructicola genome were identified using
several tools. Signal-P v4.1 [41] was used to screen for a signal peptide, followed by
TMHMM v.2.0 [42] to identify putative transmembrane domains. Proteins that lacked a
signal peptide or that had a transmembrane domain (a single domain in the N-terminal
60 residues was allowed) were discarded. TargetP was used to predict protein localiza-
tion [43]. CAZy enzymes were annotated using dbCAN2 meta server [44]. Effectors were
predicted using the EffectorP tool versions 1 and 2 [45,46].

2.7. Characterization of Candidate Effector Proteins
2.7.1. Amplification of Candidate Effector Genes

Primers were designed to cover the coding sequence (CDS) of the mature candidate
effector, but excluding the N-terminal signal peptide. Primers were designed containing
a six-nucleotides extension upstream of the restriction enzyme recognition site to ensure
efficient cleavage (Supplementary Table S1). Amplification of candidate effector cDNA was
performed in a total volume of 50 µL containing 0.2 µM of both forward and reverse primer,
0.2 mM of each dNTP, 1x PFU buffer (Promega, Leiden, The Netherlands), 1.5 U PFU
polymerase (Promega), and 2 µL of template (80 ng cDNA from M. fructicola mycelium).
PCR program was 95 ◦C for 2 min; 10 cycles of 95 ◦C for 30 s, 58 ◦C for 30 s and 72 ◦C for
2 min and 25 cycles with an annealing temperature of 60 ◦C instead of 58 ◦C, ending with a
final step at 72 ◦C for 5 min. PCR products were visualized in 1–3% agarose gels.

2.7.2. Ligation of Gene Constructs

PCR products and plasmids were digested using Fast digest enzymes (Thermo Fisher
Scientific, Breda, The Netherlands), using either XhoI, PstI, SalI, or Mph1103I (NsiI) in 1x
Fast digest® buffer (Thermo Fisher) at 37 ◦C, using manufacturer’s recommendations.
Digested PCR products were ligated with T4 DNA Ligase (Promega) using a 5:1 molar
ratio of insert PCR product:vector and incubated at 14 ◦C overnight. The ligated plasmid
was transformed in ultra-competent DH5α Escherichia coli cells. Plasmids were isolated
using the QIAprep Spin Miniprep kit (Qiagen) according to the manufacturer’s protocol.

2.7.3. Transient Effector Gene Expression in Nicotiana benthamiana

Fifty ng of plasmid was added to 50 µL of electro-competent Agrobacterium tumefaciens
cells (strain GV3101). A single transformed colony was grown in 15 mL YEB medium
supplemented with 20 µM acetosyringone, kanamycin, gentamicin and rifampicin at 28 ◦C.
The culture was centrifuged and suspended in MMAi buffer at OD600 = 0.8. After 2 h
incubation, cells were infiltrated using a needleless 1 mL syringe (Omnifix®-F, Braun, Oss,
The Netherlands) in leaves of 4–6 weeks old N. benthamiana plants. Pictures of responses in
N. benthamiana leaves were taken 5 or 6 days postinfiltration.

3. Results
3.1. Sequence Assembly and Annotation

M. fructicola was sequenced using long read single molecule technology at 92 X
coverage. The size of the assembled genome was 42.98 Mb with 98 contigs and a contig
N50 of 988 Kb (Table 1). In terms of contig numbers, this assembly ranges in between the
M. fructicola genomes published by De Miccolis Angelini et al. [22] with 20 contigs, by
Rivera et al. [23] with 2643 contigs and by Kohn [47] with 3535 contigs (Table 1).
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Table 1. Assembly features and gene prediction information of M. fructicola genomes.

Isolate Genome
Size (Mb)

Number
of Contigs

Contig N50
(Kb)

Contig
L50 (bp)

GC (%)
Fraction

BUSCO Complete
(Partial)

Predicted
Genes Reference

CMPC6 42.95 98 988 14 41.5 98.7 (99.5) 10,086 This work

Mfrc123 44.05 20 2592 7 40.8 88 (98) 13,749
De Miccolis

Angelini
et al. (2019)

BR-32 42.82 2643 62 205 41.7 >97% NA 1 Rivera et al.
(2018)

LMK 125 44.68 3535 37 353 40.1 NA 1 NA 1 Kohn (2017)
1 NA (not available).

BUSCO analysis indicated a level of completeness of 98.7% with only a few fragmented
(0.7%) or missing (0.5%) BUSCO orthologs. The PacBio assembly process introduced
more than 100 indels, which were checked individually and manually fixed. After the
prediction of gene models using the FunGAP pipeline, the proteome of M. fructicola was
entirely manually curated to fix erroneous methionine start codon predictions, to remove
pseudogenes and to remove gene models predicted in transposons and repetitive regions.
During this process, a total of 2,857 predicted genes were deleted, resulting in a curated M.
fructicola proteome, which contains 10,086 proteins (Figure 1).
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Figure 1. Manual curation of the annotated genome to obtain a trusted group of secreted proteins.

3.2. Secondary Metabolites

Fungi produce a spectrum of secondary metabolites (SMs) that are synthesized by
proteins encoded in genes that are commonly arranged in biosynthetic gene clusters (BGCs)
on the genome [48]. SMs play important roles in the development of fungi, their adaptation
to different environments and interactions with other microbes. A total of 31 BGCs were
detected and classified based on the type of SM they synthesize (Figure 2). M. fructicola
predominantly contains BGCs involved in the production of polyketides (Type I PKS, 16),
non-ribosomal peptides (NRPS, 8) and terpenes (TS, 4).

Compared with the related species B. cinerea, for which SM BGCs have been well
studied, M. fructicola contains two orthologous clusters involved in the production of
melanin, the brown pigment present in sclerotia and conidia. The inability to produce this
metabolite by M. fructicola yields albino conidia and sclerotia and reduces the virulence in
peaches [49]. The melanin biosynthetic pathway in B. cinerea contains two separate PKS key
enzymes (PKS12 and PKS13) as well as enzymes acting downstream (Bcbrn2, Bcscd1 and
Bcbrn1) to synthesize melanin [50]. M. fructicola has both PKS12 and PKS13 clusters and
like in B. cinerea and other Sclerotiniacea species, they are not physically clustered but they
both use the same set of enzymes to produce melanin. Mfpks13 is clustered with Mfscd1
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and Mfbrn2, while Mfpks12 is clustered with the transcription factor Mfsmr1. Genes
encoding key enzymes from both clusters show 88% similarity to orthologs in B. cinerea.
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Moreover, M. fructicola contains genes for the synthesis of the phytotoxic polyketide
botcinic acid, however the genes are organized differently as compared to B. cinerea. The
botcinic acid BGC in B. cinerea is located at the start of Chr1 and contains 13 genes, including
the BcBOA6 and BcBOA9 genes that encode the two key PKS enzymes [17,35]. The M.
fructicola genome contains orthologs to all 13 BOA genes, however, divided over two
separate genomic locations that are not telomeric as in B. cinerea. In M. fructicola, the genes
BOA1 and BOA2 are together in a location on contig MFRU002, while the genes BOA3-13
are clustered in a different location on contig MFRU064. The BOA gene configuration in
M. fructicola very much resembles that in Sclerotinia sclerotiorum [37], which prompted us
to examine this in some more detail (Figure 3). The loci that carry the BOA1 and BOA2
genes are located in syntenic regions in M. fructicola (MFRU002) and S. sclerotiorum (Chr5),
as flanking genes on either side of the cluster are orthologous. In B. cinerea, B. aclada and
B. porri, however, the orthologs of the flanking genes of BOA1 and BOA2 in M. fructicola
and S. sclerotiorum are not located in syntenic regions (Figure 3A). In addition, for the
BOA3-BOA13 cluster, flanking genes on either side of the cluster are orthologous between
M. fructicola (MFRU064) and S. sclerotiorum (Chr15). By contrast, B. cinerea, B. aclada and B.
porri, contain a region that is syntenic to these flanking regions, but lack the BOA cluster
(Figure 3B).

3.3. Secreted Proteins

From 10,458 proteins, there were 855 proteins predicted to be secreted, which corre-
sponds to 8% of the proteome. This result is concordant with the proportion of secreted
proteins in other members of the Sclerotiniaceae family [35,37]. Plant pathogenic fungi use
secreted carbohydrate active enzymes (CAZymes) mainly to break down plant tissue to
acquire nutrients and establish the infection or they secrete effector proteins to manipulate
the defence responses of their host plants. In M. fructicola, 14% of the secreted proteins
correspond to CAZymes (122) and 16% correspond to predicted effector proteins (134).
We analysed in depth the proteins related to the degradation of plant cell wall carbohy-
drates. CAZymes are subdivided depending on their activity as glycoside hydrolases (GH),
glycosyl transferases (GT), polysaccharide lyases (PL) and carbohydrate esterases (CE).
In M. fructicola, more than half of the secreted CAZymes (81) belong to the GH category
(Figure 4).
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Specifically, the CAZY families with the largest number of members are the polygalac-
turonases (GH28; 18 genes), xyloglucanases (GH16; 11 genes), cutinases (CE5; 7 genes)
and pectin/pectate lyases (PL1 and PL3; 6 genes). Classification of CAZymes based on
the preferred substrate showed that the pectin degrading capacity of M. fructicola is larger
compared to enzymes involved in hemicellulose or cellulose degradation (Table 2).

Table 2. Comparison of numbers of genes encoding plant cell wall degrading enzymes (PCWDE) and fungal and plant
cell wall degrading enzymes (FPCWDE) in the genomes of Sclerotiniaceae species and other ascomycetes. The substrate
preferences of the enzymes are provided for C (cellulose), H (hemicellulose), HP (hemicellulose or pectin side chains) and
P (pectin).

Fungal Species
PCWDE

FPCWDE References
Total C H HP P H/HP/P

M. fructicola 90 18 27 12 33 72 22 This work
S. sclerotiorum 106 20 40 13 33 86 32 Anselem et al., 2010
B. aclada 89 17 27 13 32 72 31 Valero-Jiménez et al., 2020
B. cinerea T4 118 18 41 15 44 100 36 Anselem et al., 2010
Neurospora crassa 78 26 31 13 8 52 22 Anselem et al., 2010
Penicillium digitatum 49 NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 Marcet-Houben et al., 2012

1 NA (not available).

3.4. Effector Proteins

In order to prioritize predicted effector genes for functional characterization, we
filtered out genes that are less likely to be virulence determinants during infection of
stone fruit. From the 134 predicted effector genes, 65 genes were removed because of low
expression (<1 CPM) in the infected plant samples and 17 genes were removed because they
contained a protein domain with known enzymatic activity. The remaining 52 effector genes
were divided in three different groups based on their gene expression in infected plant
samples and in vitro (Figure 5). A total of 17 effector genes showed similar expression levels
in both conditions (ratio P/V between 0.5 and 2.0), while 10 genes were higher expressed
in planta (ratio P/V > 2.0) and 25 were higher expressed in vitro (ratio P/V < 0.5).
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The 52 effector genes were also classified based on attributes considered to be impor-
tant for effectors (Figure 6): 37 had a size smaller than 200 amino acids, 27 contained more
than 4 cysteine residues, and 6 had a Pfam domain unrelated to enzymatic activity. The
majority of these genes (48 of 52) had homologs in other Sclerotiniaceae species.
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The list of 52 candidate effector proteins was refined to 33 (Table 3) by removing
proteins that were predicted by only one of the two versions of EffectorP [45,46].

3.5. Characterization of M. fructicola Candidate Effectors

From the previous list, we selected five effector proteins to be tested for their cell
death-inducing capacity (highlighted bold in Table 3), as well as the M. fructicola NEP-
like protein MFRU_030g00190, which is the ortholog of BcNep2, previously shown to be
a strong necrotizing effector [51]. For each of the five genes, the mature protein coding
sequences were cloned into a binary vector containing the CaMV 35S promoter for transient
expression and the tomato PR1a signal peptide sequence suitable for secretion into the plant
apoplast. Constructs were made with and without a C-terminal Myc-tag and introduced
into A. tumefaciens. The effector proteins were transiently expressed by agroinfiltration in N.
benthamiana leaves and symptoms were monitored over time. MfNep2 and two candidate
effectors of unknown function were able to induce cell death in infiltrated areas (Figure 7).
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Figure 7. Transient expression of M. fructicola candidate effector genes inducing cell death in N. benthamiana. From left to
right: MFRU_002g05260, MFRU_030g00580, MfNep2 and empty-vector control. The left leaf halves were infiltrated with a
construct carrying a Myc-tagged effector coding sequence, while right leaf halves were infiltrated with untagged constructs.
Constructs of candidate effector genes MFRU_012g01440, MFRU_034g00500 and MFRU_048g00370 looked similar to the
empty-vector control. Pictures were taken 6 days postinfiltration.
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Table 3. Annotations of candidate effectors and their expression in vitro and in infected plant samples.

Effector Protein Size
(aa) # Cys In Planta

CPM
In Vitro

CPM Ratio P/V PFAM
Domain

Homology to
Other Species

MFRU_001g01030 232 13 14.8 123 0.12 Botrytis, Sclerotinia
MFRU_001g04320 95 0 197 130 1.5 Many fungi
MFRU_001g04590 122 6 34.3 84 0.4 Many fungi

MFRU_001g05460 148 8 16.7 154 0.11
Botrytis, Sclerotinia,

Chaetomium,
Rutstroemia

MFRU_002g00070 246 0 9.8 0.6 15.2 Botrytis

MFRU_002g02190 94 10 150 0.8 181 Aspergillus, Botrytis,
Sclerotinia

MFRU_002g03250 203 0 50 76 0.7 Many fungi

MFRU_002g05260 1 221 10 7.3 8.0 0.9
PF05730
(CFEM

domain)

Botrytis,
Sclerotinia

MFRU_003g02920 190 6 2.1 3.1 0.7 Periconia, Sclerotinia
MFRU_003g05140 129 2 2.4 16.8 0.14 Botrytis, Sclerotinia
MFRU_004g01490 109 2 11.7 45 0.3 None
MFRU_004g01570 180 4 1.4 1.3 1.0 None

MFRU_004g02710 105 6 2.8 1.3 2.1
Aspergillus,
Cladophora,
Sclerotinia

MFRU_004g02780 87 0 0.9 0.6 1.4 None
MFRU_005g03220 83 7 1 0.9 1.1 Botrytis, Sclerotinia
MFRU_008g03050 113 7 3.1 611 0.01 Botrytis, Sclerotinia

MFRU_008g03430 204 0 3.3 8.9 0.4
Pochonia,

Purpureocillium,
Sclerotinia

MFRU_009g00790 177 2 0.7 0.8 1.0 Many fungi
MFRU_012g00980 173 6 4.8 263 0.02 Many fungi

MFRU_012g01440 1 245 4 25.3 325 0.08

PF14021
(tuberculosis
necrotizing

toxin)

Many fungi

MFRU_012g01930 191 4 59 8.7 6.7
Botrytis,

Rutstroemia,
Sclerotinia

MFRU_014g01140 160 8 1 0.7 1.4 Botrytis, Sclerotinia

MFRU_014g02060 247 3 4.1 9.5 0.4

PF05630
(necrosis-
inducing

protein NPP1)

Many fungi

MFRU_015g00570 92 8 5.4 200 0.03 Many fungi

MFRU_017g01630 128 7 15.9 138 0.1

Botrytis,
Diplocarpon,
Rutstroemia,
Sclerotinia

MFRU_022g00070 192 9 1.9 0.8 2.2 Botrytis

MFRU_028g01250 149 5 3.6 35.4 0.12
PF07249
(cerato-

platanin)
Many fungi

MFRU_030g00580 1 160 6 135 14.9 9.1 Botrytis,
Monilinia

MFRU_034g00500 1 82 8 201 52.7 3.8 Botrytis
MFRU_035g00290 167 8 10.9 8.7 1.2 Botrytis, Sclerotinia
MFRU_036g00390 263 18 6.7 49.7 0.13 None

MFRU_048g00370 1 147 9 4.4 1.7 2.6 Many fungi
MFRU_062g00230 126 0 1.0 0.8 1.2 Botrytis, Monilinia

1 genes tested for cell death induction by transient expression in N. benthamiana.

4. Discussion

M. fructicola is considered the most economically damaging Monilinia spp. in stone
fruit since it is over the past decade displacing endemic European Monilinia spp. such as
M. fructigena and M. laxa. Its invasive success may be promoted by its capacity to produce
higher amounts of conidia [4], as compared to other Monilinia species. In the last 2 years,
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several laboratories have initiated efforts to generate genome data for Monilinia species to
gain more knowledge about this fungal genus [22–24,47].

In the present study, PacBio sequencing technology was used to assemble the genome
of M. fructicola strain CMPC6, followed by a rigorous structural annotation based on a
manual curation of the proteome. The PacBio assembly process yielded a lower number of
contigs compared to the assemblies of two other M. fructicola strains generated with Illu-
mina [23,24], which had an automated genome annotation of lower quality. An improved
draft genome of M. fructicola strain Mfrc123 was generated using a hybrid assembly strat-
egy, which combined both Illumina and PacBio technologies [22]. The genome assembly of
strain Mfrc123 was clearly improved in terms of contiguity and contained 12,118 genes,
however, for unknown reasons, it had a lower BUSCO score than one might expect for a
near-chromosome-size assembly. The genome assembly of strain CPMC6 sequenced in
this study had similar numbers of genes based on automated prediction tools. However,
the number of trustworthy, high-quality gene models was reduced to 10,086 by a manual
curation effort. The 2857 gene models that were deleted contained several types of errors
caused by incorrect translation start site selection, improper prediction of splice junction
and pseudogenes, among others. The resulting number of 10,086 genes is consistent with
other Monilinia species such as M. laxa (9567 genes [52]) and M. fructigena (10,502 genes [53]),
however, both latter genomes were also not manually curated. Other Sclerotiniaceae family
members from the genera Botrytis, Sclerotinia and Sclerotium for which manually curated
proteomes have been generated contain between 11,107 and 11,963 genes [35,37,54], at least
1000 genes more than M. fructicola strain CMPC6. The accurate structural and functional
annotation of the M. fructicola genome will be a key asset in transcriptome studies of
infected plant material and will enable functional comparisons of physiological processes
in the pathogen during infection of different host species and tissues (flowers, fruit, leaves
or twigs).

The M. fructicola genome contains a set of 31 BGCs encoding enzymes involved in
the synthesis of secondary metabolites, substantially fewer than Botrytis species that have
around 40–50 clusters [37]. The biosynthetic cluster for botcinic acid (BOA) in B. cinerea
contains 13 genes at the start of Chr1, whereas the BOA genes in S. sclerotiorum are divided
over two chromosomal locations on Chr5 (genes BOA1 and BOA2) and Chr15 (BOA3-
13) [37]. Other Botrytis species also contain a cluster of 13 BOA genes, however, in different
genomic locations and phylogenetic analysis, it was shown that BOA clusters in B. cinerea
and B. sinoallii were acquired by horizontal transfer from an ancestral taxon closely related
to B. aclada or B. porri [37]. The analysis of the M. fructicola genome shows that the BOA
genes are dispersed over two chromosomal clusters, similar to S. sclerotiorum and distinct
from the Botrytis species. The configuration of both clusters is syntenic between M. fructicola
and S. sclerotiorum, both for the BOA genes and the genes flanking the clusters, but distinct
from the configuration in Botrytis spp. The configuration of BOA genes in M. fructicola and S.
sclerotiorum probably represents the ancestral configuration in the Sclerotiniaceae. Clustering
of all 13 BOA genes is a specific feature of Botrytis spp., and probably resulted from a
physical reassorting of the ancestral clusters during the divergence of the Botrytis lineage
from other Sclerotiniaceae. Within the genus Botrytis, the BOA cluster has subsequently
migrated to distinct chromosomal locations by independent rearrangement events [37].

One characteristic of pathogens with a necrotrophic lifestyle is their ability to de-
compose complex plant carbohydrates by the secretion of CAZymes, which release sugar
monomers that serve as carbon sources. The B. cinerea and S. sclerotiorum genomes con-
tain 367 and 346 genes encoding putative CAZymes, respectively, which include 106 and
118 associated with plant cell wall (PCW) degradation [55]. M. fructicola contains 90 genes
encoding PCW degrading enzymes, fewer than the above close relatives but almost double
the number in the unrelated postharvest pathogen P. digitatum [56]. M. fructicola has fewer
genes encoding hemicellulose degrading enzymes than S. sclerotiorum or B. cinerea and this
could be related with its preference to infect fruit (predominantly rich in pectins) rather
than vegetative tissues, which contain more hemicelluloses than fruit. This is consistent



Genes 2021, 12, 568 12 of 15

with the observation that M. fructicola grows better on pectin-based media [57] than on
xylan and cellulose, with the highest growth rate in apple pectin medium [58].

The importance of the capacity to degrade pectin (the major carbohydrate in Prunus
fruit) for M. fructicola could be reflected in the number of polygalacturonases (PGs) belong-
ing to family GH28. Similar observations were reported for the tomato-Rhizopus stolonifer
interaction in which the majority of differentially expressed genes encoding PCW degrad-
ing enzymes contribute to pectin degradation [59]. All Sclerotinia and Botrytis species
analysed contain 17–19 GH28 genes [37,60] and also M. fructicola contains 18 GH28 genes.
In M. laxa, only one PG was identified in the exoproteome [61] but two PG genes were
transcriptionally induced in infected nectarine fruit [62]. In B. cinerea, the deletion of either
BcPG1 or BcPG2, separately, resulted in virulence reduction on several host plants [63,64].
Functional molecular-genetic information about the importance of PCW degrading en-
zymes in Monilinia species is only available for the MfCut1 gene. Overexpression of this
gene resulted in higher virulence of the pathogen [20]. The structural and functional
annotation performed in this study, in combination with detailed transcriptome analyses
of infected plant tissue will help characterize the genes encoding PCW-degrading enzymes
and prioritize genes for knockout studies.

It is well established that fungal plant pathogens secrete many effector proteins,
which are very important for pathogenesis in fungi with biotrophic, hemi-biotrophic
and necrotrophic lifestyles. The present study aimed to identify the M. fructicola effector
repertoire and to focus on cell death-inducing proteins, which can contribute to virulence.
To our knowledge, there are no studies yet on the effector repertoire of Monilinia species.
Studies in B. cinerea and B. elliptica focused on the capacity of necrosis and ethylene-
inducing proteins (NLPs) to induce host cell death and on the role of NLPs in pathogenicity.
However, in both fungi, single knockout mutants in Nep1 and Nep2 were not affected
in virulence [16,65]. Another B. cinerea cell death-inducing effector studied was a cerato-
platanin protein (Bcspl1) encoded by the Bcspl1 gene, which was highly expressed in
infected plant samples [18]. Bcspl1 knockout mutants were generated and displayed
reduced virulence in different hosts [18]. In the case of M. fructicola, the accurate structural
and functional annotation of the genome enabled us to define a list of secreted effector
proteins that can be analysed for functions in virulence. In this study, we showed that
Mfru030g00580 and Mfru020g05260 proteins were able to induce a cell-death response in
N. benthamiana leaves. The Mfru030g00580 gene has homologs in 17 Botrytis species but
neither in S. sclerotiorum nor in S. cepivorum, while the Mfru020g05260 gene has homologs in
Sclerotinia and Botrytis species and in M. fructigena. The function of both genes in these other
Sclerotiniaceae is unknown. The roles of effectors in M. fructicola could be diverse, either in
suppressing host immune responses during the early, biotrophic phase of the infection or
in inducing plant cell death, possibly by host-specific programmed cell death induction
in the necrotrophic phase [10]. The experiments in this study on cell death induction in
N. benthamiana will need to be expanded to stone fruit tissues, however, heterologous
protein expression by agroinfiltration in Prunus species remains to be developed. An
alternative strategy for heterologous protein production might be via recombinant plant
viruses. Tobacco Rattle Virus can replicate in Prunus [66], and it may be feasible to use
modified TRV constructs for expressing M. fructicola effector proteins in Prunus leaves
and thereby test their biological activity. Besides testing the cell death-inducing activity
of M. fructicola effector proteins, their role in virulence can be analysed with the use of
knockout mutants using a CRISPR-Cas9-based transformation protocol recently described
for Botrytis cinerea [67].

The high quality of the M. fructicola CMPC6 genome assembly and its structural
and functional annotation will enable to gain deeper knowledge on the genes involved
in virulence and provides valuable information for studies on the genome biology and
evolution of the genus Monilinia and the family Sclerotiniaceae, which contain many dozens
of phyto-pathogenic fungi of great economical relevance worldwide.
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