
biology

Article

Labelling Selective Sweeps Used in Durum Wheat Breeding
from a Diverse and Structured Panel of Landraces and Cultivars

Jose Miguel Soriano 1,* , Carolina Sansaloni 2 , Karim Ammar 2 and Conxita Royo 1

����������
�������

Citation: Soriano, J.M.; Sansaloni, C.;

Ammar, K.; Royo, C. Labelling

Selective Sweeps Used in Durum

Wheat Breeding from a Diverse and

Structured Panel of Landraces and

Cultivars. Biology 2021, 10, 258.

https://doi.org/10.3390/biology

10040258

Academic Editor:

Gustavo Caetano-Anollés

Received: 23 February 2021

Accepted: 23 March 2021

Published: 24 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA),
25198 Lleida, Spain; conxita.royo@irta.cat

2 Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), El Batán, Texcoco 56237, Mexico;
c.sansaloni@cgiar.org (C.S.); k.ammar@cgiar.org (K.A.)

* Correspondence: josemiguel.soriano@irta.cat

Simple Summary: Evaluation of the genetic diversity of a crop species is a critical step for breeding.
Landraces are essential to avoid genetic erosion, and Mediterranean landraces are an important
group of genetic resources due to their high genetic variability, adaptation to local conditions in
rainfed environments, and their resilience to pests and pathogens. This study uses a genome-wide
association approach employing eigenvectors to identify selective sweeps among Mediterranean
durum wheat landraces and a world panel of modern cultivars.

Abstract: A panel of 387 durum wheat genotypes including Mediterranean landraces and modern
cultivars was characterized with 46,161 diversity arrays technology (DArTseq) markers. Analysis
of population structure uncovered the existence of five subpopulations (SP) related to the pattern
of migration of durum wheat from the domestication area to the west of the Mediterranean basin
(SPs 1, 2, and 3) and further improved germplasm (SPs 4 and 5). The total genetic diversity (HT)
was 0.40 with a genetic differentiation (GST) of 0.08 and a mean gene flow among SPs of 6.02. The
lowest gene flow was detected between SP 1 (presumably the ancient genetic pool of the panel)
and SPs 4 and 5. However, gene flow from SP 2 to modern cultivars was much higher. The
highest gene flow was detected between SP 3 (western Mediterranean germplasm) and SP 5 (North
American and European cultivars). A genome wide association study (GWAS) approach using the
top ten eigenvectors as phenotypic data revealed the presence of 89 selective sweeps, represented
as quantitative trait loci (QTL) hotspots, widely distributed across the durum wheat genome. A
principal component analysis (PCoA) using 147 markers with −log10 p > 5 identified three regions
located on chromosomes 2A, 2B and 3A as the main drivers for differentiation of Mediterranean
landraces. Gene flow between SPs offers clues regarding the putative use of Mediterranean old
durum germplasm by the breeding programs represented in the structure analysis. EigenGWAS
identified selective sweeps among landraces and modern cultivars. The analysis of the corresponding
genomic regions in the ‘Zavitan’, ‘Svevo’ and ‘Chinese Spring’ genomes discovered the presence of
important functional genes including Ppd, Vrn, Rht, and gene models involved in important biological
processes including LRR-RLK, MADS-box, NAC, and F-box.

Keywords: Mediterranean basin; genetic diversity; marker trait association; gene flow; eigenGWAS

1. Introduction

Durum wheat (Triticum turgidum L. var. durum) originated in the Fertile Crescent
10,000 years ago and propagated across the Mediterranean basin, arriving in the Iberian
Peninsula from two routes: southern Europe and northern Africa [1,2]. During this mi-
gration, both natural and human selection occurred and new traits allowing adaptation
to the new environments were selected, resulting in the expansion of local landraces [3].
Landraces were broadly cultivated until the 1960s, when they were replaced by new and
improved semi-dwarf cultivars arising from the Green Revolution. However, due to their
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wide genetic diversity, landraces are key for avoiding genetic erosion [4] and are valuable
for crop breeding, providing new alleles for the improvement of important agronomic
traits. Mediterranean landraces are a valuable group of genetic resources due to their
adaptation to their regions of origin, their huge genetic diversity [5,6], their resilience to
abiotic stresses [7], and their resistance to pests and diseases [8–10]. Natural and artificial
selection result in adaptive changes to the populations that can be followed at the allele
level by the identification of loci under selection [11]. Identification of loci under selection
has been performed classically by different methods, including the genetic differentiation
(FST) scan that has been widely applied in crops [12]. Recently, Chen et al. [13] developed a
single-marker regression approach based on principal component analysis (PCA), eigenG-
WAS. In this approach, similar to classical GWAS, the phenotype is substituted with the
eigenvectors to use the genetic variation in the population to identify selection signals.
EigenGWAS has been successfully applied in crop species such as maize [14], wheat [15],
and barley [16].

In the last few years, high-throughput genotyping technologies such as single nu-
cleotide polymorphism (SNP) arrays and genotyping by sequencing (GBS) platforms,
including diversity arrays technology (DArTseq), have been widely used in wheat to
identify marker–trait associations (MTAs) in highly saturated maps [17–20]. Additionally,
the progress in whole genome sequencing of emmer wheat [21], wheat [22], and durum
wheat [23] allows for the understanding of the genetic diversity and adaptation patterns in
wheat, as well as the discovery of genes of interest for breeding.

The main objectives of the current study were: (a) to analyze the genetic diversity and
population structure in a GWAS panel, including Mediterranean durum wheat landraces
and modern cultivars from the main durum wheat-growing regions in the world; and (b)
to identify the selection patterns in the durum wheat genome driving the differentiation
among Mediterranean landraces and modern cultivars.

2. Materials and Methods
2.1. Plant Material

The diversity panel was comprised of a panel of 387 durum wheat genotypes, in-
cluding 183 landraces from 24 Mediterranean and eastern European countries and a set of
commercial varieties from 24 countries, representing the main durum wheat growing areas
in the world (204 genotypes) (Supplementary Table S1). The landrace populations were
supplied by public gene banks (the Centro de Recursos Fitogenéticos CRF-INIA, Spain, the
ICARDA Germplasm Bank, and the USDA Germplasm Bank) and were increased in bulk
and purified to select the dominant type (frequency higher than 80%). Modern cultivars
were provided by the IRTA durum wheat collection, international centres (CIMMYT and
ICARDA), and breeding companies.

2.2. Genotyping

DNA was isolated from fresh leaf samples according to Doyle and Doyle [24]. High-
throughput genotyping was performed at Diversity Arrays Technology Pty Ltd. (Canberra,
Australia) (http://www.diversityarrays.com, accessed on 1 February 2020) with the DArT-
seq GBS platform [25]. A total of 46,161 markers were used to genotype the association
mapping panel, including 35,837 presence-absence variants (PAV) and 10,324 SNPs. The
consensus map of wheat v4, available at https://www.diversityarrays.com/technology-
and-resources/genetic-maps/ (accessed on 1 February 2020) (Diversity Arrays Technology
Pty Ltd., Canberra, Australia), was used for mapping purposes.

2.3. Data Analysis

Polymorphic information content (PIC) values were calculated using Cervus software
v3.0.7 [26]. Genetic diversity was estimated as total diversity (HT) [27] using Arlequin
3.5.2.2 [28]. The coefficient of genetic differentiation (GST) was calculated as GST = DST/HT,
where DST is the genetic diversity between populations, calculated as DST = HT − HS,
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with HS as the mean genetic diversity within populations. Gene flow was estimated as
Nm = 0.5 (1 − GST)/GST according to McDonald and McDermott [29].

Linkage disequilibrium (LD) was estimated using TASSEL 5.0 [30] as the square of
marker correlations (r2) for mapped markers at a significance level of p < 0.001 with a
sliding window of 50 cM. The r2 values were plotted against the genetic distance and a
locally estimated scatterplot smoothing (LOESS) curve was fitted to determine the distance
at which the curve intercepts the line of a critical value of r2 to estimate the LD decay. The
critical value of r2 was determined as the mean r2 for each genome.

The genetic structure of the association mapping panel was estimated using the
Bayesian clustering algorithm implemented in the software STRUCTURE v2.3.4 [31], which
uses an admixture model with burn-in and Monte Carlo Markov chain for 10,000 and
100,000 cycles, respectively. The Evanno method [32] was used to calculate the most likely
number of subpopulations using the online software STRUCTURE HARVESTER [33]. Prin-
cipal coordinates analysis (PCoA) based on genetic distance was calculated using GenAlEx
6.5 [34]. Diversity analysis between genotypes was defined by the simple matching coef-
ficient [35] using DARwin software v.6 [36]. The un-rooted tree was calculated using the
neighbor-joining method [37].

2.4. Identification of Selective Sweeps

Identification of loci under selection among landraces and modern cultivars was
performed by GWAS utilizing the eigenvectors corresponding to the top ten eigenvalues as
the phenotype data, similar to the eigenGWAS [13], but using a mixed linear model (MLM)
with TASSEL software version 5.0 [29]. The MLM accounted for population structure using
a principal component analysis (PCA) matrix with 6 principal components as the fixed
effect and a kinship (K) matrix as the random effect (PCA + K) at the optimum compression
level. MLM followed the equation:

y = Xβ + Zu + e

where y is the trait value (the eigenvector in this case), β is the fixed effect for the marker,
and u is a vector of random effects not associated with the markers; X and Z are incidence
matrices linking y to β and u. Finally, e is the undetected vector of the random residual. In
addition, the heading date was incorporated as a cofactor in the analysis. Two thresholds
were established for considering marker–trait association (MTA) significance. A highly
significant threshold was established using a false discovery rate (FDR) threshold [38]
at p < 0.05, and a moderate threshold at −log10 p = 3. In order to simplify the GWAS
results, QTL hotspots grouping closely located MTAs were determined based on LD
decay. Graphical representations of Manhattan plots were carried out using the R package
“CMplot” (http://www.r-project.org (accessed on 15 April 2020)).

2.5. Gene Annotation

Gene models for QTL hotspots were identified using the high-confidence gene anno-
tation for the bread wheat genome reference sequence at https://wheat-urgi.versailles.
inra.fr/Seq-Repository/Assemblies (accessed on 27 August 2020), the durum wheat refer-
ence sequence at https://wheat.pw.usda.gov/GG3/jbrowse_Durum_Svevo (accessed on
27 August 2020), and the wild emmer reference sequence of ‘Zavitan’ at https://wheat.pw.
usda.gov/GG3/jbrowse_Zavitan (accessed on 27 August 2020).

3. Results
3.1. Genetic Diversity and Population Structure

Overall, 46,161 DArTseq markers were used to genotype the set of 387 durum wheat
genotypes, of which 183 corresponded to Mediterranean and eastern Europe landraces and
204 to modern cultivars. To diminish the risk of false positives, markers and accessions
were analyzed for the presence of duplicated patterns and missing values.

http://www.r-project.org
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies
https://wheat.pw.usda.gov/GG3/jbrowse_Durum_Svevo
https://wheat.pw.usda.gov/GG3/jbrowse_Zavitan
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Of the 35,837 presence/absence variants (PAV), 24,188 had a known map position in
the wheat v4 consensus map (Diversity Arrays Pty Ltd., Canberra, Australia). Of these,
4745 markers with a minor allele frequency (MAF) lower than 5% were excluded from
the analysis, resulting in 19,443 PAVs remaining. Of 10,324 SNPs, 6957 were located on
the wheat v4 consensus map. Of these, 1260 markers with missing data higher than 30%
and 1011 markers with MAF < 5% were excluded from the analysis, resulting in a total of
4686 SNPs. Moreover, 413 markers were found to be duplicated among SNPs and PAVs, so
the corresponding PAVs were discarded, leaving a total of 23,716 markers for the analyses.
Forty-one percent of the markers corresponded to genome A and 59% to genome B. The total
length of the map was 2129.2 cM, with a mean coverage of 11 markers/cM. Polymorphic
information content (PIC) values were estimated for each chromosome, ranging from 0.26
in chromosome 7A to 0.29 in 7B, with an average of 0.28. PIC values showed a skewed
distribution, with 48% of the markers having a PIC of <0.3 (Supplementary Figure S1).

Linkage disequilibrium (r2) was estimated for locus pairs in genomes A and B. A total
of 471,319 and 681,389 possible pair-wise loci were found for genomes A and B, respectively.
The percentage of locus pairs showing LD at p < 0.001 was 43% for both genomes. Mean
values for r2 were 0.12 and 0.11 for genomes A and B, respectively. These means were used
as a threshold for estimating the intercept of the LOESS curve to determine the distance at
which LD decays in each genome. LD decays were established at 1 cM for both genomes
(Figure 1).
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Analysis of population structure was performed according to the distance of LD decay
using only SNP markers showing less than 25% of missing data, minor allele frequencies
higher than 10%, and PIC values higher than 0.3. A total of 1695 markers were used.
The highest value for ∆K was observed for K = 2, followed by K = 5 (Figure 2A). In
the first case, the Bayesian clustering method used the Evanno test [32] to separate the
genotypes by their origin (landraces vs. modern cultivars). Considering a membership
coefficient of q > 0.6, the first group comprised 201 genotypes, 19 of them modern cultivars
(9%) and 182 (91%) landraces. The second group included 160 modern cultivars. Finally,
26 genotypes remained as admixed (one landrace and 25 modern cultivars). When K = 5,
the genotypes were structured according to their origin, showing a geographical pattern.
In this case, q > 0.5 was established as a threshold for considering a genotype within a
subpopulation (SP).
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The first group (SP 1) included 19 landraces, from which 89% corresponded to eastern
Mediterranean countries and 11% to northern Mediterranean countries. The second group
(SP 2) grouped 116 landraces and three modern cultivars. Landraces were mainly from
northern Mediterranean countries (66%), and in lower percentages from eastern Mediter-
ranean (21%) and southern Mediterranean (North of Africa) (13%) countries. The modern
cultivars came from Italy (‘Creso’) and Spain (‘Anibal’ and ‘Paramo’). The third group (SP
3) showed both landraces (31) and modern cultivars (12), mainly from western Mediter-
ranean countries (including the south of Europe and north of Africa) (84% and 83% of the
landraces and modern cultivars, respectively). The fourth (SP 4) and fifth (SP 5) groups
included only modern cultivars. SP 4 (116 genotypes) was represented by modern cultivars
mainly developed from CIMMYT and ICARDA germplasm, whereas SP 5 (39 genotypes)
represented modern cultivars mainly from northern America (56%) and Europe (France,
Italy and Spain) (41%). The remaining 51 genotypes (17 landraces and 34 modern cultivars)
remained as admixed.

A principal coordinate analysis (PCoA) was carried out to graphically represent the
results of the structure analysis in a bi-dimensional plot (Figure 2B). In agreement with the
structure analysis, the first two coordinates of the PCoA separated landraces, located on
the positive side of the first coordinate, from the modern cultivars, located on the negative
side of the first coordinate. Admixed genotypes were in the center of the plot. Within these
clusters, the different subpopulations were clearly defined, as shown in Figure 2B.

As a complementary approach, a neighbor-joining tree based on a distance matrix
was constructed to support the previous results (Figure 2C). The tree presented a main
division in two clusters, grouping landraces and modern cultivars separately. Within the
cluster of landraces, there is a clear separation among SP 1 with landraces from eastern
Mediterranean countries, SP 2 with landraces from northern Mediterranean countries,
and the western Mediterranean landraces from SP 3. This cluster, grouping western
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Mediterranean landraces and modern cultivars by structure analysis, separated both types
of genotypes in the main clusters. The modern cluster separately grouped the genotypes
from the western Mediterranean (SP 3), north America (SP 5) and cultivars developed
by CIMMYT and ICARDA breeding programs (SP 4). In addition to these main clusters,
a small one representing modern cultivars from north America and southern Europe
remained separate.

Results of the analysis of molecular variance (AMOVA) indicated that variation within
SPs accounted for 92% of the total variance, whereas the remaining 8% corresponded to
variation between SPs. Total genetic diversity (HT) among SPs ranged from 0.40 in SP 4
to 0.35 for SP 3 and the admixed genotypes (Table 1). The genetic diversity among SPs
(DST) was low (0.03), causing a genetic differentiation (GST) among SPs of 0.08. This means
that only about 8% of the variability observed was due to differences between SPs, as
previously reported by AMOVA. The estimation of the gene flow (Nm) among SPs was
6.02, indicating a high level of gene exchange according to the low genetic differentiation
among the SPs. Comparisons among SPs revealed that gene flow ranged from 2.54 between
SP 4 (modern cultivars mainly developed by CIMMYT and ICARDA) and SP 5 (mod-
ern cultivars from north America and Europe) to 69.81 between SP 2 (landraces mainly
from northern Mediterranean countries) and SP 3 (western Mediterranean landraces and
cultivars) (Table 1).

Table 1. Genetic diversity and gene flow between genetic subpopulations.

Subpopulation N HT HS DST GST Nm

Total 388 0.40 0.37 0.03 0.08 6.02
SP 1 19 0.36 - - - -
SP 2 119 0.36 - - - -
SP 3 43 0.35 - - - -
SP 4 116 0.40 - - - -
SP 5 39 0.38 - - - -

Admixed 51 0.35 - - - -
SP 1–2 138 0.36 0.36 0.00 0.01 49.73
SP 1–3 62 0.33 0.35 0.02 0.07 6.90
SP 1–4 135 0.34 0.38 0.04 0.11 3.87
SP 1–5 58 0.35 0.37 0.02 0.06 7.32
SP 2–3 162 0.36 0.36 0.00 0.01 69.81
SP 2–4 235 0.40 0.38 0.01 0.03 14.41
SP 2–5 158 0.38 0.37 0.01 0.02 23.40
SP 3–4 159 0.35 0.38 0.03 0.08 5.41
SP 3–5 82 0.37 0.37 0.00 0.01 42.10
SP 4–5 155 0.34 0.39 0.06 0.16 2.54

N: number of genotypes; HT: total genetic diversity; HS: mean of genetic diversity within SPs; DST: genetic
diversity between SPs; GST: coefficient of genetic differentiation; Nm: gene flow.

3.2. Identification of Loci under Selection by EigenGWAS

EigenGWAS was conducted using the top ten eigenvectors resulting from the PCoA
obtained for the whole collection of genotypes, including landraces and modern cultivars.
The largest eigenvalue was 3600.4, explaining 11.3% of the genetic variation, whereas the
10th eigenvalue was 408.0, explaining 1.3% of the genetic variation. The top ten eigen-
values accounted for 32.3% of the genetic variation, which indicates the complexity of
the population structure of this durum wheat collection. A total of 1575 marker–trait
associations (MTAs) were reported for the top ten eigenvectors using a moderate thresh-
old of −log10 p = 3.0. Based on the LD decay for a maximum distance of 1 cM, a highly
significant FDR threshold at p < 0.05 was established for −log10 p = 4.6. Following this
approach, 250 MTAs were significant (Figure 3, Supplementary Table S2, Supplementary
Figure S2). The number of MTAs per eigenvector ranged from 57 for eigenvector 2 to
304 for eigenvector 10. Chromosome 2B showed the maximum number of associations
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(279), whereas chromosome 4B showed the lowest (10). The mean percentage of variance
explained (r2) per MTA ranged from 0.003 to 0.108, with an average of 0.034.
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To simplify this information and to identify consensus genomic regions controlling
loci under selection, QTL hotspots were identified by grouping closely located MTAs.
Confidence intervals were defined based on the distance of 1 cM of the LD decay. A total
of 89 QTL hotspots were identified, including 1491 MTAs, 248 of them (17%) above the
FDR threshold (Table 2). The remaining 84 single MTAs were not considered further in
the analysis. The number of MTAs per QTL hotspot ranged from 2 to 158, with a mean
of 17 MTAs/QTL hotspot. The number of QTL hotspots per chromosome ranged from
two in chromosome 4B to nine in chromosome 3A. The number of MTAs per chromosome
ranged from 7 in chromosome 4B to 277 in chromosome 2B. Chromosome 4B did not carry
any MTA above the FDR threshold, whereas chromosome 5B reported 51 MTAs out of 184
above the FDR threshold.

Table 2. QTL hotspots for eigenvectors.

Eigen Hotspot CI Left CI Right N MTAs FDR Functional Genes

eigenQTL1A.1 12.90 40.37 58 6
eigenQTL1A.2 41.38 45.57 2 0
eigenQTL1A.3 75.97 86.96 13 4
eigenQTL1A.4 97.58 109.75 19 5
eigenQTL1A.5 116.31 119.74 3 1 Glu-A1
eigenQTL1A.6 242.61 254.18 11 0
eigenQTL1B.1 31.81 36.72 10 1
eigenQTL1B.2 37.42 41.32 2 0
eigenQTL1B.3 42.20 52.79 15 0
eigenQTL1B.4 70.87 96.28 29 1
eigenQTL1B.5 96.45 115.68 15 2
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Table 2. Cont.

Eigen Hotspot CI Left CI Right N MTAs FDR Functional Genes

eigenQTL1B.6 137.22 140.22 12 0 Glu-B1
eigenQTL1B.7 195.66 202.99 4 2
eigenQTL1B.8 238.34 241.34 3 0
eigenQTL2A.1 10.07 14.84 2 0 Ppd-A1
eigenQTL2A.2 43.25 47.06 8 0
eigenQTL2A.3 57.36 73.45 48 1 TaSus2-2A
eigenQTL2A.4 73.47 79.30 2 0
eigenQTL2A.5 85.85 91.05 4 0 Ppo-A1
eigenQTL2A.6 94.09 97.09 2 0
eigenQTL2A.7 112.04 126.00 101 12
eigenQTL2B.1 19.94 23.26 3 0 Ppd-B1
eigenQTL2B.2 24.75 29.36 4 0
eigenQTL2B.3 31.36 43.36 54 31
eigenQTL2B.4 44.56 58.73 70 5
eigenQTL2B.5 61.66 71.36 11 2
eigenQTL2B.6 72.96 90.37 119 6 Ppo-B2, TaGS2-B1
eigenQTL2B.7 105.36 106.86 16 0
eigenQTL3A.1 0.63 6.12 6 3
eigenQTL3A.2 10.95 14.70 2 0
eigenQTL3A.3 39.12 44.9 4 0
eigenQTL3A.4 45.25 53.20 8 0
eigenQTL3A.5 56.49 68.88 65 12
eigenQTL3A.6 101.40 106.34 47 13
eigenQTL3A.7 108.63 114.62 37 13
eigenQTL3A.8 132.17 135.20 3 1 Pod-A1
eigenQTL3A.9 145.36 149.24 16 0
eigenQTL3B.1 3.75 15.53 22 6
eigenQTL3B.2 23.22 28.73 9 0
eigenQTL3B.3 51.08 55.93 7 0
eigenQTL3B.4 63.71 70.46 9 3
eigenQTL3B.5 77.52 92.84 17 0
eigenQTL3B.6 93.68 102.94 18 0
eigenQTL3B.7 114.27 118.45 2 0
eigenQTL3B.8 136.49 141.10 3 0
eigenQTL4A.1 18.34 21.81 5 0
eigenQTL4A.2 23.50 27.20 7 2
eigenQTL4A.3 27.35 32.70 3 1
eigenQTL4A.4 74.67 77.67 3 3
eigenQTL4A.5 93.51 98.13 8 0
eigenQTL4A.6 110.56 117.64 7 1
eigenQTL4A.7 119.89 134.22 13 1 TaALP-4A
eigenQTL4B.1 42.86 50.32 5 0 Rht-B1
eigenQTL4B.2 73.62 77.36 2 0
eigenQTL5A.1 12.37 18.03 3 0
eigenQTL5A.2 33.09 38.49 6 0
eigenQTL5A.3 46.29 50.38 4 0
eigenQTL5A.4 56.89 67.05 6 0
eigenQTL5A.5 75.81 88.74 21 2 Vrn-A1, Rht12
eigenQTL5A.6 104.85 116.96 10 0
eigenQTL5B.1 23.38 42.70 158 51
eigenQTL5B.2 51.84 56.56 2 0
eigenQTL5B.3 64.79 72.95 5 0
eigenQTL5B.4 83.39 86.39 3 0 Vrn-B1
eigenQTL5B.5 106.11 112.65 4 0
eigenQTL5B.6 112.84 115.99 4 0
eigenQTL5B.7 117.20 122.07 6 0
eigenQTL5B.8 149.77 152.77 2 0
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Table 2. Cont.

Eigen Hotspot CI Left CI Right N MTAs FDR Functional Genes

eigenQTL6A.1 1.90 31.45 121 24
eigenQTL6A.1 1.90 31.45 121 24 Rht25
eigenQTL6A.1 1.90 31.45 121 24
eigenQTL6A.2 69.82 74.66 2 1
eigenQTL6A.3 88.40 99.66 8 2
eigenQTL6B.1 0.98 5.56 8 0
eigenQTL6B.2 6.69 9.69 4 1
eigenQTL6B.3 10.47 15.54 4 1
eigenQTL6B.4 20.52 40.79 27 4 GPC-B1
eigenQTL6B.5 59.52 62.86 2 0
eigenQTL6B.6 73.99 84.69 18 2
eigenQTL7A.1 28.87 34.42 7 4
eigenQTL7A.2 63.05 66.36 3 1 TaTEF-7A
eigenQTL7A.3 70.42 83.26 21 0
eigenQTL7A.4 95.94 107.40 16 11
eigenQTL7A.5 147.09 160.29 11 0
eigenQTL7B.1 47.05 51.28 3 1
eigenQTL7B.2 73.10 79.67 8 2
eigenQTL7B.3 81.66 88.16 10 0
eigenQTL7B.4 92.07 97.38 4 2
eigenQTL7B.5 109.16 113.15 2 0
eigenQTL7B.6 123.88 132.06 10 1 Psy-B1

CI: confidence interval at 95% (cM). N MTAs: number of MTAs. FDR: number of MTAs above the FDR threshold
at p < 0.05. Functional genes co-locating with QTL hotspots were identified based on common markers with Liu
et al. [15] and Pascual et al. [39].

3.3. Identification of Selection Regions among SPs

To identify the genome regions most involved in the selection among the different SPs,
markers with−log10 p > 5 (147) from the eigenGWAS were selected and a PCoA was carried
out (Figure 4). Markers were widely distributed along the genomes in all chromosomes,
except chromosome 4B which harbored at least two MTAs or one QTL hotspot.
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The PCoA separated two clear groups: group 1, on the left of the Y-axis, included
173 genotypes (mainly modern cultivars (79%)), whereas group 2, on the right of the
Y-axis, included 214 genotypes, of which 69% corresponded to landraces. By SPs, those
represented mainly by landraces (SP 1, SP 2 and SP 3) were mostly included in group 2
(95%, 77%, and 63%, respectively), whereas SPs represented mainly by modern cultivars
(SP 4 and SP 5), were mostly included in group 1 (63% and 85%, respectively). All north
American cultivars from SP 5 were located within group 1. Most of the landraces from the
northern Mediterranean included in SP 2 were also represented in group 1.

The selected 147 markers, corresponding to 35 QTL hotspots, were analyzed to iden-
tify differences in the marker allele between both groups, as well as the different SPs
(Supplementary Table S3). To identify robust differences among groups, a threshold of
allele frequency within a group was established at 80%. When both alleles of the marker
comply with this condition, the marker was considered significant for locus selection. Fol-
lowing this approach, 35 markers from five QTL hotspots were identified: eigenQTL2A.7,
eigenQTL2B.3, eigenQTL3A.5, eigenQTL3A.6 and eigenQTL3A.7 (Table 3). However,
when the markers were blasted against the reference genomes of bread wheat [22], du-
rum wheat [23], and wild emmer [21], it was observed that markers corresponding to
eigenQTL3A.5, eigenQTL3A.6, and eigenQTL3A.7 shared the same physical positions.

Table 3. QTL hotspots involved in the selection showing allelic differences among the two PCoA groups.

QTL
Hotspot

Marker Position
(cM)

Genome Position (bp) Allele Group 1 Allele Group 2

Zavitan Svevo Chinese Spring (Frequency) (Frequency)

eigenQTL2A.7 1089372 123.66 768,637,732 771,309,636 766,565,471 0 (0.81) 1 (0.82)
1096089 123.66 768,369,404 770,792,840 767,003,197 0 (0.81) 1 (0.90)
1288584 123.66 - 772,466,381 765,605,244 1 (0.80) 0 (0.90)

eigenQTL2B.3 3935165 36.35 55,282,377 53,704,532 54,005,983 0 (0.89) 1 (0.82)
3946438 36.35 55,263,539 - 53,999,239 0 (0.84) 1 (0.87)
3955840 36.35 55,263,539 - 53,999,239 0 (0.84) 1 (0.87)
4404794 36.35 - 53,704,524 54,005,983 1 (1.00) 0 (0.85)
4404891 36.35 - 53,704,524 54,005,983 1 (1.00) 0 (0.85)
4409154 36.35 - 53,703,534 - 1 (1.00) 0 (0.85)
3022498 37.15 56,411,136 54,740,047 55,031,700 0 (0.84) 1 (0.80)
1125733 38.57 59,371,071 57,490,889 57,917,326 0 (0.89) 1 (0.80)
1353553 40.74 55,744,579 54,098,441 54,443,978 C (0.84) T (0.87)
3021610 40.74 55,523,159 53,972,355 54,272,933 C (0.89) T (0.87)
4004228 40.74 57,503,553 56,011,661 55,991,662 1 (0.95) 0 (0.85)
4004312 40.99 56,411,136 54,740,047 55,031,700 1 (0.95) 0 (0.82)
986135 40.99 56,166,013 54,516,891 54,786,611 A (0.89) C (0.85)

1124640 41.86 56,147,572 54,468,610 54,770,824 A (0.84) G (0.85)
eigenQTL3A.6 2257732 103.85 693,610,895 688,415,545 697,202,220 0 (0.98) 1 (0.98)

1007286 103.92 687,773,343 682,345,965 691,736,154 0 (0.98) 1 (0.95)
1061286 103.92 687,959,611 682,871,589 692,054,958 0 (0.99) 1 (0.88)
1099726 103.92 693,660,065 - 697,248,312 0 (0.98) 1 (0.97)
2257138 103.92 688,886,018 683,409,098 692,987,209 0 (0.98) 1 (0.99)
3033940 103.92 690,079,348 684,307,722 694,092,980 0 (0.96) 1 (0.99)
3940178 103.92 691,844,961 686,017,151 695,739,301 0 (0.97) 1 (0.99)
3945420 103.92 688,521,622 682,907,278 692,471,812 0 (0.98) 1 (0.96)
3952975 103.92 688,369,820 685,647,294 692,316,203 0 (0.98) 1 (0.98)
3957848 103.92 691,844,961 686,017,151 695,739,301 0 (0.97) 1 (0.99)
4005072 103.92 688,885,643 683,409,473 692,987,584 0 (0.97) 1 (0.99)

eigenQTL3A.7 1062254 110.13 691,603,242 685,647,297 695,515,284 T (0.98) G (0.98)
1120615 110.13 687,953,731 682,789,499 692,048,455 1 (0.95) 0 (0.96)
1127998 110.13 691,772,662 685,990,476 695,671,629 T (0.93) C (0.96)
1755023 110.13 692,894,801 687,945,767 - 1 (0.99) 0 (0.96)
2275425 110.13 690,565,280 684,664,645 694,538,535 A (0.98) G (0.97)
4003435 110.13 689,966,914 684,172,863 693,979,130 1 (0.99) 0 (0.96)
4004625 110.13 - 682,650,634 - 1 (0.98) 0 (0.97)

The markers showed −log10 p > 5. PAV: presence/absence variant; SNP: single nucleotide polymorphism.
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3.4. Gene Annotation

Gene models were successfully identified using the different Gbrowse tools for the
bread wheat cultivar ‘Chinese Spring’ [22], the durum wheat cultivar ‘Svevo’ [23], and
the wild emmer cultivar ‘Zavitan’ [21] (Supplementary Table S4). The genome interval
to identify gene models was defined based on the position of the flanking markers of the
corresponding QTL hotspot. Thus, for eigenQTLT2A.7, 27, 29, and 6 gene models were
identified in 1.40 Mb, 1.67 Mb and 270 Kb for ‘Chinese Spring’, ‘Svevo’ and ‘Zavitan’,
respectively. For eigenQTLT2B.3, 47, 36, and 23 gene models, with 3.92 Mb 3.79 Mb and
4.11 Mb in ‘Chinese Spring’, ‘Svevo’ and ‘Zavitan’, respectively. Finally, eigenQTLT3A.5–7
were those with a higher number of gene models for the three genomes, with 77, 62, and
42 covering 6.12 Mb, 6.73 Mb and 6.57 Mb, respectively. Some of the gene models were
represented in clusters, as was the case for F-box proteins, kinase proteins and resistance
genes (Supplementary Table S4). Figure 5 summarizes the identification of common gene
models between the three genomes for each of the three selected QTL hotspots. To reduce
complexity, when a gene model was represented by more than one copy, it was reduced to
a unique gene.
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From 133 gene models within the three QTL hotspots, 33 (25%) were common for
the three genomes, 25 (19%) were common between ‘Chinese Spring’ and ‘Svevo’, 11
(8%) were common between ‘Chinese Spring’ and ‘Zavitan’, and 3 (2%) were in common
between ‘Svevo’ and ‘Zavitan’. Finally, 46% of the gene models were unique for the
different genomes.

4. Discussion
4.1. Genetic Diversity and Population Structure

Genetic diversity is essential in plant breeding because it represents a source of new
alleles for genes of interest. A useful approach for recovering and broadening allelic
variation in traits of interest is the use of landraces in breeding programs [40], which
may be of particular interest for suboptimal environments such as those prevailing in the
Mediterranean basin [41].

The average chromosomal PIC value was 0.28. This value is similar to that reported
previously in studies using bi-allelic markers such as SNP or DArT in durum wheat. Baloch
et al. [42] reported PIC values of 0.26 and 0.30 depending on the marker type, (DArTseq or
SNP, respectively). Kabbaj et al. [43] found a PIC value of 0.32 with 8173 SNPs from the
Axiom 35K array. Pascual et al. [39] using a collection of Spanish landraces of bread and
durum wheat genotyped with the DArTseq technology and obtained an average PIC value
for both species between 0.30 and 0.35. According to the classification proposed by Botstein
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et al. [44] which separates PIC values into three categories of highly informative (PIC > 0.5),
moderately informative (0.25 < PIC < 0.5) and slightly informative (PIC < 0.25), the markers
in our panel are considered moderately informative. In previous studies from our group
in durum and bread wheat, Soriano et al. [45] genotyped a panel of 192 durum wheat
genotypes (mainly Mediterranean landraces) with 44 microsatellite markers and found
an expected heterozygosity of 0.71. Rufo et al. [46] genotyped bread wheat collections of
landraces and modern cultivars with a 15K SNP array and obtained a mean PIC value of
0.30, in accordance with the results obtained in the present study. These lower PIC values
using DArTseq are explained by their bi-allelic nature, as the maximum PIC corresponds
to 0.5 when both alleles have the same frequency [47].

Population structure analysis clearly divided the collection into two main subpopu-
lations based on historical breeding periods, separating the genotypes in landraces and
modern cultivars. To conduct a deeper analysis, the second highest value for K in the
Evanno test was used. The genetic distribution of the landraces in the three SPs and the
huge gene flow between them may be associated with the pattern of migration of durum
wheat from the Fertile Crescent to the west of the Mediterranean basin described by Mor-
agues et al. [48]. SP 1 contains the largest proportion of landraces from countries close to
the zone of wheat domestication (89.4%), and only two Italian landraces (10.5%). Therefore,
it is conceivable that SP 1 may putatively incorporate the oldest genetic background within
the germplasm panel used in this study. The lowest level of admixture in SP 1 (89% of
the genotypes with q > 0.7) agrees with this hypothesis. SP 2 could represent a further
step in the history of wheat dispersal within the Mediterranean basin, as it gathers 21% of
landraces from eastern Mediterranean countries, but 76% from western areas where it is
supposed that wheat arrived between 2 and 3 millennia after its domestication [1]. Finally,
SP 3 includes 72% of landraces and 28% of modern cultivars from western Mediterranean
countries, the most distant from the area of wheat domestication, and so the most evolved
from an evolutionary point of view. The highest gene flow between SP 2 and SP 3 and the
lower, but still very high gene flow between SP 1 and SP 2, agree with this interpretation.

Gene flow between SPs offers clues regarding the putative use of Mediterranean old
durum germplasm by the breeding programs represented here. The lowest gene flow
was detected between SP 1 (assumed to gather the ancient genetic pool of the panel) and
SPs involving only modern germplasms (SP 4 and SP 5). However, gene flow from SP
2 to modern cultivars was much higher, in agreement with the fact that this SP includes
landraces adapted to a wide range of environmental conditions. The highest gene flow
between SP 3 and SP 5 suggests that modern north American and European cultivars
incorporate a significant portion of the genetic background of germplasms adapted to
western Mediterranean environments. The relatively low gene flow observed between
Mediterranean germplasms and the CIMMYT–ICARDA genetic pool may be a consequence
of these international centers acting globally, thus incorporating germplasms in their
breeding programs from around the world. SP 4 and SP 5 included only modern cultivars
and had a low genetic flow between them, in agreement with the CIMMYT and north
American durum wheats belonging to different germplasm pools [49,50].

Modern SPs presented a higher genetic diversity than SPs that included landraces in
the following direction: SP 4 > SP 5 > SP 1 = SP 2 > SP 3. In agreement with the international
nature of CIMMYT and ICARDA and their role as germplasm providers worldwide, SP
4 incorporates a wide range of cultivars with a worldwide distribution, thus showing a
heterogeneous genetic background and the largest genetic diversity. SP 2 and SP 3 have
mainly a western Mediterranean background (including the south of Europe and the north
of Africa) and thus, with higher germplasm exchange, they could produce uniformity in
the cultivars. The slightly higher values of HT observed in modern SPs may be due to the
type of markers used in the study, as DArTseq and SNP are biallelic markers. For example,
Soriano et al. [45] used SSR markers in a similar collection of 172 Mediterranean landraces
and 20 modern cultivars and found higher values for HT in landrace SP and lower numbers
of alleles in modern cultivars.
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Genetic differentiation indicated that only 8% of the variability observed corresponded
to differences between SPs, according to the high estimation of gene flow among SPs, thus
indicating a high level of genetic exchange. Comparison of the genetic exchange between
SPs revealed that the highest gene flow was observed between the western Mediterranean
landraces and modern cultivars from western Mediterranean countries, as well as those
between landraces from east to west in the Mediterranean basin. However, the lowest
gene flow was found between eastern Mediterranean landraces and the germplasms
from CIMMYT and ICARDA and between these germplasms and the modern cultivars
from north America. This agrees with the results reported by Parzies et al. [51] and Ben-
Romdhane et al. [52], suggesting that the genetic differentiation among landrace SPs is
due to farmer trade and is mainly influenced by geographic distances. Cultivars with
a CIMMYT/ICARDA origin reported lower values of gene flow than the other SPs, as
reported previously by Rufo et al. [46] in bread wheat. These authors concluded that
this was mainly due to the release of improved inbred lines distributed by local breeding
programs through the nurseries to which these international centers distribute worldwide.

4.2. Detection of Selective Sweeps by EigenGWAS

Eigenvectors are frequently used to infer the genetic structure of a given population as
they are estimated for any single individual. Several studies have pointed out the usefulness
of primary eigenvectors to analyze population differentiation [53–55]. In this direction,
eigenGWAS was developed by Chen et al. [13] as an approach to identify genomic regions
underlying genetic differentiation. The analysis of selective sweeps produced during
breeding is important for the identification of loci under selection that will be of interest
for marker-assisted selection and the selection of the improved germplasm.

Other authors identified selective sweeps in hexaploid wheat. Cavanagh et al. [56]
identified 21 selective regions in spring wheat and 39 in winter wheat using a worldwide
collection of 2994 accessions. These authors found that most of the selective regions were
involved in yield potential, vernalization, plant height, and biotic and abiotic stress. More
recently, Zhou et al. [57] found 148 selective regions in a collection of 717 Chinese wheat
landraces associated with yield and disease resistance. Liu et al. [15], using a worldwide
panel comprising landraces from China and Pakistan and modern cultivars genotyped with
the 90K SNP array, identified 477 selective sweeps. Some of these loci comprised known
functional genes for disease resistance, vernalization, quality, adaptability, and yield.

This is the first study of this type conducted in durum wheat. We identified selec-
tive sweeps among Mediterranean landraces and modern cultivars in the durum wheat
genome using eigenvectors as phenotypic traits in the GWAS. A total of 1575 MTAs were
significant for the first ten eigenvectors at a moderate threshold, whereas for a highly
significant threshold, 250 MTAs were significant. To simplify this information, 89 QTL
hotspots (including 1491 MTAs) were defined as consensus genomic regions controlling
loci under selection. These QTL hotspots included important loci that were selected during
the breeding process such as the photoperiod loci Ppd-A1 and Ppd-B1, the vernalization loci
Vrn-A1 and Vrn-B1, and the dwarfing genes Rht-B1, Rht12 and Rht25. The cycle length of
durum wheat was shortened during the breeding process by the incorporation of favorable
alleles from these loci, as reported by Royo et al. [41,49]. The development of semi-dwarf
germplasm by CIMMYT at the end of the 1960s had a world-wide impact on wheat produc-
tion. The major dwarfing genes Rht-B1b and Rht-D1 (this last in bread wheat) incorporated
in the modern cultivars reported yield increases of up to 35% in both durum wheat [50] and
bread wheat [58]. The quality loci for the high molecular weight (HMW) glutenin subunits
(GS) Glu-A1 and Glu-B1 were found within QTL hotspots in chromosomes 1A and 1B,
respectively. Previous studies reported by De Vita et al. [59] and Subirà et al. [60] revealed
the improvement of pasta-making quality in modern cultivars during the 20th century in
Italy and Spain due to the incorporation of favorable alleles for HMW- and low molecular
weight (LMW)-GS loci. Other loci involved in grain quality located within hotspots were
the polyphenol oxidase (PPO) genes Ppo-A1 [61] and Ppo-B2 [62], which cause the undesir-
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able brown color in semolina, and thus the identification of the alleles producing low PPO
activity is essential in durum wheat breeding programs. The peroxidase activity genes,
such as Pod-A1 [63], affect the natural carotenoid pigment content and are associated with
the color of flour. GPC-B1, located on chromosome 6B [64], confers a shorter duration of
the grain filling period due to early flag leaf senescence and thus increases grain protein
content. Wheat grain avenin-like proteins (ALPs), such as TaALP-4A, are involved in dough
quality and antifungal activities [65]. Finally, Psy-B1 belongs to the phytoene synthase
(PSY) gene family, which are involved in the biosynthesis of carotenoid pigments in durum
wheat, influencing grain yellowness [66]. Other genes included within QTL hotspots
were related to grain yield, such as the locus TaSus2-2A which is associated with grain
weight as reported by Jiang et al. [67], the transcript elongation factor TaTEF-7A [68] which
regulates tillering and increases grain number per spike, and the glutamine synthetase
gene TaGS2-B1 [69] which plays a key role in plant growth, nitrogen use efficiency, and
yield potential in wheat. The identification of these genes that were incorporated into elite
cultivars during the breeding process suggest the QTL hotspot regions as target loci in
wheat improvement.

Among the 250 MTA over the highly significant threshold, 147 MTAs showed −log10 p > 5.
These markers, distributed in all chromosomes except 4B, were used to perform a new
PCoA. Interestingly, a similar pattern with two main groups was observed in both analyses,
separating most of the landraces from modern cultivars, with a higher level of admixture
among subpopulations in the latter. When markers were analyzed to find allelic differences
among the two groups, five QTL hotspots (eigenQTL2A.7, eigenQTL2B.3, eigenQTL3A.5,
eigenQTL3A.6, and eigenQTL3A.7) were identified as being responsible for the main sep-
aration in the PCoA among landraces and modern cultivars. However, at the genome
level [21–23], hotspots on chromosome 3A were located in the same physical positions.
Differences in the genetic position may correspond to heterozygous genotypes and missing
data. According to our results, these hotspots are suggested to be the main drivers in the
genetic differentiation of Mediterranean landraces from modern cultivars.

The analysis of the genome sequence covering these QTL hotspots revealed the pres-
ence of gene models involved in important biological functions (Supplementary Table S4).
Among them, different gene models were related to disease resistance; a CsAtPR5-like pro-
tein was found to be linked to the powdery mildew resistance gene PmLK906 in the wheat
line ‘Lankao 90(6) 21-12′ [70]. According to Larriba et al. [71] Rhomboid-like proteins are
involved in fungal–plant interactions. Proteins belonging to the UDP-glycosyltransferase
protein superfamily were found to participate in fusarium head blight (FHB) resistance in
wheat [72]. The kinase family proteins are involved in different processes, ranging from
physiological roles such as control of shoots and floral meristems to pathogen identifica-
tion [73]. This protein family also includes the leucine-rich repeats receptor-like kinase
(LRR-RLK) genes, a large and complex gene family in plants mainly participating in the
development and stress reactions. LRR domains are characterized by a high variation in
the number of repeats, allowing a wide range of protein–protein interactions [74]. Proteins
containing NAC and heat shock domains were reported to regulate biotic and abiotic
stresses [75,76].

Other genes with implications in stress and plant development corresponded to
MADS-box and tetratricopeptide repeats (TPR). According to Ma et al. [77], the MADS-
box gene family plays key roles in different developmental processes such as flowering
time, floral meristems, fruit formation, and flower organs and seeds. The authors found
that several wheat MADS-boxes were expressed in the roots, stems, leaves, spikes, and
grains during different developmental stages. Other MADS-box genes showed different
expression under stress, as reported by Guo et al. [78] in response to stripe rust in wheat,
suggesting their role in plant–microbe interactions. In Brachypodium, MADS-box genes
were also identified to be regulated under drought and cold stresses [79]. TPRs mediate
protein–protein interactions and are present across all plant species. Some TPRs are
involved in plant stress and hormone signaling [80]. Auxin response factors (ARF) regulate
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the development of plant organs. Qiao et al. [81] characterized the ARF family in wheat
and found that one of them, TaARF15-A.1, may regulate the development of roots and
leaves. Expansins were found to be involved in root development. The experiments of
Li et al. [82] overexpressing of the wheat expansin gene TaEXPB23 in tobacco enhanced
drought tolerance and accelerated root development. Zinc finger proteins play important
roles in several plant mechanisms, from growth regulation and development, signaling and
responses, to abiotic stresses. In wheat, the zinc finger protein TaZFP34 is overexpressed in
roots, reducing shoot growth but maintaining root elongation [83]. The homeobox protein
LUMINIDEPEDENS was found in eigenQTL3A.5, 6, and 7 in the three genomes. This gene
controls flowering time in Arabidopsis, as mutations in the gene have been found to produce
late flowering that is partially suppressed by vernalization [84]. Other gene models within
these eigenQTLs were found to enhance grain yield. F-box proteins were found in ‘Chinese
Spring’ and ‘Svevo’ annotations in the three hotspots on chromosome 3A. Among the
different functions of these genes, Li et al. [85] demonstrated that the F-box gene LARGER
PANICLE improves the panicle architecture of rice, thus enhancing grain yield. In wheat,
Hong et al. [86] reported that members of the F-box E3 ubiquitin ligases regulate spike
development. Carboxypeptidases were implicated in grain size control in rice through
the regulation of grain width, grain filling, and weight [87]. These authors found that the
expression of GS 5 was correlated with larger grains in rice. Finally, a tapetum determinant
gene was found. According to Lei and Liu [88], disrupted tapetum development alters the
expression of many genes involved in male meiosis in higher plants.

5. Conclusions

The use of local landraces in breeding programs is considered a valuable approach to
broadening the genetic background of crops lost during the breeding process and improv-
ing traits of commercial importance [40,45]. The present study uses a GWAS approach with
eigenvectors to identify selective sweeps among durum wheat Mediterranean landraces
and modern cultivars from different origins. Most of the chromosomes reported selective
regions, some of them harboring functional genes for important agronomic traits involved
in yield performance, plant development, and grain quality. Three genome regions in
chromosomes 2A, 2B, and 3A were identified as the main drivers for the differentiation
of the Mediterranean landraces. Within these regions, gene models for disease resistance,
abiotic stress, plant development, and yield were found.
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