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Abstract 19 

Arthropods are the most diversified animals on Earth. The morphology of the 20 

digestive system has been widely studied in insects; however, crustaceans have received 21 

comparatively little attention. This study describes the hindgut tract of the common 22 

spider crab Maja brachydactyla Balss, 1922 in larvae and adults using dissection, light 23 

and electron microscopical analyses. The hindgut tract maintains a similar general shape 24 

in larvae and adults. Major differences among stages are found in the morphology of 25 

epithelial cells and microspines, the thickness of the cuticle and connective-like tissue, 26 

and the presence of rosette glands (only in adults). Here we provide the  description of 27 

the sub-cellular structure of the folds, epithelium (conformed by tendon cells), 28 

musculature, and microspines of the hindgut of larvae and adults of M. brachydactyla. 29 

The morphological features of the hindgut of M. brachydactyla is compared with those 30 

of other arthropods (Insecta, Myriapoda and Arachnida). Our results suggest that the 31 

morphology of the hindgut is associated mainly with transport of faeces. In adults, the 32 

hindgut may also exert an osmoregulatory function, as described in other arthropods. At 33 

difference from holometabolous insets, the hindgut of M. brachydactyla (Decapoda) 34 

does not undergo a true metamorphic change during development, but major changes 35 

observed between larval and adult stages might respond to the different body size 36 

between life stages. 37 

Keywords: Arthropoda; larval development; rosette glands; cuticular microspines; 38 

tendon cells  39 
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1. Introduction 40 

Arthropods are the most diversified animals on Earth, with an estimated global 41 

richness of 6–8 million species (ØDegaard 2000; Stork et al. 2015). The alimentary tract 42 

of all arthropods shares a number of common traits, mainly subdivision into foregut, 43 

midgut and hindgut (Yoshikoshi 1975; Schultz and Kennedy 1976; Terra 1990; 44 

Felgenhauer 1992; Klann and Alberti 2010; Klowden 2013; Davie et al. 2015; Nardi et 45 

al. 2016). Since arthropod diversity is concomitant with diverse feeding regimes, the 46 

morphology of their alimentary tract is equally diverse responding to the phylogeny and 47 

the feeding strategies (Wigglesworth 1972; Klowden 2013; Watling 2013; Terra and 48 

Ferreira 2020). For example, the foregut of carabid beetles varies from a grinding 49 

gizzard when intake consists of insect pieces, to a muscular pump in semi-fluid feeders 50 

with pre-oral digestion (Forsythe 1982), the phasmids ("stick" and "leaf insects") have 51 

an alimentary tract which midgut caeca are absent in related orders, probably reflecting 52 

the evolutionary and dietary constrains of the group (Shelomi et al. 2015), and in 53 

hemipterans ("stink" and "assassin bugs") the ultraestructure of the epithelial midgut 54 

cells is more correlated with the phylogeny than with the feeding habits (Santos et al. 55 

2017). The digestive system of the crustaceans is also constrained by phylogeny and 56 

feeding. Considering the example of the foregut, the shape of the gastric mill of land 57 

crabs varies between carnivorous and herbivorous species (Allardyce and Linton 2010), 58 

while in mysids ("opossum shrimps") it is dominated by spines and setae which type 59 

and distribution is apparently correlated with the diet (Metillo and Ritz 1994), and in 60 

amphipods ("beach hoppers" and "sand fleas"), despite being a "simple" tube with 61 

channels and setae screens, it showed to be highly divergent when comparing species 62 

with different food preferences(Coleman 1991; Coleman 1992; Coleman 1994).  63 

 64 
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The hindgut is the terminal section of the digestive system of the arthropods. In 65 

Decapoda (crabs, lobsters, prawns and related taxa) it is probably one of the digestive 66 

system organs that received less attention, as reflected by several reviews (Ceccaldi 67 

1989; Felgenhauer 1992; Icely and Nott 1992; Watling 2013; Davie et al. 2015). This 68 

organ is generally described as a simple tube lined internally by a cuticle, involved in 69 

the transport of waste material, osmoregulation, and reabsorption of water and ions 70 

(Phillips et al. 1987; Ceccaldi 1989; Felgenhauer 1992; Icely and Nott 1992; Watling 71 

2013; Davie et al. 2015). More than a "simple" tube, in decapods the hindgut shows 72 

several interesting features: 1) the hindgut is longitudinally folded (Barker and Gibson 73 

1977; Barker and Gibson 1978; Harris 1993b); 2) the cuticle projects microspines 74 

pointed backward, probably to protect the cuticle and to help the faecal movement 75 

(Elzinga 1998; Chisaka et al. 1999); 3) a layer of connective-like tissue surrounds the 76 

epithelium, musculature, and glands (Barker and Gibson 1977; Barker and Gibson 77 

1978); 4) it has two main types of musculature: inner longitudinal muscles placed inside 78 

the folds, and outer circular muscles in the periphery, their role is to generate the wave 79 

movements to excrete the waste material (Chisaka et al. 1999); and 5) rosette or 80 

tegumental glands located below the epithelium along the entire hindgut length, its role 81 

is unclear (Barker and Gibson 1977; Barker and Gibson 1978). Little information is 82 

available regarding the sub-cellular structure of the hindgut, even if higher taxa are 83 

considered. In this sense, the cuticle and epithelial cells have been described in crabs 84 

and lobsters (Mykles 1979), woodlouses (Bogataj et al. 2018), and the strange 85 

mystacocarids (Herrera-Alvarez et al. 2000); and the rosette glands were described in 86 

the ghost shrimps (Felder and Felgenhauer 1993). 87 

The morphology of the alimentary tract, including the hindgut, during larval 88 

stages has been widely documented in numerous insect species (Maxwell 1955; Areekul 89 
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1957; Jones 1960; Judy and Gilbert 1969; Mall 1980; Rowland and Goodman 2016). In 90 

decapods, the morphology of the alimentary tract of larval stages has been studied in 91 

clawed lobsters and crayfishes (Hinton and Corey 1979; Factor 1981), hermit and king 92 

crabs (Williams 1944; Abrunhosa and Kittaka 1997), true crabs (Schlegel 1911; 93 

Jantrarotai and Sawanyatiputi 2005), spiny lobsters(Mikami et al. 1994), and prawns 94 

and shrimps (Lovett and Felder 1989; Tziouveli et al. 2011). However, these studies 95 

devoted little to none attention to the morphology of the hindgut tract and its ontogeny. 96 

Thus far, the majority of those studies are light microscopy descriptions in which the 97 

hindgut is reduced to a simple tube with cuticle. In holometabolous insects, the hindgut 98 

have been more detailed described showing radical transformations during the 99 

metamorphosis, e.g.in wasps and bees it elongates, convolutes, and differentiates into 100 

ileum and rectum (Green 1933; Gonçalves et al. 2017), while in moths the hindgut 101 

becomes an enlarged and coiled tube with a rectal sac (Judy and Gilbert 1969; Rowland 102 

and Goodman 2016); such changes are associated with drastic changes in lifestyle and 103 

diet (Rowland and Goodman 2016). Since several decapods also undergo a drastic 104 

metamorphosis (Martin et al. 2014), could a detailed description of the larval hindgut 105 

reveal some degree of transformative change? 106 

The common spider crab Maja brachydactyla Balss, 1922 is a true crab 107 

(Brachyura) native from the coastal waters of the Atlantic Europe (Abelló et al. 2014). It 108 

has a high economic and ecological significance, supporting fisheries along the NE 109 

Atlantic coasts (Spain, Portugal, France, Ireland and UK). The high fishing pressure 110 

tolerated by populations of this crab (Freire et al. 2002), together with its growth and 111 

reproductive characteristics (González-Gurriarán et al. 1995; Andrés et al. 2007; Andrés 112 

et al. 2008; Andrés et al. 2010; Guerao and Rotllant 2010; Simeó et al. 2015) define the 113 

species as potentially interesting for aquaculture. This species also shows interesting 114 
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particularities as a model species to study the larval development of marine decapods, 115 

including easy adult culture and spawning, high fecundity and a larval development that 116 

requires around two weeks at 21 °C to be completed without special requirements 117 

(Castejón et al. 2018b; Castejón et al. 2019b). The larval development consists in two 118 

planktonic zoeal stages (zoea I and zoea II), and a single transitional planktonic-benthic 119 

megalopa stage that metamorphoses to benthic juvenile (Guerao et al. 2008). Several 120 

digestive organs of M. brachydactyla during larval and adult stages have been described 121 

in previous studies, e.g. the general digestive tract anatomy (Castejón et al. 2018a), 122 

oesophagus (Castejón et al. 2018c), stomach (Castejón et al. 2015; Castejón et al. 123 

2019c), and midgut gland or hepatopancreas (Castejón et al. 2019a).  124 

Following the previous studies realized on this species, here we describe in 125 

detail the hindgut tract in the common spider crab Maja brachydactyla Balss, 1922 in 126 

larval and adult stages, excluding the rectum, combining different techniques: 127 

dissection, and light and electron microscopical analyses. The hindgut morphology was 128 

compared between larval stages and adults and discussed with information available for 129 

other arthropod taxa. 130 

2. Material and methods 131 

2.1 Adult and larval culture system 132 

Local enterprises (CADEMAR S.COOP.R.L., Tarragona, Spain; FUNDACIÓN 133 

LONXANET, A Coruña, Spain) provided the adult specimens. They were transported 134 

to the Institut de Recerca i Tecnologia Agroalimentàries (IRTA, Sant Carles de la 135 

Ràpita, Tarragona, Spain). The broodstock was maintained in 2,000 L cylindrical tanks 136 

connected to a recirculation unit system: 3.5 m3 h-1 renewal rate,  18 ± 1 °C, 35 ± 1 psu, 137 

12 light h:12 dark h photoperiod, and fed with fresh and frozen mussels (genus Mytilus). 138 
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The broodstock tanks were connected to collector units in which the larvae were 139 

recovered ca. 12 hours after hatching. The larvae were maintained in 600 mL glass 140 

beakers placed inside 360 L tanks (96 x 96 x 40 cm) used as incubation chambers with 141 

the following conditions: 21 ± 1 °C, 35 ± 1 psu, 12 light h:12 dark h photoperiod. The 142 

larvae were fed with Artemia sp. nauplii and metanauplii (INVE Aquaculture Nutrition, 143 

Salt Lake UT, USA). The larvae were sampled daily. The larvae reached the zoea II 144 

stage in 3 days, the megalopa stage in 6 days, and the first juvenile in 11-12 days. 145 

2.2 Gross morphology 146 

An adult female was placed for 45 min in ice for sedation before dissection to 147 

show the alimentary tract. The alimentary tract was fixed in formaldehyde 4% and 148 

photographed using a digital camera (Panasonic DMC-TZ3, Kadoma, Japan). Around 149 

80 larvae were fixed in formaldehyde 4% and dissected to show the midgut-hindgut 150 

junction as starting point to measure the hindgut length. Then, a Nikon SMZ800 151 

stereomicroscope was used to show by transparency the hindgut through the pleon. The 152 

total length of the hindgut was measured as the distance from the midgut-hindgut 153 

junction to the anus employing AnalySIS® software tools (Soft Imaging System, 154 

Münster, Germany). The total length of the hindgut was measured in four to six larvae 155 

per day of development. 156 

2.3 Light microscopical analysis  157 

The whole larvae and portions of the hindgut tract of the adults were fixed with 158 

Davidson's fixative (ethanol absolute: seawater: formaldehyde 37%: glycerol: glacial 159 

acetic acid in proportion 3: 3: 2: 1: 1) during 24 h. The material was dehydrated in an 160 

increasing graded ethanol series and embedded in paraffin using a paraffin processor 161 

(AP208, Myr, Spain). The paraffin blocks were cut into 2 µm slices (microtome Leica 162 

RM2155, Wetzlar, Germany). The slices were stained using: 1) Hematoxylin and Eosin 163 
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(H-E) to show the general morphology; 2) Periodic Acid–Schiff (PAS) with Methylene 164 

Blue to reveal substances with affinity to neutral polysaccharides and 165 

mucopolysaccharides; 3) Periodic acid–Schiff (PAS) combined with Alcian Blue (pH 166 

2.5) and contrasted with Hematoxylin to reveal the presence of acid 167 

mucopolysaccharides; and 4) Mallory's Trichrome stain (Acid Fuchsine, Orange G and 168 

Aniline Blue stains) to visualize the structure of the muscular and connective tissues. 169 

The observations were realized on the zoea I, zoea II, megalopa, and adult stages, using 170 

an optical microscope (Leica LB30T 111/97, Wetzlar, Germany) with a camera 171 

(Olympus DP70 1.45 Mpx) and an image analyzing system (DP Controller 2.1.1.83 and 172 

DP Manager 2.1.1.163; Olympus). 173 

2.4 Electron microscopical analysis 174 

The whole larvae and portions of the adult hindgut tract were fixed in a solution 175 

of cacodylate buffer (0.1 mol L-1 pH 7.4) with 2% paraformaldehyde and 2.5% 176 

glutaraldehyde; the samples were maintained in total darkness at 4 °C for 12 h. Then, 177 

they were rinsed twice with cacodylate buffer and post-fixed in 1% osmium tetroxide 178 

solution in cacodylate buffer. After the post-fixation the samples were dehydrated in an 179 

increasing graded series of acetone. The transmission electron microscopy required the 180 

embedding of the post-fixed samples in Spurr’s resin and cut into semi-thin (0.5 µm) 181 

and ultrathin (50-70 nm) sections with an ultramicrotome (Leica UCT, Wetzlar, 182 

Germany). Before observation, grids were contrasted with uranyl acetate and lead 183 

citrate. The observations were realized on the megalopa and adult stages using a JEOL 184 

EM-1010 electron microscope at 80 kV equipped with an image analysis system 185 

(AnalySIS, SIS, Münster, Germany). The scanning electron microscopy required the 186 

critical-point-drying of the post-fixed samples, then they were mounted on SEM stubs 187 

with self-adhesive stickers and coated with carbon. The observations were realized on 188 
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the zoea I and adult stages using a JEOL JSM-7001F scanning electron microscope. The 189 

post-fixative treatment and TEM and SEM observations were realized at CCiTUB 190 

(Hospital Clinic, University of Barcelona, Spain). 191 

3. Results 192 

Gross morphology. The hindgut tract of larvae and adults is a large tube that 193 

runs along the length of the animal from the midgut-hindgut junction (located in the 194 

middle of the cephalothorax length) to the rectum (Fig. 1A-B). During the larval 195 

development (zoea I to megalopa), the hindgut tract maintains a similar morphology, 196 

cellular organisation and total length (mean length = 1.7 ± 0.1 mm; Fig. 1C). The gross 197 

morphology of the hindgut tract shares certain features between larvae and adults: 1) the 198 

hindgut lumen has a stellate shape with radial symmetry caused by the presence of five 199 

main longitudinal folds (Figs. 2C-D; 3C); 2) the lumen is lined by a simple epithelium 200 

covered by a cuticle (Figs. 2-3) with microspines projected backward (Fig. 2D; 4-5; 7); 201 

and 3) the inner longitudinal muscles are located inside the folds, while the outer 202 

circular muscles surround the hindgut perimeter (Figs. 2D; 3C-E).  203 

Epithelial cells. The epithelial cells of larvae are generally squamous and 204 

surround the inner longitudinal muscle cells located in the centre of the fold (Figs. 4B; 205 

5). The apical membrane forms short microvilli-like extensions projected toward the 206 

cuticle (Fig. 5B-D); the lateral membranes show electron-dense epithelial-to-epithelial 207 

cell junctions located near to the cell apex (Fig. 5A-C); while the basal membrane 208 

shows highly electron-dense epithelial cell-to-muscle cell hemiadherens junctions (Fig. 209 

5). The cytoplasm contains mitochondria, short globular cisternae of the rough 210 

endoplasmic reticulum, and bundles of fibres structures (Figs. 4B; 5B-C). The epithelial 211 

cells of adults differ considerably from those of larvae. In this regard, they are tall 212 

columnar cells (ca. 30–40 μm height, Figs. 3; 6). The apical membrane shows electron-213 
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dense infolds, we denominated them as "apical complexes" (Fig. 6E). The lateral 214 

membranes have epithelial-to-epithelial cell junctions near the cell apex (Fig. 6D), as 215 

well numerous interdigitations, whose number, size and complexity increases toward 216 

the base of the cell (Fig. 6A-C). The basal membrane is highly infolded (Fig. 6C). The 217 

cytoplasm is rich in PAS-positive granules. The cytoplasm contains mitochondria (ca. 218 

2–3 µm length and 200–300 nm width) concentrated in the supra-nuclear region (Fig. 219 

6B). The cells are crossed by well-developed bundles of fibres structures (Fig. 6F) 220 

extended from the base (Fig. 6C) to the apex of the cell, where they anchor to the 221 

"apical complexes" (Fig. 6E). 222 

Cuticle and microspines. The epithelium of the hindgut tract is covered by a 223 

cuticle. The cuticle of larvae is very thin (Figs. 2; 4-5). Electron-microscopy reveals that 224 

the larval cuticle has an outer electron-dense epicuticle and an inner less electron-dense 225 

procuticle (Figs. 5C). The cuticle of adults accounts for approximately a third of the 226 

epithelial cell height (ca. 12 μm height) and shows an outer epicuticle and an underlying 227 

procuticle (Fig. 3B). The cuticular surface is rich in microspines (Figs. 2D; 4-5; 7), in 228 

which some bacillus-shaped bacteria are occasionally present (Fig. 7C-D). The 229 

microspines of the larval stages are very short (ca. 0.5–1 µm length). The larval 230 

microspines are simple fang-like structures projected backward into the hindgut (Fig. 231 

7B). In contrast, adults show two types of microspines: elongated and sharp microspines 232 

(ca. 4–6 µm; Fig. 7D), and midget and blunt microspines (less than 1µm; Fig. 7D-E). 233 

Microspines can be classified into two types of aggregations: type I, composed of 1–4 234 

elongated microspines (occasionally higher numbers can be observed) and up to 200 235 

midget microspines surrounding the elongated microspines (Fig. 7C-D, F); and type II, 236 

composed of more than 200 midget microspines (Fig. 5E-F). Type I aggregations form 237 
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longitudinal bands in the tip and lateral sides of the hindgut folds, while those belonging 238 

to type II are intercalated between two parallel type I aggregations (Fig. 7A, F). 239 

Connective-like tissue and musculature. The presence of a connective-like tissue 240 

is unclear in the larvae. It may be the single cell layer that surrounds perimeter of the 241 

outer circular musculature (Fig. 2D). In adults, a wide layer of connective-like tissue 242 

surrounds the epithelium, the rosette glands, the inner longitudinal muscles located 243 

inside the folds, and the periphery of the outer circular musculature (Fig. 3C-E). 244 

Occasional haemolymph have been identified in the outer connective-like layer located 245 

on the periphery of the outer circular musculature, probably corresponding to the blood 246 

sinuses denominated  by Wirkner and Richter (2013) (Fig. 3E). The inner longitudinal 247 

musculature has a characteristic organisation in larvae (Figs. 2; 4-5). In a transversal 248 

section, the inner longitudinal muscle cells are columnar and occupy the centre of the 249 

folds, being surrounded by a single layer of epithelial cells. The epithelial and inner 250 

longitudinal muscle cells are connected by electron-dense junctions similar to the 251 

hemiadherens junctions described by Bitsch and Bitsch (2002) (Fig. 5). The packs of 252 

myofibrils are located on the apex of the inner longitudinal muscle cells (Figs. 2; 4-5). 253 

In adults, the inner longitudinal musculature comprises numerous bundles located inside 254 

the folds (Fig. 3). The outer circular musculature of larvae and adults forms a thin band 255 

on the periphery of the organ (Figs. 2-4). 256 

Rosette glands. Rosette glands are absent during larval stages (Fig. 2B-D) but 257 

are found during adulthood (Fig. 8A,C). The distribution pattern of the rosette glands is 258 

still unclear (Fig. 3A). Albeit observed along the entire hindgut length, in some 259 

histological sections the rosette glands are very scarce or absent (Fig. 3C-E) and in 260 

others they are very abundant (Fig 8C). These glands are globular clusters of cells 261 

composed of gland cells surrounding a slender central duct, which is formed by duct 262 
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cells (Fig. 8A-B, D-E). The gland cells are pyramidal (Fig. 8A-B, D-E). The cytoplasm 263 

has a foamy appearance due to the abundance of vesicles, whose content has variable 264 

staining affinity (Fig. 8A). The vesicles have a variable degree of fusion among them 265 

and show a variable electron-density (Fig. 8E-F). The gland cells are rich in Golgi 266 

complexes composed of numerous densely packed cisternae (Fig. 8E, G). The central 267 

duct of the rosette glands is formed by cells which cytoplasm does not contain vesicles 268 

(Fig. 8E, H). The central duct is lined by a very thin cuticle (Fig. 8H). 269 

4. Discussion 270 

The hindgut tract of M. brachydactyla is a large, straight tube without 271 

differentiated regions, excluding the rectum. This morphology has been observed in 272 

other crustacean species (Reddy 1937; Pugh 1962; Holdich and Ratcliffe 1970; 273 

Yoshikoshi 1975; McLaughlin 1983; Schmitz and Scherrey 1983; Günzl 1991), and it 274 

differs from that of insects, in which it is subdivided into highly specialised regions, e.g. 275 

pylorus and ileum (Richins 1938; Areekul 1957; Klowden 2013; Rowland and 276 

Goodman 2016). In Myriapoda, the hindgut is a large tube resembling that described in 277 

the present study (Nardi et al. 2016), while in some Arachnida it is reduced to a short 278 

anal atrium (Mathieson and Lehane 2002; Talarico et al. 2011). The independent 279 

evolution of the digestive system might explain the divergent morphological differences 280 

reported among the above mentioned arthropods. 281 

Our findings reveal that the hindgut of M. brachydactyla larvae is formed by 282 

five folds composed of inner longitudinal muscle cells occupying the centre of each fold 283 

and attached to the epithelial cells, the periphery is surrounded by an outer circular 284 

musculature separated by a thin basal lamina. This morphology has not been reported to 285 

date. Previous studies of decapod larvae did not describe the morphology of the hindgut 286 
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folds (Schlegel 1911; Factor 1981; Mikami et al. 1994; Abrunhosa and Kittaka 1997). 287 

The hindgut morphology of other arthropods differs greatly from that of M. 288 

brachydactyla described herein: 1) in many insects (including larval stages), no muscles 289 

are present inside the folds (Woods 1918; Mathur 1973; Diaz et al. 1998), and 290 

longitudinal and circular muscles occasionally transpose positions between the ileum 291 

and colon (Woods 1918; Potts 1927); 2) in isopods, the musculature forms a square 292 

mesh network (Holdich and Ratcliffe 1970; Holdich and Mayes 1975); and 3) in 293 

tardigrades, the  musculature consists of two pairs of muscles (Dewel and Dewel 1979). 294 

However, if musculature and epithelium are separated by a wide connective-like layer, 295 

then an adult-like morphology is described, which is similar to the reported in several 296 

adult decapods such as crabs (Barker and Gibson 1978; Erri Babu et al. 1982; Heeren 297 

and Mitchell 1997), clawed lobsters (Barker and Gibson 1977), and crayfishes (Chisaka 298 

et al. 1999). The hindgut of M. brachydactyla shows inner longitudinal muscles more 299 

developed than the outer circular muscles. Given these muscular features, we propose 300 

that the main movement of the hindgut involves longitudinal contraction waves. These 301 

waves, helped by folds and microspines, may allow the transport of waste materials, as 302 

discussed below.  303 

The similarities of the hindgut of M. brachydactyla between larval and adult 304 

stages might be a reason to not consider a truly metamorphic change. However, four 305 

major features of the hindgut of M. brachydactyla suffer a certain transformation during 306 

the development: 1) the morphology and ultrastructure of the epithelium, 2) the 307 

morphology of the microspines, 3) the formation of a wide layer of connective-like 308 

tissue, and 4) the apparition of the rosette glands. The role of each one these structures 309 

is discussed below, then a hypothesis to explain such transformation will be proposed. 310 
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The larval epithelial cells have squamous shape and abundant microvilli-like 311 

extensions, the latter are associated with the formation of new cuticle (Dillaman et al. 312 

2013), an expected role considering the short intermoult intervals during the larval 313 

development (Guerao et al. 2010; Pazos et al. 2018). The larval epithelial cells show 314 

two characteristic features: epithelial-to-muscle cell hemiadherens junctions and 315 

bundles of fibres structures; both are associated with an arthropod cell type called 316 

"tendon cells", i.e. specialized epithelial cells that connect the cuticle with the 317 

underlying muscular cells (Nakazawa et al. 1992; Bitsch and Bitsch 2002; Žnidaršič et 318 

al. 2012), which have been identified in insects (Smit and Akster 1974; Reedy and Beall 319 

1993), crustaceans (Nakazawa et al. 1992; Žnidaršič et al. 2012), and arachnids (Smith 320 

et al. 1969; Beadle 1973). The adult epithelial cells show abundant mitochondria in the 321 

apical region, and infolded membranes with lateral junctions. Such features are 322 

associated with the reabsorption of water and ions in several arthropods, including 323 

insects, crustaceans and millipedes (Mykles 1979; Phillips et al. 1987; Nardi et al. 2006; 324 

Nardi et al. 2009; Nardi et al. 2016; Bogataj et al. 2018). Moreover, the fibres structures 325 

of the epithelial cells are more developed in adults than in larvae, and have also been 326 

proposed to be involved in the intracellular transport of water and ions in different 327 

crustacean groups (Komuro and Yamamoto 1968; Witkus et al. 1969; Vernon et al. 328 

1974). Adult cells also have features of tendon cells: fibres structures crossing the cell 329 

height and anchored to conical invaginations of the apical membrane, which are 330 

described in this study as "apical complexes" (Smith et al. 1969; Beadle 1973; 331 

Nakazawa et al. 1992; Reedy and Beall 1993; Žnidaršič et al. 2012). Since the fibres 332 

structures have two potential roles (intracellular transport and mechanical connection), 333 

it raises one question: are both roles inclusive or mutually exclusive? Bogataj et al. 334 

(2018) suggested both roles for the hindgut epithelial cells of the woodlouse. In our 335 
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opinion, the hindgut epithelial cells of the larvae and adults probably are tendon cells, 336 

connecting the muscular action with the cuticle, but in adults the same cells also 337 

develop a sophisticated transport system for osmoregulation.  338 

M. brachydactyla larvae show separate individual microspines, while two types 339 

of aggregations are observed in adults. The presence of microspines in the hindgut is 340 

widely observed among arthropod groups (Tables 1-3). The morphology of microspines 341 

in M. brachydactyla varies spatially, as occurs in other adult malacostracans (Chisaka et 342 

al. 1999; Moon and Kim 1999), insects (Byers and Bond 1971; Elzinga and Hopkins 343 

1995) and millipedes (Miyoshi et al. 2005). The role of microspines is unknown; 344 

however, it has been proposed that they: 1) attach the peritrophic membrane, thus 345 

promoting the backward movement of faeces (Hopkin and Nott 1980; Felder and 346 

Felgenhauer 1993) and preventing their forward movement under conditions of anal 347 

water intake (Felder and Felgenhauer 1993); 2) shred the peritrophic membrane, thereby 348 

facilitating water and ion absorption (Byers and Bond 1971); and 3)  serve as binding 349 

sites for microbial communities (Harris 1993a; Cazemier et al. 1997; Elzinga 1998; 350 

Nardi et al. 2016).We agree with these roles for microspines in M. brachydactyla, 351 

excepting the shredding of the peritrophic membrane, since it is excreted undamaged. 352 

The rosette glands of the hindgut of M. brachydactyla were observed only in 353 

adults. Similar glands appear in the hindgut of other adult decapods (Barker and Gibson 354 

1977; Barker and Gibson 1978; To et al. 2004), as well associated to other body 355 

structures, e.g. shrimp gills (Doughtie and Rao 1982) and mouthparts (Alexander 1989), 356 

crab oesophagus (Castejón et al. 2018c), ghost shrimp pereiopods (Dworschak 1998), 357 

and clawed lobster pleopods (Talbot et al. 1991). Despite being distributed widespread 358 

within the decapods, to our knowledge the presence of those glands in non-crustacean 359 

arthropods is non-described. We did not found evidence of duct openings on the 360 
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epithelium or cuticle, coinciding with previous authors (Barker and Gibson 1977; 361 

Barker and Gibson 1978; To et al. 2004). The fact that rosette glands are associated to 362 

different body structures in other decapods might suggests that they are different glands 363 

sharing morphology and staining affinity, but looks unlikely. The staining affinity of 364 

rosette glands coincides with that observed in previous studies done in other crabs, 365 

which reported a content comprising neutral and acid mucopolysaccharides, including 366 

sulphated mucopolysaccharides, sulphated sialomucins and hyaluronic acid (Erri Babu 367 

et al. 1979; Trinadha Babu et al. 1989). Considering their location and the type of 368 

secretion, the rosette glands located in the hindgut could produce lubricant barriers 369 

against abrasive and toxic agents and against pathogens. M. brachydactyla presents a 370 

terminal moult after maturation (González-Gurriarán et al. 1993; Corgos et al. 2011), 371 

while larvae moult frequently (Guerao et al. 2010). Therefore, adults will benefit from 372 

the protection of this secretion, while the secretion and rosette glands are redundant in 373 

larvae as their cuticle is renewed regularly. Further studies are necessary to elucidate the 374 

role of the rosette glands. 375 

In our opinion, the hindgut of M. brachydactyla does not realize a true 376 

metamorphic change during the development. Still, a few major changes were observed. 377 

In our opinion, these changes can be explained by the animal size, i.e. the carapace 378 

length increases from around 1.1 mm in the the zoea I (Guerao et al. 2008), to more than 379 

150 mm in late juveniles and adults (Guerao and Rotllant 2010). The small size during 380 

the larval stages could facilitate the movement of water and ions through the epithelium 381 

without requiring a sophisticated transport system like the adults. Moreover, the smaller 382 

hindgut of the larvae precise thinner musculature to generate the peristalsis required for 383 

excretion, while the adult hindgut requires a more developed musculature to move 384 

larger masses, which in turn requires a wide connective-like tissue and blood irrigation 385 
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for accommodation and maintenance. If the rosette glands participate in the cuticle 386 

maintenance, then their absence during the larval development can be easily explained 387 

because the larvae moult in short time periods, on the contrary moulting and cuticle 388 

restoration ceased when adulthood is reached (González-Gurriarán et al. 1993; Corgos 389 

et al. 2011). The crustacean literature support this hypothesis. Small sized crustaceans 390 

(hindgut diameter 150 µm or less) have a hindgut without connective-like tissue that 391 

resembles the larval hindgut described in this study (Wägele et al. 1981; Schmitz and 392 

Scherrey 1983; Herrera-Alvarez et al. 2000); while big sized crustaceans (hindgut 393 

diameter 800 µm or higher) have a wide hindgut with a developed connective-like tissue 394 

resembling the adult hindgut described in this study (Barker and Gibson 1977; Barker 395 

and Gibson 1978; Erri Babu et al. 1982; Heeren and Mitchell 1997; Chisaka et al. 396 

1999). We suggest two complementary methods to test the proposed hypothesis. The 397 

first method will consists in analysing the hindgut morphology in the entire 398 

development of a big sized species, with special attention to juvenile stages to establish 399 

the start of the formation of the connective-like tissue. Alternatively, the hindgut of taxa 400 

with significant size differences can be compared. In both cases, a size disparity around 401 

two magnitude orders is recommended.  402 
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 701 

Figure 1. Maja brachydactyla. Digestive tract, fixed in 4 % formaldehyde. Adult, the 702 

midgut gland ("hepatopancreas") has been removed (A). Megalopa, the midgut gland 703 

has been removed (B). Average length of the hindgut tract on each day during larval 704 

development (C). Abbreviations: Jv, juvenile; Mg, megalopa; ZI, zoea I; ZII, zoea II. 705 

Figure 2. Maja brachydactyla. Hindgut tract of larvae. Light and electron microscopical 706 

analyses. General diagram (A). Zoea II, PAS contrasted with Methylene Blue (B-C): 707 

longitudinal (B) and transversal sections (C). Megalopa, transversal section, TEM (D). 708 

Abbreviations: C, cuticle; CM, outer circular muscles; CT, connective-like tissue; EC, 709 

epithelial cells; LM, inner longitudinal muscles; Ms, microspines. 710 

Figure 3. Maja brachydactyla. Hindgut tract of adults. Light microscopical analyses. 711 

Mallory's trichrome stain. General diagram (A). Detailed view of the epithelium (B). 712 

Transversal (C) and longitudinal sections (D). Detailed view of the connective-like 713 

tissue, longitudinal section (E). Abbreviations: BS, blood sinus; C, cuticle; CM, outer 714 

circular muscles; CT, connective-like tissue; E, epithelium; Ep, epicuticle; LM, inner 715 

longitudinal muscles; Pr, procuticle. 716 

Figure 4. Maja brachydactyla. Hindgut tract of megalopa larvae. Ultrastructure (TEM) 717 

of the hindgut fold. General diagram (A). General view, transversal section (B). Detail 718 

of the outer circular musculature, high magnification of the square "D" marked in the 719 

picture B (C). Abbreviations: asterisk, epithelial-to-muscle cell junction; BL, basal 720 

lamina; C, cuticle; CM, outer circular muscles; EC, epithelial cell; EEJ, epithelial-to-721 

epithelial cell junction; LM, inner longitudinal muscle cell; Mt, mitochondria; Ms, 722 

microspines; My, myofibrils; RER, rough endoplasmic reticulum. 723 

 724 



29 
 

Figure 5. Maja brachydactyla. Hindgut tract of megalopa larvae. Ultrastructure (TEM) 725 

of the epithelial and muscle cells. Transition from the basal lamina to the epithelial-to-726 

muscle cell junction (A). Detailed view of an epithelial cell (B). Detailed view of an 727 

epithelial-to-epithelial cell junction (C). Detailed view of an epithelial-to-muscle cell 728 

junction (D). Abbreviations: asterisk, epithelial-to-muscle cell junction; BL, basal 729 

lamina; C, cuticle; EC, epithelial cell; EEJ, epithelial-to-epithelial cell junction; Ep; 730 

epicuticle; FS, fibres structures; LM, inner longitudinal muscle cell; Mt, mitochondria; 731 

My, myofibrils of the inner longitudinal muscle cells; Ms, microspines; Mv, microvilli-732 

like extensions; Pr, procuticle; RER, rough endoplasmic reticulum. 733 

Figure 6. Maja brachydactyla. Hindgut tract of adults. Ultrastructure (TEM) of the 734 

epithelial cells. General diagram (A). General view: apex of the cell, supranuclear 735 

region (B), and base of the cell, infranuclear region (C). Cell apex, detail of the 736 

epithelial-to-epithelial cell junction ( D). "Apical complex", high magnification (E). 737 

Mitochondria and fibres structures, high magnification (F). Abbreviations: AC, "apical 738 

complex"; BI, basal invaginations; BL, basal lamina; C, cuticle; EEJ, epithelial-to-739 

epithelial cell junction; LI, lateral interdigitations; FS, fibres structures; Mt, 740 

mitochondria; N, nucleus; RER, rough endoplasmic reticulum. 741 

Figure 7. Maja brachydactyla. Hindgut tract. Microspines (SEM). Distribution of the 742 

microspines in adults, general diagram (A). Zoea I (B). Adult: aggregation type 1 743 

covered by bacillus-shaped bacteria (C), aggregation type 1 with sparse bacteria (arrow-744 

heads) (D), aggregation type 2 (E), and transition between aggregation type 1 and type 2 745 

(F). Abbreviations: AT1, aggregation type 1; AT2, aggregation type 2; EM, elongated 746 

microspines; MM, midget microspines. 747 
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Figure 8. Maja brachydactyla. Hindgut tract. Rosette glands. Adult. General view, PAS 749 

and Alcian Blue contrasted with Hematoxylin (A). General diagram of the rosette 750 

glands (B). Glandular masses (bluish) in the hindgut tract, PAS contrasted with 751 

Methylene Blue (C). General diagram of the gland and duct cells (D). General view of 752 

the gland and duct cells, TEM (E). Detailed view of the vesicles (showing differential 753 

electron-density) of the gland cells, TEM (F). Detailed view of the Golgi cisternae of 754 

the gland cells, TEM (G). Detailed view of the cytoplasm and cuticle lining of the duct 755 

cells, TEM (H). Abbreviations: C, cuticle; CD, central ducts; CT, connective-like tissue; 756 

DC, duct cells; E, epithelium; G, Golgi cisternae; GC, gland cells; RG, rosette glands; 757 

V, vesicles.  758 
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