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ABSTRACT:  11 

Consumer interest in protein rich diets are increasing, with more attention being paid to the protein 12 

source. Despite the occurrence of animal proteins in the human diet, non-animal proteins are gaining 13 

popularity around the world due to their health benefits, environmental sustainability, and ethical merit. 14 

These sources of protein qualify for vegan, vegetarian, and flexitarian diets. Non-animal proteins are 15 

versatile, derived mainly from cereals, vegetables, pulses, algae (seaweed and microalgae), fungi, and 16 

bacteria. This review’s intent is to analyze the current and future direction of research and innovation in 17 

non-animal proteins, and to elucidate the extent (limitations and opportunities) of their applications in 18 

food and beverage industries. Prior knowledge provided relevant information on protein features 19 

(processing, structure, and techno-functionality) with particular focus on those derived from soy and 20 

wheat. In the current food landscape, beyond conventionally used plant sources, other plant proteins are 21 

gaining traction as alternative ingredients to formulate animal-free foodstuffs (e.g., meat alternatives, 22 

beverages, baked products, snack foods, and others). Microbial proteins derived from fungi and algae 23 

are also food ingredients of interest due to their high protein quantity and quality, however there is no 24 

commercial food application for bacterial protein yet. In the future, key points to consider are the 25 

importance of strain/ variety selection, advances in extraction technologies, toxicity assessment, and 26 

how this source can be used to create personalized food. 27 

Keywords: plant proteins, microbial proteins, functionality, food design, food safety  28 
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1. Introduction 29 

Food proteins are essential nutrients for human health,  used in the body for building  bones, muscles, 30 

enzymes, hormones, and regulating immune function (Mitchell et al. 2015; Dougkas and Östman 2016; 31 

Zambrowicz et al. 2013; Groen et al. 2015). In recent years,  high protein diets are growing more popular, 32 

with more deliberation on the source of protein that is being consumed (Banovic et al. 2018; López-33 

Barrios, Gutiérrez-Uribe, and Serna-Saldívar 2014; Pal and Suresh 2016; Sokolowski et al. 2019). 34 

Animal proteins, the largest share of the global protein market, are derived mainly from milk, eggs, 35 

meat, and seafood. Non-animal proteins are derived from a wide selection of plant sources such as 36 

pulses, legumes, cereals, and other alternative sources (i.e. fungi, bacteria and algae). Based on a survey 37 

[1825 participants in 5 EU countries] on consumer acceptance to the main protein sources in food 38 

products, dairy-based protein was the most accepted protein source (75% of the respondents found its 39 

consumption acceptable or very acceptable), followed by plant-based protein as the most accepted 40 

alternative and more sustainable protein source (58%), with single-cell protein (20%), insect-based 41 

protein (9%) and in vitro meat-based protein (6%) (Grasso et al. 2019) at the bottom of consumer 42 

preference. 43 

Currently, the plant protein market of is experiencing rapid growth, owing to factors such as population 44 

growth, a rise in  health consciousness, increasing welfare concerns over animal production of 45 

ingredients, rising meat prices, changes in lifestyle (vegetarian, vegan and flexitarians), ethical concerns, 46 

and sustainability (Aschemann-Witzel, Varela, & Peschel, 2019; Chihi, Mession, Sok, & Saurel, 2016; 47 

Dagevos & Voordouw, 2013; De Backer & Hudders, 2015; Henchion, Hayes, Mullen, Fenelon, & 48 

Tiwari, 2017; Lan, Chen, & Rao, 2018; Meticulous Research®, 2019a). Likewise, the global demand 49 

for microbial protein alternatives is also expanding to include a wider variety of renewable and 50 

sustainable sources of protein, mainly algae and fungi (Mintel 2019a). Despite its high content of protein 51 

(up to 92%), the commercial exploitation of bacteria has been focused mainly on animal feed and not 52 

yet for human consumption (Ritala et al. 2017; Yang et al. 2017).  53 

The global plant-based protein market is projected to grow at a compounded annual growth rate (CAGR) 54 

of 8.1% from 2019, to reach a value of $14.32 billion by 2025 (Meticulous Research®, 2019).  There is 55 

an increase of different types of plant proteins in response to demand for more applications with in the 56 

food and beverage marketplace (meat, poultry, seafood, bakery, meat analogue, dairy and dairy 57 

alternatives, cereals and snacks, beverages, etc.), animal feed, nutrition and health supplements, 58 

cosmetics and pharmaceuticals (Meticulous Research®, 2019).  In short, the food and beverage segment 59 

has commanded the largest use of plant-based protein ingredients in 2019 (Meticulous Research®, 60 

2019a), and North America has the largest share of the overall plant-based protein market (Meticulous 61 

Research®, 2019). As summarized in Table 1, the main marketed plant proteins are from soy, wheat, 62 
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pea, potato, rice, and corn (Meticulous Research®, 2019a). Lately, due to the high demands, agro-63 

industrial by-products are also proposed as an important source of plant proteins, although the recovery 64 

efficiency is still under research (Gençdağ, Görgüç, and Yılmaz 2020). Based on their purity, these 65 

proteins are commercialized in different forms: i) protein rich flour (54% protein), produced by milling 66 

and air classification of plant, algae or fungi; ii) protein concentrates (65−72% protein), prepared by 67 

removing soluble components from the flour; iii) protein isolate (≥90% protein), which is a highly 68 

refined or purified ingredient created by removing non-protein components; and iv) other forms 69 

including hydrolyzed and textured (Nishinari et al. 2014). Proteins isolates are a highly sought-after 70 

ingredient category due the high demand of premium proteins as food dietary supplements for athletes, 71 

bodybuilders, and vegetarians (Markets and Markets, 2019b). 72 

***Table 1*** 73 

No doubts, food developers have been facing serious challenges substituting animal proteins with plant-74 

based options without hampering the end-quality of the product (nutritional and technological features 75 

and  consumers’ perception) (Malek, Umberger, and Goddard 2019; Smetana et al. 2015; Jose, 76 

Pouvreau, and Martin 2016; Nepocatych et al. 2019). Nevertheless, these alternative proteins are the 77 

current research hotspot with emphasis on their compositional and techno-functional properties for the 78 

development of innovative ingredients and acceptable high protein-based products to meet consumer 79 

expectations (Hoehnel et al. 2019; Lafarga et al. 2018; Lafarga, Álvarez, et al. 2019; Aschemann-Witzel 80 

and Peschel 2019; Sousa et al. 2019).  81 

The inclusion of protein ingredients as a food is not new, initial research dates to the late forties, where 82 

the objective was optimization of production lines. Some preliminary studies focused on the nutritional 83 

aspects (chiefly amino acids profile) of plant proteins (e.g. peanut, soy and wheat proteins) (Kelley and 84 

Baum 1953; Hove, Carpenter, and Harrel 1945; Arthur et al. 1948). Researchers went further, 85 

investigating isolation procedures of proteins, particularly on soybean for a better amino acids 86 

composition in the sixties (Byers 1961; Pomeranz 1965; Szmelcman and Guggenheim 1967) and to 87 

partially replace animal proteins in food applications, such as the meat industry by the seventies (Hanafy, 88 

Seddik, and Aref 1970; Childers 1972; Milner 1974).  At that time, the use of vegetal proteins was 89 

undesirable because, in some cases, it was closely related to fraudulent actions in animal protein 90 

replacement. In the following decades, focus of research was on the application of protein from different 91 

sources, such as legumes and aquatic plants in the eighties and nineties (Gueguen 1983; Radmer and 92 

Parker 1994). Following studies started testing the impact of processing on functionalities, bioactivity, 93 

and sensory properties of these proteins, as well as how processing conditions can be improved to 94 

optimize incorporation in food formulations (Wäsche, Müller, and Knauf 2001; Tömösközi et al. 2001). 95 

Non-animal proteins inclusion in human foods started many decades ago, with varying objectives. The 96 

evolution of this research is important, as it accelerated future innovations.  97 

https://www.sciencedirect.com/topics/food-science/soy-flour
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Therefore, this review aims i) to critically analyze the meaningful advances in non-animal proteins, ii) 98 

to provide updated insights  for the dynamic global market  of non-animal proteins, iii) to define the 99 

characteristics of non-animal proteins in the market; iv) to identify the challenges  of developing food 100 

products with targeted nutritional, technological and sensory features, and v) address the upcoming 101 

research and innovation trends and challenges. 102 

 103 

 104 

 105 

2. Extraction and fractionation treatments  106 

Protein extraction can be carried out either through wet or dry processing. Wet extraction is the most 107 

commonly patented process for protein extraction (Anson and Pader 1955). This process is still widely 108 

used at industrial level, where proteins are solubilized under alkaline or acidic conditions, followed 109 

by: centrifugation (to remove insoluble material such as starch and fiber), isoelectric precipitation, 110 

washing, centrifugation (to remove soluble material such as sugars, soluble fibers and fats), 111 

neutralization, and drying (Taherian et al. 2011; Papalamprou, Doxastakis, and Kiosseoglou 2010). 112 

Noteworthy, the formation of protein–phenolic complexes may influence protein structure, solubility, 113 

hydrophobicity, thermal stability, and isoelectric point (Jakobek, 2015; Ozdal, Capanoglu, & Altay, 114 

2013; Eczyk, Swieca, Kapusta, & Gawlik-Dziki, 2019).  These factors will affect protein extraction 115 

yield and ingredient properties including digestibility and bioaccessibility (Ozdal, Capanoglu, and Altay 116 

2013; Jakobek 2015). From protein extraction technologies initially applied for in patents, several 117 

innovations have been reported; due to the rapid technological advance, only the most novel or recent 118 

technologies are discussed further.  119 

Wet processing techniques can enable the production of proteins isolates with high purity (90%), where 120 

protein recovery can be further increased through the use of solvents like methanol, ammonium sulfate 121 

and/ or acetone improving  protein precipitation (Adenekan et al. 2018). The use of solvent and thermal 122 

treatment can induce protein denaturation, thereby reduce their techno-functionality (Wu, Myers, and 123 

Johnson 1997; Jafari et al. 2016; Zhao et al. 2018). Another drawback is the high use of water and energy 124 

as well as high industrial wastes, which negatively impact the environment and sustainability (Ruiz et 125 

al. 2016; Chéreau et al. 2016). In the frame of circular economy, waste streams are usually destinated 126 

for animal feed, such as okara from soy protein extraction. Since the extraction of proteins is challenging, 127 

several innovative processes (physical, chemical and biological) have been developed to enhance both 128 

functionality and aroma profile of non-animal proteins, removing the beany flavor (Gao et al. 2020). 129 

The combination of electroacidification and ultrafiltration were used for soy protein extraction resulting 130 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/centrifugation
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/isoelectric-precipitation
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in enhancing the solubility of both isolates and concentrates (Mondor et al. 2004). Ultrasound treatments 131 

enhanced the conjugation process, resulting in higher grafting extents, solubility, and emulsifying 132 

properties (Ma et al. 2020; Huang et al. 2020). Although ultrasound significantly improve the soy protein 133 

extraction yield by 4.2%, it has not been commonly commercialized for industrial extraction due to 134 

required high energy inputs (Preece, Hooshyar, Krijgsman, Fryer, & Zuidam, 2017b). Unlike traditional 135 

single frequency ultrasound, multi-frequency ultrasonic pretreatment was more effective in modulating 136 

protein structure (e.g. of rice protein, zein, and gluten protein) (Jin et al., 2015; Li et al., 2016; Salimi 137 

Khorshidi, Ames, Cuthbert, Sopiwnyk, & Thandapilly, 2019; Yang et al., 2017) and shorten the 138 

extraction time when selected the adequate dual frequency combination (Golly et al. 2020). Chemical 139 

methods can be used through  alternative solvents, such as supercritical fluids (Russin et al. 2011) and 140 

biochemical methods (enzymes or enzymes assisted extraction) (Bildstein et al. 2008; Suphat Phongthai 141 

et al. 2018). Certain potato protein fractions are isolated via chromatography and therefore are more 142 

soluble (Giuseppin, Laus, and Schipper 2014). Recently, enzymatic extraction assisted with microwave 143 

or vacuum processing was proposed for obtaining plant proteins with phenolic compounds from food 144 

waste sesame bran, combining the technofunctional properties of the proteins with the bioactivity of 145 

antioxidant compounds (Görgüç, Özer, and Yılmaz 2020b; Görgüç, Özer, and Yılmaz 2020a). For some 146 

proteins, like rice protein, extraction reviewed methods include alkaline, enzymatic, and physical, 147 

enlightening the complete understanding of protein functionality (Amagliani et al. 2017a; Phongthai, 148 

Homthawornchoo, and Rawdkuen 2017). Twin-screw extrusion has been tested as extraction technology 149 

for obtaining alfalfa proteins, outcomes show the importance of the liquid/solid ratio (Colas et al. 2013). 150 

Electrospinning techniques have been used to produce nanofibers, creating proteins isolates for both 151 

food packing and biomedical applications. As carriers of hydrophilic drugs, alginate/soy protein isolates 152 

nanofibers loaded vancomycin (Wongkanya et al. 2017) thereby offering a controlled drug release, 153 

antibacterial activity, and compatibility with cells (Kim & Netravali, 2017; Xu, Jiang, Zhou, Wu, & 154 

Wang, 2012). Likewise, a protein concentrate from Spirulina in combination with polyethylene oxide 155 

enabled the formation of nanofibers suitable for food packaging (Moreira et al. 2018). The protein 156 

extraction from oilseeds is even more challenging and remains a multi-staged and inefficient process. 157 

But, recently a simple method is proposed consisting of an aqueous extraction to obtain protein-158 

oleosome extract with a posterior separation of the protein and oil as intact oleosomes from the oil-in-159 

water emulsion (Ntone, Bitter, and Nikiforidis 2020). In all described extractions methods, plant 160 

proteomics could help identify an evaluate and  proteins,  select the best extraction method, based on 161 

the protein source (Luthria et al. 2018; De Sousa Barbosa et al. 2013). 162 

Dry fractionation enables the production of protein concentrates with lower purity (50-70%) while 163 

preserving the native protein functionality. There are two main methods for extracting plant proteins: 164 

air classification and electrostatic separation (Assatory et al. 2019). These processing methods comprise 165 

of two key steps, milling and air classification (Assatory et al. 2019), enabling the separation of protein 166 
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rich fraction (fine particles) from starch rich fraction (coarse particles) based on the differences in 167 

density and particle size (Boye, Zare, and Pletch 2010; Schutyser and van der Goot 2011). The critical 168 

parameter during air classification is the cut-point of protein-starch separation, which depends on the 169 

source type (Boye, Zare, and Pletch 2010; Schutyser and van der Goot 2011). Moreover, some 170 

pretreatments are deemed mandatory to increase the yield and functionality of the resulting protein 171 

fraction. In the case of oil rich seeds (e.g. soy), a defatting step reducing the oil content in the flour prior 172 

extraction facilitates particles dispersion, improving the detachment of proteins from starch granules 173 

(Pelgrom et al. 2015; Schutyser and van der Goot 2011). Drying is also commonly used as a pretreatment 174 

in the case of peas or lupin (Berghout et al. 2015; Pelgrom et al. 2015).  175 

Electrostatic separation is increasing in occurrence as solvent free and dry option for protein 176 

fractionation that can replace air classification (Assatory et al. 2019). Electrostatic separation considers 177 

the differences in dielectric properties between protein and carbohydrates (Aryee & Nickerson, 2012; 178 

Wang, Zhao, De Wit, Boom, & Schutyser, 2016). Proteins can be charged to a higher extent (due to the 179 

presence of ionizable groups) than carbohydrates (with low proton affinity and ionizability) (Tabtabaei 180 

et al. 2016). For instance, electrostatic separation increased the protein content of lupin fractions from 181 

35% to 59%, but did not have any relevant impact on pea flour, suggesting that this process is closely 182 

related to the protein source (Pelgrom et al. 2015). Lupin protein concentrate (65.1%) was obtained 183 

through coarse milling, to detach protein bodies and avoid powder agglomeration, followed by 184 

electrostatic separation, showing promise for scaling-up at an industrial level (Waglay et al. 2019)., 185 

Further investigations are needed to identify optimal process conditions, considering both the structure 186 

of protein and its interactions with starch.   187 

Despite the vast research focused on increasing yields in protein extraction, we are still facing many 188 

challenges for the viability of protein extraction, ensuring the economy of the process. Even more 189 

challenging seems the recovery of protein from green leaves (RuBisCO), although non-commercial 190 

attempts have been reported (Tamayo Tenorio et al. 2016).   191 

 192 

3. Characteristics of non-animal proteins: structure, techno-functionality, 193 

and health related aspects 194 

The proper processing, extraction, and isolation of proteins can strongly influence their nutritional value 195 

and functionality (Stone, Karalash, et al. 2015; Contreras et al. 2019; Rodsamran and Sothornvit 2018; 196 

Amagliani et al. 2017a; Pojić, Mišan, and Tiwari 2018). Based on recent literature, the applied 197 

processing (conventional or innovative; chemical, physical or biological; cold or hot; single or 198 

combined) must be carefully chosen, due to their impact on protein quality, and consequently on their 199 
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potential application (Pojić, Mišan, and Tiwari 2018; Z. Wang et al. 2016; Wattanasiritham et al. 2016; 200 

Waglay et al. 2019; Burger and Zhang 2019; Lu et al. 2016; Katherine E. Preece et al. 2017). This 201 

section summarizes the fundamental compositional components, nutrition, and biofunctionality of most 202 

commercialized non-animal protein alternatives.  203 

3.1. Soy protein  204 

Soy protein composes ~40% of total soybean seed and comprised chiefly by storage proteins, 205 

albumins, and globulins. According to their sedimentation coefficients, soy protein can be classified into 206 

four main categories, 2 S (Svedberg units, S), 7S, 11S, and 15S fractions (Xu et al., 2017). Among these 207 

four proteins, the two major fractions are 7S globulin (conglycinin, ~150 and 200 kDa) and 11S globulin 208 

(glycinin, ~300–380 kDa)  (accounting for 35% and 52% of total soy protein, respectively), followed by 209 

2S (8%) and 15S (5%) (Hsiao et al. 2015; A. Singh et al. 2015). Soy protein provides a well-balanced 210 

amino acid composition (18 amino acids), containing all the essential amino acids (Gorissen et al. 2018). 211 

Soy bioactive peptides, deriving mainly from β-conglycinin and glycinin, may induce several 212 

physiological responses such as antioxidative, antimicrobial, antihypertensive, anticancer, and 213 

immunomodulatory effects (Agyei 2015; Coscueta et al. 2016). They also contribute in the reduction of 214 

cholesterol, the risk of hyperlipidemia, and cardiovascular diseases (Dan Ramdath et al. 2017; McGraw 215 

et al. 2016). Concerns over the allergenicity of soy protein started in the nineties, and with advanced 216 

technologies of detection and quantification, have been better characterized (Zeiger et al. 1999; Huijing 217 

Li et al. 2016). Glycinin and β ‐conglycinin are considered as major allergens, with more than 42 218 

identified epitopes (Taylor et al. 2015; Holzhauser et al. 2009; Shengdi Hu et al. 2013). Soy allergies 219 

can provoke symptoms ranging from mild to severe (enterocolitis atopic eczema and immediate IgE‐220 

mediated reactions) (Shriver and Yang 2011; Huijing Li et al. 2016). Several mitigation strategies (e.g. 221 

microwave, ultrafiltration, high pressure processing, pulsed electrical fields, irradiation, ultrasound, 222 

genetic or chemical modifications) were investigated to reduce the allergenic potential of soy protein, 223 

without complete elimination of the epitopes (Meinlschmidt et al. 2016; Katz et al. 2014). Soy protein 224 

has excellent functional features such as gelling, emulsifying ability (at pH 6.5 and pH 8.2), and water- 225 

and oil- holding capacity (Barac, Pesic, Stanojevic, Kostic, & Bivolarevic, 2015; Li et al., 2019; Wu, 226 

Hua, Chen, Kong, & Zhang, 2017). Compared to fish protein, soy protein exhibits a decrease in gel 227 

stiffness and viscoelasticity (C. Wu et al. 2020; C. Wu et al. 2018; C. Wu et al. 2019). Soy protein 228 

showed great encapsulation capacity to enhance substance (e.g.; curcumin and resveratrol) solubility 229 

and to form nanocomplexes (Chen, Li, & Tang, 2015a, 2015b; Liu, Li, Zhang, & Tang, 2019; Pujara, 230 

Jambhrunkar, Wong, McGuckin, & Popat, 2017). This protein has good film-forming capacity, 231 

developing homogeneous, edible, and biodegradable films with good barrier and mechanical properties 232 

and controllable water solubility (Galus, 2018; Han, Yu, & Wang, 2018; Zhao et al., 2016).  233 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/albumin
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/globulin
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3.2. Wheat protein 234 

Based on their solubility, wheat protein can be subdivided into: water/salt‐soluble proteins (albumins 235 

and globulins) and water/salt‐insoluble ones or gluten (glutenin and gliadin) (Scherf, Koehler, and 236 

Wieser 2016). Wheat proteins are relatively rich in sulfur amino acids (Shewry et al. 1986), with the 237 

presence of ACE inhibitory peptides and dipeptidyl peptidase inhibitor, as well as other bioactive 238 

peptides (with anti-thrombotic, antioxidant, hypotensive, and opioid activities) (Karami et al. 239 

2019). Gluten is rich in glutamine, proline, and contains small amounts of lysine, methionine, threonine, 240 

and other essential amino acids. Due to the high content of glutamine (30% to 35%) and proline (10% 241 

to 15%), gluten can trigger immune reactions, mainly celiac disease for genetically predisposed subjects, 242 

where over 30 amino acid sequences were identified as epitopes (Sollid et al. 2012; Ozuna and Barro 243 

2018). Subsequently, numerous methods were used to reduce the allergenicity of gluten including 244 

physical (e.g. microwaving or thermal treatments), chemical (e.g. addition of polyphenols), and 245 

biological approaches (e.g. germination, enzymes or fermentation) (Boukid, Mejri, Pellegrini, Sforza, 246 

& Prandi, 2017; Boukid, Prandi, Buhler, & Sforza, 2017; Gobbetti, Giuseppe Rizzello, Di Cagno, & De 247 

Angelis, 2007; Pérot et al., 2017; Susanna & Prabhasankar, 2011). These studies underline that 248 

lactobacilli and fungal combination of proteases allowed a total abolishment of gluten in wheat flour, 249 

while enzymes like transglutaminase reduced the binding with the interferon (but not fully inhibited), 250 

and microwave changed the structure of proteins but did not impact the antigenic capacity of gluten. 251 

Commercially, gluten (around 80% of wheat proteins) is extracted from wheat flour and labelled as 252 

“vital wheat gluten” when its technological properties are maintained after hydration. Glutenin is 253 

associated with dough elasticity, while gliadin is associated with viscosity and extensibility (Shewry et 254 

al. 2002). Vital gluten is added as an ingredient to  dough to improve its baking quality in terms of water 255 

absorption capacity, cohesiveness, viscosity, and elasticity (Ortolan et al. 2017; Bardini et al. 2018). 256 

Wheat gluten has film forming properties, enabling the formation of semipermeable membranes to be 257 

used for encapsulating agent or as food coatings or edible films (Ansorena, Zubeldía, and Marcovich 258 

2016).  259 

3.3. Pea protein  260 

Peas protein (~ 25 % of pea seed) are divided into globulins (70–80%) and albumins (10–20%) (Lan et 261 

al. 2019). Globulins can be subdivided into legumin (hexameric protein, 300–400 kDa, 11S) and vicilin 262 

(trimeric protein, 150–170 kDa, 7S), with minor amounts of convicilin proteins (composed of three ∼70 263 

kDa sub-units, 7S) (Chihi, Sok, & Saurel, 2018; Mohamed Lazhar Chihi et al., 2016; Lam, Can Karaca, 264 

Tyler, & Nickerson, 2018; Lan et al., 2019). Pea protein hydrolysate exhibited the presence of peptides 265 

with heath promoting properties thanks to their bioactive activities (e.g. antihypertensive, antidiabetic, 266 

and antioxidant) (Huan Li and Aluko 2010; Roy, Boye, and Simpson 2010; Chalamaiah, Yu, and Wu 267 
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2018). Recently, AKSLSDRFSY peptide was characterized from pea protein hydrolysate as an 268 

angiotensin, converting enzyme 2 up-regulating property in vascular smooth muscle cells (Liao et al. 269 

2019). A randomized cross-over meal test study comparing animal (pork/veal) based meals and 270 

vegetable (peas/beans) based meals indicated the higher satiation reached with vegetable proteins 271 

(Kristensen et al. 2016). Likely, the higher fiber content of the vegetable meals results in higher satiating 272 

effect reached with lower protein intake.  Pea protein was reported to trigger allergic reactions including 273 

anaphylaxis (Sanchez-Monge et al. 2004). Pis s 1 and Pis s 2 have been suggested as potential major 274 

pea allergens deriving from vicine and convicine (Popp et al. 2020). Legumin and vicine have quite 275 

similar isoelectric point (4.5) and denaturation temperature (82.7- 85.5 °C) (Mession, Roustel, and 276 

Saurel 2017; Djoullah, Husson, and Saurel 2018). The ratio between legumin/vicilin depend on several 277 

factors (variety, origin, isolation and production methods) that can strongly impact the functionality of 278 

pea proteins (e.g. water-binding capacity, oil-binding capacity, foam properties, gelation and emulsion 279 

stability) (Chao, Jung, & Aluko, 2018; Chihi et al., 2018; Ladjal Ettoumi, Chibane, & Romero, 2016; 280 

Stone, Avarmenko, Warkentin, & Nickerson, 2015). Pea protein exhibits comparable emulsification and 281 

foaming properties as soy protein, but lower gels formation capacity that can be improved by applying 282 

enzymatic treatments (Silva et al. 2019; Barac et al. 2015; Stone, Karalash, et al. 2015). Also, pea 283 

proteins showed good film forming properties in combination with plasticizers (e.g. polyols), conferring 284 

the formation of an excellent oxygen barrier properties for encapsulation (Varankovich et al. 2015; 285 

Hedayatnia et al. 2019).  286 

3.4. Potato protein  287 

Potato proteins can be divided into three main groups, patatin (39–43 kDa; ∼40%), protease inhibitors 288 

(4.3-20.6 kDa; ∼50%), and other high molecular weight proteins (mainly oxidative enzymes, ∼10%) 289 

(Schmidt et al., 2017; Waglay, Achouri, Karboune, Zareifard, & L’Hocine, 2019; Waglay & Karboune, 290 

2017). Compared to other plant proteins from cereals, potato proteins contain important amount of 291 

lysine, which is generally lacking in such crops (Gorissen et al. 2018; Jesper Malling Schmidt et al. 292 

2018). Potato proteins are associated with several health benefits including lowering allergic response 293 

(Steiß, Simon, and Langner 2015) and  satiety (Y. Wu et al. 2019); antimicrobial (Bártová, Bárta, and 294 

Jarošová 2019), antioxidant (Udenigwe et al. 2016) and anticancer effect (M. Zhang and Mu 2018)  as 295 

well as blood pressure and blood serum cholesterol control (Lea et al. 2016). Enzymatic hydrolysis of 296 

potato proteins was used to produce soluble proteins with potential bioactivity such as DIKTNKPVIF 297 

and a dipeptide IF  (Marthandam Asokan, Yang, and Lin 2018). Potato protein allergies are much less 298 

common, patatin was identified as a major cross-reactive protein triggering atopic dermatitis (Schmidt, 299 

Raulf-Heimsoth, & Posch, 2002). Potato proteins have interesting functional features such as solubility, 300 

foaming, emulsifying, and gelling abilities, which are  dependent on the extraction method used 301 

(Hoehnel et al., 2019; Schmidt, Damgaard, & Greve-Poulsen, Sunds,  Larsen, Hammershøj, 2019; 302 

https://www.sciencedirect.com/topics/medicine-and-dentistry/enzymatic-hydrolysis
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Schmidt et al., 2018; Seo, Karboune, & Archelas, 2014; Waglay et al., 2019; Waglay, Karboune, & 303 

Khodadadi, 2016). Patatin has excellent foaming and emulsifying abilities (Schmidt et al., 2018). Patatin 304 

also could interact with polyphenols, which react with salivary proteins. This complexation is used as a 305 

non-allergenic alternative to animal proteins, in wine fining, reducing the astringency (Gambuti, Rinaldi, 306 

and Moio 2012). Furthermore, potato proteins were reported to have antifreeze functions with potential 307 

applications in medical, agricultural, industrial, and biotechnological fields (Wallis, Wang, and Guerra 308 

1997). Potato protein is one of the most appreciated plant-based proteins for consumers, due to its 309 

association  with starch and in turn positive connotation to food texture (Aschemann-Witzel and Peschel 310 

2019). 311 

3.5. Rice protein  312 

Based on solubility, rice proteins can be categorized into albumin, globulin, prolamin, and glutelin. Rice 313 

proteins are also easily digestible, highly bioavailable, and contain more essential amino acid lysine than 314 

other cereal proteins source of essential amino acids such as lysine (Amagliani et al. 2016; Liu et al. 315 

2016; Suphat Phongthai et al. 2018). Due to its essential amino acid profile, rice protein can play 316 

an important role in infant nutrition ( Wang et al. 2019; Amagliani et al. 2017a). Rice proteins are 317 

considered hypoallergenic and contain specific bioactive peptides that can elicit beneficial effects 318 

including anti-oxidative, anti-hypertensive, anti-cancer, and anti-obesity activities (Amagliani et al. 319 

2019; Amagliani et al. 2017a). Allergenic proteins have been isolated from a rice salt-soluble fraction, 320 

with a molecular mass ranging from 14 to 16 kDa, and were associated to the baker’s asthma (Nakamura 321 

and Matsuda 1996). In term of functionality, native rice proteins have limited capacity to stabilize oil-322 

water emulsions, have limited emulsifying properties, and low solubility (solubility <2% w/v; pH=4-7) 323 

thereby limiting its complete exploitation at industrial level (Amagliani, O’Regan, Kelly, & O’Mahony, 324 

2017a; Gomes & Kurozawa, 2020; Wang, Yue, Xu, Wang, & Chen, 2018). Several techniques 325 

(chemical, biochemical, and physical) are adopted to modify rice protein native structure to improve 326 

their functional properties (Gomes and Kurozawa 2020). However, such treatments are challenging and 327 

may hinder the functional and nutritional properties of proteins (Li, Wang, Sun, Li, & Chen, 2019; Liu 328 

et al., 2016; Wang et al., 2019; Wang et al., 2016).  329 

3.6. Corn protein 330 

Corn proteins are mainly comprised of zeins (60% of all the proteins) (Gezer, Liu, & Kokini, 2016; Liu, 331 

Cao, Ren, Wang, & Zhang, 2019). Zein can be classified in α, β, γ, and δ-zeins, where α-zeins are the 332 

most abundant (70%-85% of total zein) (Z. Liu et al. 2019; Turasan et al. 2018). These proteins differ 333 

in structural (having different amino acids chains and molecular weight) and solubility properties (Hu, 334 

Wang, Fernandez, & Luo, 2016). Zein is rich in glutamic acid (21–26%), leucine (20%), proline (10%), 335 

and alanine (10%), yet deficient in tryptophan and lysine (Dhillon et al. 2016). This deficiency can be 336 

compensated to obtain a balanced nutritional product such as a blend zein-potato protein (Glusac et al. 337 
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2018). Zein can be considered to be a potential source of bioactive peptides with inflammatory, 338 

antihypertensive, hepatoprotective, anti-obesity, antimicrobial, and antioxidative activities (Liang et al. 339 

2019; Liang et al. 2018). At a functional level, the high amount of nonpolar amino acid residues is 340 

responsible for the highly hydrophobic properties characteristics of zein, which results in low solubility 341 

in water (Glusac et al. 2018; Dong et al. 2017). Zein has  a strong ability to entrap a large number of 342 

hydrophobic compounds (Chen et al., 2018; Dai et al., 2018; Wei, Sun, Dai, Zhan, & Gao, 2018), great 343 

ability to stabilize emulsion and foam, (Blanco, Smoukov, Velev, & Velikov, 2016; Boostani et al., 344 

2019; Cao, Liu, Zhang, Wang, & Ren, 2020; Pan, Tikekar, Wang, Avena-Bustillos, & Nitin, 2015; 345 

Teklehaimanot & Emmambux, 2019; Wang et al., 2016) as well as film-forming and fiber-forming 346 

capacities (Chen et al., 2015; Gezer, Brodsky, Hsiao, Liu, & Kokini, 2015; Kasaai, 2018). 347 

Commercially, a corn protein isolate (70-90% protein) has been recently launched as the first food-grade 348 

non-zein corn protein, targeting bakery and meat analog applications (Cargill 2020). 349 

3.7. Algal protein 350 

Algal proteins are derived from various edible algae (macroalgae or microalgae), microalgal species 351 

(such as Spirulina spp., Chlorella spp. and Dunaliella salina) being the most used due to their high 352 

content of protein (Grossmann, Hinrichs, and Weiss 2019; Aiello et al. 2019; Medina et al. 2015; 353 

Caporgno and Mathys 2018; Lupatini, Colla, et al. 2017). With respect to algal biomass, the 354 

development of algal proteins ingredients (isolates or concentrates) are still limited due to the high 355 

technology costs related to production. Extracting and purifying algal proteins is a challenging task, 356 

particularly maximizing yield without hindering the nutritional and functional properties. This explains 357 

why the commercialization of algal biomass is more common than isolated protein ingredients. In recent 358 

years, several processing strategies (e.g. bead millings, ultrasound technology, pulsed electric field, and 359 

freezing) have been developed for cell wall disruption, and thereby increased the availability of algal 360 

proteins entrapped within resistant cell walls (Lupatini, de Oliveira Bispo, et al. 2017; Bleakley and 361 

Hayes 2017; Yücetepe, Saroğlu, and Özçelik 2019; Vernès et al. 2019; Teuling et al. 2017; Agboola et 362 

al. 2019; Yucetepe et al. 2018). Nutritionally, algal proteins are rich several essential amino acids such 363 

as lysine, methionine, threonine, tryptophan, histidine, leucine, isoleucine, valine, and phenylalanine, 364 

depending on the strain (Lupatini, de Oliveira Bispo, et al. 2017; Waghmare et al. 2016). For instance, 365 

Spirulina platensis, one of the richest protein sources of microbial origin (46%–63% DB, dry matter 366 

basis), has a protein level comparable to meat (71–76% DB) and soybeans (~ 40% DB) (Lupatini, de 367 

Oliveira Bispo, et al. 2017). In the US, GMO algal proteins may have customized amino acid profiles. 368 

Algal peptides were investigated for several biological activities such as anti-cancer, anti-obesity, 369 

antioxidant, antimicrobial, antihypertensive, and immunomodulatory activities (Fan et al. 2018; 370 

Gargouri, Magné, and El Feki 2016; Aiello et al. 2019; Moreira et al. 2019; Bhosle et al. 2015). Although 371 

few adverse effects are associated with algae, some allergic reactions were reported towards seaweed 372 
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and Spirulina (Le, Knulst, and Röckmann 2014). However, concern over algae allergenicity is still not 373 

fully deciphered for species not approved as “novel foods” or algal deriving ingredients such protein 374 

isolates. Functionally, algal proteins present promising properties, such as foaming, emulsifying, 375 

gelling, and water and oil absorption (Benelhadj et al. 2016; Yücetepe, Saroğlu, and Özçelik 2019; 376 

Teuling et al. 2019; Pereira, Lisboa, and Costa 2018). Algal protein concentrates (e.g. Spirulina 377 

platensis) had higher water/ oil absorption capacities, foaming capacity, and foam stability than other 378 

algae and plant proteins (Yücetepe, Saroğlu, and Özçelik 2019; Benelhadj et al. 2016). Noteworthy, 379 

foaming capacity was comparable with those of egg white protein indicating algal proteins as valuable 380 

vegan alternative to include in food formulation (Lupatini Menegotto et al. 2019). Solubility of algal 381 

proteins showed high variability as a function of species, extraction methods, protein isolate 382 

concentration, and ionic strength. Arthospira platensis had comparable solubility to that of commercial 383 

concentrate of whey  protein (73.9 ± 3.5%) and soy protein (50%) (Benelhadj et al., 2016; Chen et al., 384 

2019; Pereira et al., 2018).  Regardless of the pH conditions, algal protein isolates were able to form a 385 

stable emulsion, the emulsifying activity index (30 m2/g ) was higher than amaranth protein isolates 386 

(15.3–17.7 m2/g), soy protein isolates, (10.86 m2/g) and napin protein isolates (12.8–19.4 m2/g) (Chen 387 

et al., 2019; Hu, Cheung, Pan, & Li-Chan, 2015; Lupatini Menegotto et al., 2019; Teuling et al., 2019).   388 

3.8. Fungal protein 389 

Fungal protein, or mycoprotein,  refer to protein ingredients derived from the cultivation processes of 390 

fungi (yeast or filamentous molds) in plant biomass (Stoffel et al. 2019). In general, mycoprotein is an 391 

interesting source of good-quality proteins, with good acceptance among consumers (Finnigan, 392 

Needham, and Abbott 2016). Fungi (Fusarium venenatum) contain all essential amino acids and the net 393 

protein (45% DB) has high biological value compared to  milk (J. Lonchamp et al. 2019; Julien 394 

Lonchamp, Clegg, and Euston 2019). The essential amino acids composition is similar to milk, human 395 

muscle, and Spirulina platensis, thus better than the majority of plant-based proteins (van Vliet, Burd, 396 

and van Loon 2015; Dunlop et al. 2017). Additionally, in vivo trials on healthy young men showed that 397 

60 g of mycoprotein allowed an optimal response regarding muscle protein synthesis (Dunlop et al. 398 

2017). Several health benefits have been associated with the substitution of meat for mycoprotein, 399 

including improvements in blood cholesterol concentration and glycemic response, (Souza Filho et al. 400 

2019)  increase satiety, and high digestibility (Bottin et al. 2016). However, some studies reported the 401 

association of mycoprotein with allergic and gastrointestinal symptoms (Hoff et al. 2003; Jacobson and 402 

DePorter 2018; Van Durme, Ceuppens, and Cadot 2003). Symptoms can range from mild nausea to life-403 

threatening emesis (Jacobson and DePorter 2018). Future research on the functionality of mycoprotein 404 

is warranted, as there is no available literature in this regard. While algal proteins may be perceived as 405 

savory and umami, fungal proteins are perceived as mild tasting with low off-flavor, limiting their 406 

utilization to certain types of food products (Pojić, Mišan, and Tiwari 2018). Mycoprotein mainly found 407 
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its place in the market as a healthy substitute to meat such as Quorn Foods (Marlow Foods Limited and 408 

3fbio Ltd). 409 

 410 

4. Food Applications: opportunities and challenges  411 

Non-animal proteins are gaining popularity in their versatile forms (isolates, concentrate, flour, 412 

hydrolysates or textured) in food industries as: i) functional ingredients to enhance the nutritional value 413 

or ii) main ingredient for developing non-meat alternatives, or iii) additives with peculiar functional 414 

properties that may enhance the technological features of food products. In fact, in the search of cleaner 415 

labels, consumer preferences shift towards plant-based foods, and food perception improves when 416 

specifying the type of protein (Aschemann-Witzel and Peschel 2019). 417 

4.1. Meat analogues 418 

Meat analogues, also called meat substitutes or meat alternatives, have been trending upward among 419 

vegetarian and  non-vegetarian consumers, leading to a boost of their market share of the total meat 420 

market (Weinrich and Elshiewy 2019; Siegrist and Hartmann 2019). The global meat substitute market 421 

is projected to grow at a CAGR of 7.9% during the forecast period of 2019-2024 (Mordor Intelligence, 422 

2019). Meat analogues are designed with on plant proteins, instead of animal proteins, to have similar 423 

aesthetic properties (e.g. structure, texture, flavor, color, and appearance) to meat (Chiang et al. 2019; 424 

Bedin et al. 2018), applying in many cases extrusion to obtain texturized vegetable proteins (Zhang et 425 

al., 2019). Technologically, designing appealing meat substitutes is still challenging (Vandenbroele et 426 

al. 2019).  427 

Many analogues are traditionally made from plant-based proteins such as soy protein or wheat gluten, 428 

and more recently pea protein (Grahl et al. 2018). In meat analogues applications, plant-based proteins 429 

play crucial roles of structuring  and binding, with functional properties (e.g. water and oil holding 430 

capacities, solubility, emulsification, foaming, and gelation properties) that are closely associated with 431 

the type of protein (e.g. amino acid sequence and structure) and  the environmental factors (e.g. pH, 432 

temperature, and ionic strength) (Contreras et al. 2019; Amagliani et al. 2017a; Hoehnel et al. 2019; 433 

Alves and Tavares 2019). Soy protein ingredients are most commonly used in creating fibrous structure 434 

(Schreuders et al. 2019). Based on purity, several forms of soy protein ingredients are available in the 435 

market including textured soy proteins (50–55% protein), concentrated proteins (65–70% protein), and 436 

isolated proteins (85–90%) (Bedin et al. 2018; K. E. Preece et al. 2017a). Even though a high degree of 437 

purification of proteins is not required in meat analogue production, the use of soy isolates is the most 438 

appreciated due to the absence of beany taste and pronounced off- flavors (Morales et al. 2015; Marlies 439 

Geerts et al. 2018). Both textured and concentrated protein can be used as alternatives to soy isolates 440 

https://www.sciencedirect.com/topics/food-science/meat-analog
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due to their lower cost (Pietsch, Bühler, et al. 2019). Wheat gluten is also used in creating similar 441 

structural anisotropy to meat due to its binding and film-forming capacities, enabling the formation of 442 

fibrous proteinaceous materials (Krintiras et al. 2016; Schreuders et al. 2019; Pietsch, Schöffel, et al. 443 

2019). Blends of gluten (30%) and soy concentrates (70%) showed great efficiency in the formation of 444 

a strong fibrous structure due to disulfide bonding (Dekkers et al. 2018; Chiang et al. 2019). Water 445 

distribution within the blend was heterogenous due to greater water absorption capacity of soy proteins 446 

compared to gluten (Dekkers et al. 2018; Schreuders et al. 2019; Schreuders et al. 2020). Pea protein is 447 

gaining interest as an alternative for soy protein, due to lower concerns over allergenicity and safety 448 

(e.g. genetically modified seeds), as well as its high adaptability to grow under different climate 449 

conditions (Geerts, Mienis, Nikiforidis, van der Padt, & van der Goot, 2017; Peters, Vergeldt, Boom, & 450 

van der Goot, 2017; Tulbek, Lam, Wang, Asavajaru, & Lam, 2016).  451 

Beside plant proteins, novel sources of proteins (algae and fungi-based) are finding their way as binder, 452 

filler, and flavoring ingredients in the formulation of meat analogues (Grahl et al. 2018; Smetana et al. 453 

2015). Likewise, algae protein offers an alternative protein for those with a soy allergen, with the 454 

additional benefit of improving the amino acids profile (Marti‐Quijal et al. 2018). Meat analogues can 455 

be reformulated with mainly total algal biomass and other non-purified forms of proteins. Microalgae 456 

integration increased the contents of vitamins B and E in the extrudate, where over 95% was retained in 457 

the final product (Caporgno et al. 2020). Incorporating Spirulina platensis biomass (10%, 30% or 50%) 458 

in a texturized soy base resulted in products with black color and intense flavor (earthy notes and an 459 

algal odor). Particularly, 50% addition hindered the texture, where the elasticity, fibrousness, and 460 

firmness of the extrudates were decreased (Grahl et al. 2018).  461 

Several studies focus on meat substitute production from fungal origin, where they detailed the 462 

processing, used strains, and formulation to that of commercial product, QuornTM (Finnigan et al., 2016; 463 

Lonchamp et al., 2019; Jacobson, 2018; Ritala et al., 2017). In brief, mycoprotein is produced by an 464 

edible fungi (Fusarium venenatum) and is the basis of QuornTM  meat substitutes (Souza Filho et al. 465 

2018). Quorn™ not only contains protein but also high quantities of fiber and starch, which provides 466 

positive textural and nutritional attributes to meat-analogs. Beside fungi, egg albumin can be added as a 467 

flavoring agent and protein binders to the formulation of vegetarian meat substitute, for vegans, potato 468 

protein is used instead of egg albumen (vegan QuornTM). 469 

4.2. Dairy-free beverages 470 

Recently, milk consumption has been declining due to lifestyle trends, allergic reactions, lactose 471 

intolerance, and health concerns associated with animal based products (Abbring et al. 2019; Zingone 472 

et al. 2017). In turn, the consumption of plant alternatives have risen, for their lactose-free nature 473 

responding to consumers suffering from intolerance and animal-free nature suitable for consumers 474 

https://www.sciencedirect.com/topics/food-science/meat-analog
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following a vegan diet (Lawrence, Lopetcharat, and Drake 2016; Chalupa-Krebzdak, Long, and Bohrer 475 

2018). More than half of dairy consumers also purchase (non-dairy) plant-based beverages either to 476 

reduce (not completely eliminate) their consumption of animal deriving products (McCarthy et al. 2017), 477 

or for health promoting functional beverages  (Qamar et al. 2019).  478 

Most plant-based beverages are deriving from soy, rice, almond, and coconut. From a nutritional 479 

viewpoint, soy protein has a total protein content comparable to cow's milk (Lacerda Sanches, Alves 480 

Peixoto, and Cadore 2019) and contains all the essential amino acids for the human body (Jeske, Zannini, 481 

and Arendt 2018; Jeske, Zannini, and Arendt 2017). Soy based beverages might present some drawbacks 482 

such as an off-flavor due to action of lipoxygenase on unsaturated fatty acids. With the increasing 483 

prevalence of soy allergies (about 0.5% of the global population), more plant alternatives are needed (S. 484 

Wang, Chelikani, and Serventi 2018; Sethi, Tyagi, and Anurag 2016). Beverages based on pea protein 485 

isolate (3% w/w) had a rich aroma profiles (21 aroma compounds) generated by the reaction pathways 486 

of lipid oxidation and the Maillard during the Ultra High Temperature (UHT) treatment. Results showed 487 

that pea protein-based beverage aroma profile was characterized with beany, potato, pasta, and cooked 488 

green bean aroma attributes, but no changes were reported as a result of storage (Trikusuma, Paravisini, 489 

and Peterson 2020). 490 

Plant proteins offer interesting nutritional and functional benefits for the development of innovative 491 

infant formulas. In the European Union, protein sources allowed in infant and follow-on formulas are 492 

exclusively cow’s milk protein, goat's milk proteins, soy protein isolates, and hydrolyzed proteins 493 

following clinical evaluation  (Bocquet et al. 2019). In the case of children suffering from cow's milk 494 

protein allergy, soy protein-based formulas have been widely used as an alternative. However, up to 495 

14% infants suffering from cow milk allergy also have negative reactions to a soy protein based formula 496 

(Bocquet et al. 2019). Hydrolyzed rice protein formulas can be used as a plant-based alternative to cow's 497 

milk protein-based. However, this substitution may not be suitable nutritionally considering the different 498 

chemical composition of milk and plant-based beverages. These formulas are, therefore, fortified with 499 

vitamin D3 (cholecalciferol) and free lysine, threonine, and tryptophan to enhance their nutritional 500 

value, making them mor similar to human milk (Bocquet et al. 2019). In a non-dairy infant formula, 501 

plant proteins (pea, rice, or potato) were included as a fortifying agent (50%) to whey proteins. Protein 502 

degree of hydrolysis and amino acid bioaccessibility were very similar between the control (100% whey 503 

protein) and pea, but lower for rice and potato proteins-based infant formulas (Roux et al. 2020). 504 

Therefore, the source of proteins must be carefully considered to meet nutritional requirements for 505 

infants (Le Roux et al. 2020). 506 

For fermented beverages, the fortification using different plant proteins (0.5%; soy protein isolate, pea 507 

protein isolate, wheat gluten, and rice protein) improved protein and amino acid contents. During 508 

storage, this fortification increased viscosity. Soy protein isolates-based beverages showed rich essential 509 

https://www.sciencedirect.com/topics/food-science/soy-protein
https://www.sciencedirect.com/topics/food-science/essential-amino-acid
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amino acids profiles particularly lysine, leucine, isoleucine, methionine and threonine. Also, the taste of 510 

these drinks have improved, particularly those made from pea proteins isolates (Akin and Ozcan 2017). 511 

More research is required to understand the behavior of these proteins during processing and storage 512 

and to ensure the physical stability and reconstitution abilities of these products (Le Roux et al. 2020). 513 

Including enzymes, or mixing two or more types of plant-based milk can be a starting point to develop 514 

a product with a high nutritive value equivalent as cow’s milk (Akin and Ozcan 2017; Sethi, Tyagi, and 515 

Anurag 2016).  516 

Milk and dairy products are not commonly used as delivery vehicles of microalgal biomass or 517 

microalgae-derived compounds. A yoghurt fortified in lipids extracted from Pavlova lutheri was found 518 

efficient in enhancing the nutritional properties (increasing the Omega 3 content) without altering the 519 

functional properties. However, the final product was not appreciated by consumers for the relevant 520 

change in color (decrease in lightness and increase in greenness and yellowness) (Robertson et al. 2016).  521 

4.3. Bread 522 

Bread is staple food that can be a suitable vehicle for protein fortification as summarized in Table 2. The 523 

inclusion of plant-based proteins in this food was primarily added for increasing the protein intake in 524 

the human diet, and secondary for the specific functionality of some proteins (Hoehnel et al. 2019; M. 525 

Liu et al. 2018).  526 

***Table 2*** 527 

4.3.1. Gluten-containing bread 528 

In bakery, vital gluten is mostly used in low amounts to increase the strength of protein network of flours 529 

with low protein content for bread making. This addition will  improve the mixing tolerance and 530 

handling of doughs to form a more cohesive dough network (Bardini et al., 2018; Boukid et al., 2018; 531 

Boukid, Carini, Curti, Pizzigalli, & Vittadini, 2019). Consequently, during baking, the dough network 532 

will be able to trap and retain the gases formed in baking, resulting in enhanced bread volume and 533 

improved yield, color, crumb uniformity, crumb firmness, and sensory properties, as well as protein 534 

level (Giannou and Tzia 2016; Ortolan et al. 2017; Ortolan and Steel 2017).  535 

Even though the addition of non-wheat proteins enhances the nutritional profile of bread, it leads to a 536 

dilution of gluten and starch (dilution effect) (Hoehnel et al. 2019). The selection of the protein source 537 

and amount, with appropriate functionalities significantly affect their potential interactions with wheat 538 

flour components, thereby the final structure of the dough and quality of the bread (Zhou, Liu, and Tang 539 

2018). The substitution of wheat flour with 15% of non-wheat proteins (pea, potato, and zein isolates) 540 

and gluten affected gluten-aggregation, pasting, and bread characteristics depending on protein source 541 

https://www.sciencedirect.com/topics/food-science/essential-amino-acid
https://www.sciencedirect.com/topics/food-science/leucine
https://www.sciencedirect.com/topics/food-science/isoleucine
https://www.sciencedirect.com/topics/food-science/methionine
https://www.sciencedirect.com/topics/food-science/threonine
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(Hoehnel et al. 2019). Potato and pea protein isolates weakened the gluten-network in doughs contrary 542 

to zein. Consequently, gluten and zein based breads had the highest specific volumes and low crumb 543 

hardness, compared to those made from pea protein isolates, which showed lower values than the control 544 

(Hoehnel et al. 2019). Likewise, replacing wheat flour with soy protein hydrolysates (20%) negatively 545 

impact the dough properties (reduction in dough stability) compared to control (100% wheat flour). This 546 

is likely due to the interaction of soy protein with wheat flour components that hindered hydration and 547 

gluten network formation (Schmiele et al. 2017). The addition of soy protein isolates (30%) decreased 548 

dough peak torque and stickiness, resulting in reduction of bread specific volume (from 2.61 to 1.31 549 

cm3 /g) and increased hardness (173 to 696 g) (Zhou, Liu, and Tang 2018).  550 

To improve the nutritional quality of bread, several algal species have been added as whole algal 551 

biomass, and not as purified forms of proteins (Graça et al. 2018; Nunes et al. 2020; Lafarga, Mayre, et 552 

al. 2019; García-Segovia et al. 2017). The addition of microalgal biomass increased protein content 553 

bread from 7.40% (control) to 11.63% (bread with 10%), minerals (control: 261.7 mg/kg calcium, 196 554 

mg/kg magnesium, and 8.72 mg/kg iron to fortified bread: 721.2 mg/kg calcium, 336.6 mg/kg 555 

magnesium, 41.12 mg/kg iron) (Ak et al. 2016). Generally, 3% addition level had a positive impact on 556 

dough rheology and viscoelastic characteristics, strengthening the gluten network without affecting 557 

fermentation (Graça et al. 2018). However, beyond 3%, the technological properties of bread can be 558 

hindered such as undesirable sensorial attributes and reduction in bread volume due to the dilution of 559 

starch and gluten (Lafarga, Mayre, et al. 2019; Graça et al. 2018). The volatile profile was also affected, 560 

where fourteen volatile compounds were detected in control group and only ten compounds were 561 

detected in bread with Spirulina platensis (Ak et al. 2016). Another limiting factor is a noticeable change 562 

of color in fortified breads due to algal biomass pigments (Graça et al. 2018; García-Segovia et al. 2017). 563 

Proteins ingredients, particularly isolates, can instead ensure a better result (Lafarga, Acién-Fernández, 564 

et al. 2019).  The use of microalgae showed a positive effect on the inhibition of mold growth during 565 

the subsequent storage thus extending the shelf life of bread (Ak et al. 2016). 566 

4.3.2. Gluten-free bread 567 

Plant proteins (obtained from gluten-free sources) are valuable ingredients to enhance the nutritional 568 

properties of gluten-free bread, which are largely formulated with starchy ingredients (Tomić, Torbica, 569 

and Belović 2020; Suphat Phongthai et al. 2016; Matos Segura and Rosell 2011).  Plant proteins (other 570 

than gluten) have been reported advantageous due to lower allergenicity and unique techno-functional 571 

properties (Moreno et al. 2020; Mohamed Lazhar Chihi et al. 2016). Technologically, protein additions 572 

to gluten-free systems may increase the elastic modulus by cross-linking, improve the perceived quality 573 

by enhancing Maillard browning and flavor,  improve structure through gelation, and  supports foams 574 

(Han et al., 2019; Suphat Phongthai et al., 2016; Smith, Bean, Selling, Sessa, & Aramouni, 2017). Apart 575 
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from the nutritional increase through the plant protein addition, some research has been focused on 576 

finding proteins that could mimic gluten functionality in yeast fermented breads.   577 

The benefits of plant proteins are closely associated with their form (different purity) and amounts. The 578 

incorporation of plant protein isolates generally enhances the nutritional quality (protein quantity and 579 

quality) of gluten-free bread. Some limitations might be encountered such as the poor water solubility 580 

of plant proteins that can results in less uniform bubble distribution compared to animal proteins or a 581 

very pronounced taste (Silva et al. 2018; Silva et al. 2019; Wouters et al. 2017). Regarding gluten free 582 

doughs or batters, the inclusion of plant proteins increased the water absorption and also modified the 583 

mechanical and surface related textural properties (Marco and Rosell 2008). 584 

Incorporating soy proteins (at a range from 2.3 to 4%) in bread formulation with high water retention  585 

may result in batters with lower surface-activity and lower stability, leading to breads with lower  586 

specific volume and a dense crumb structure (Masure et al. 2019). Higher levels (13%) of soy proteins 587 

were used for replacing gluten in rice based breads, although again with lower specific volume, which 588 

could be increased with hydroxypropylmethyl cellulose (HPMC) and transglutaminase (Marco and 589 

Rosell 2008). Soy proteins had a significant effect on the dough techno-functional properties, increasing 590 

the elastic (G) and viscous (G) moduli, and the same effect was observed with pea proteins (Marco & 591 

Rosell, 2008). The formation of a better network for breadmaking could be reached by enzymatic 592 

crosslinking of the proteins using transglutaminase, promoting interactions either within beta-593 

conglycinin and glycinin of soybean and the glutelin of the rice flour (Marco et al. 2008) or within the 594 

albumins and globulins of rice flour and pea protein isolates (Marco et al. 2007). Specifically, the ß-595 

conglycinin isolated from soy showed viscoelastic properties resembling the gluten functionality 596 

(Espinosa-Ramírez et al. 2018). This protein fraction enabled a network  that held the carbon dioxide 597 

released during baking in gluten-free yeast leavened breads (Espinosa-Ramírez et al. 2018).   598 

Within the same range of addition, rice protein concentrates (2% addition level) enhanced the 599 

rheological properties of the batter and the relative elasticity of final gluten-free breads due to functional 600 

properties including oil and water binding capacity, foaming, and emulsifying ability (Suphat Phongthai 601 

et al. 2016). These breads (fortified with 2% rice protein concentrate) had the highest specific volume, 602 

enhanced the crumb porosity, and enhanced sensory attributes (Suphat Phongthai et al. 2016). With 603 

respect to the volatile profiles, rice protein based bread crusts had high content of 2-acetyl-1-pyrroline 604 

enabling a pleasant aroma (Pico et al. 2019) Tomić et al. 2020). Enriched millet flour-based bread with 605 

proteins (pea and rice protein concentrate; 10%) and transglutaminase (0.5, 1.0 and 1.5%), improved the 606 

technological quality of bread (structure strengthening, specific volume, and sensory quality), while the 607 

enzyme effect was masked (Tomić, Torbica, and Belović 2020). Protein fortification also reduced bread 608 

hardness and noted a complete loss of the bitter taste originating from millet (Tomić, Torbica, and 609 

Belović 2020). Breads  fortified with 30% pea proteins presented lower specific volume and weight loss 610 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/elasticities
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/emulsifying
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/rice-protein
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/2-acetyl-1-pyrroline
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during baking, and higher hardness than those obtained with 100% starch (Sahagún and Gómez 2018a). 611 

This addition reduced the rapidly digestible starch fraction and increased the slowly digestible starch, 612 

resulting in a bread with lower glycemic index compared to the control (Sahagún et al. 2020). Zein (5%) 613 

was included in a gluten-free formulation based on raw maize flour (70%) and pre-gelatinized maize 614 

flour (30%). Prior to dough-making, the zein was premixed with water to form a viscoelastic mass, 615 

rather than including dry zein, to improve its extensibility and gas-holding capabilities. The zein fibrils 616 

appeared to entrap the maize flour particles, which enhanced bread crumb cell structure and increased 617 

loaf volume. However, the crumb cell walls were much thicker than in wheat bread and comprised 618 

clumps of starch granules (Khuzwayo, Taylor, and Taylor 2020). 619 

Brown algae added at levels ranging from 2 to 10% increased the antioxidant activity of white rice flour-620 

based bread. Increasing level of addition resulted in undesirable change of color (decrease in lightness 621 

and yellowness of breadcrumb), decreased in hardness, and exhibited a low degree of staling. The 622 

addition of algae at 4% inclusion enabled the highest specific volume compared to the control. Up to 623 

4% was also accepted by consumers, while higher levels resulted in unpleasant taste (Różyło et al. 2017).  624 

4.4. Pasta 625 

4.4.1. Gluten containing  626 

Pea proteins (added in a range between 0 to 12.5%) were assessed as possible ingredients in wheat 627 

noodles (Wee et al. 2019). Both native and denatured (by heating 5% w/w native pea protein suspension 628 

at 85 °C for 30 min in a water bath and freeze-drying for a minimum of 48 h) forms were considered. 629 

This study revealed that denatured pea protein reduced in vitro glucose release due to a lower degree of 630 

gelatinization and greater binding of protein to the starch matrix. In turn, native protein had less impact 631 

on degree of gelatinization and glucose release in noodles. The form of protein (denatured or native) did 632 

not significantly influence product texture or sensory perceptual properties (Wee et al. 2019).  633 

Microalgal proteins have been also implemented for enriching pasta. El-Baz et al., (2017) prepared pasta 634 

by adding low amounts (below 3%) of Dunaliella salina powder to enhance its nutritional value, 635 

particularly  protein content, minerals, phytochemicals, and unsaturated fatty acids (El-Baz, Abdo, and 636 

Hussein, 2017). Incorporation of the microalgal powder improved water absorption, resulting in an 637 

increase of the pasta volume and weight, but also losses in cooking. Sensory evaluation revealed that 638 

1% addition did not affect flavor, mouthfeel, or overall acceptability.  The acceptability and mouthfeel 639 

were negatively affected at higher levels, and the pasta was darker in color. Much higher levels were 640 

tested with Spirulina platensis (up to 15%), affecting cooking quality (increase in weight and volume) 641 

without affecting cooking loss. Apart from pasta color, specifically  pasta luminosity and yellow index 642 

decreased, and green index increased (Özyurt et al. 2015). Sensory evaluation indicated that pasta 643 

enriched with 10% S. platensis was the most appreciated in terms of flavor and appearance.  644 
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4.4.2. Gluten free   645 

Beside enhancing protein quantity and quality, the fortification of gluten-free pasta with protein plays 646 

an important technological role in determining the structure, texture, and sensory properties of the final 647 

product (Suphat Phongthai et al. 2017; Laleg et al. 2016; Linares-García et al. 2019). The most 648 

frequently used proteins in gluten-free pasta are from animal origin, mainly egg protein, milk protein, 649 

and whey protein as they can improve textural characteristics (springiness, resilience and adhesiveness), 650 

cooking properties (low cooking loss), and the digestibility of pasta (Muneer et al. 2018; Linares-García 651 

et al. 2019). 652 

For plant proteins, soy protein is among the most used proteins for formulating animal-free and gluten-653 

free pasta. Incorporating soy protein isolate (up to 10%) decreased the starch retrogradation of rice flour-654 

based spaghetti and resulted in a more porous structure compared to control (100% rice flour), and  5% 655 

addition  gave the best eating quality and overall acceptability (Detchewa et al. 2016). Banana flour-656 

based pasta was enriched with soy protein or egg white (5, 10, and 15%) and compared to conventional 657 

pasta (100% semolina) and banana pasta (100% banana flour) (Rachman et al. 2019). Cooking properties 658 

of banana pasta (optimum cooking time, swelling index, water absorption index, and cooking loss) was 659 

enhanced with increasing protein levels, particularly with soy protein addition, improving the 660 

extensibility (Larrosa et al. 2016; Suphat Phongthai et al. 2017; Rachman et al. 2019) and preventing 661 

structure disintegration (Suphat Phongthai et al. 2017). Pea and rice protein isolates have been used for 662 

enriching quinoa pasta, formulated with extruded and non-extruded quinoa (red and white) flour. The 663 

addition of pea protein (12%) increased protein content (27.9%) and pasta firmness (Linares-García et 664 

al. 2019). Pasta enriched with Spirulina platensis biomass at 2% addition was acceptable without 665 

altering cooking and texture properties, phenolic compounds, chlorophyll, and carotenoids, and 666 

antioxidant activity increased (Fradinho et al. 2020). 667 

Noodles not only have been tested with the purpose of protein enrichment, but also protein-based 668 

noodles have been developed and studied. When gluten-free noodles were processed into pasta-like 669 

sheets with pea protein isolate (>90% proteins)  at high levels, doughs showed high crosslinking 670 

resulting in stronger protein networks (high strength and extensibility) (Muneer et al. 2018). The use of 671 

zein was effective in increasing dough stability and rice noodle firmness, regardless of the particle size 672 

or amylose content of the flour  (M. Kim et al. 2019; Jeong et al. 2017). Thus, the ability of zein to 673 

generate a viscoelastic protein network above its glass transition temperature enabled the production of 674 

gluten-free rice doughs. Overall, the type of protein, level of protein, and protein interaction with the 675 

properties of the main ingredient(s) can impact the end-quality of pasta/noodles (Rachman et al. 676 

2019).Gluten-free noodles formulations can include different ingredients such as rice flour and starch, 677 

maize, quinoa, millet, banana, hydrocolloids, enzymes, or blend of different flours and starches. 678 
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Therefore, comparison of different studies is complex (tricky) due to the high diversity of ingredients 679 

that might radically change the properties of the formulated products (see summary Table 3). 680 

***Table 3*** 681 

4.5. Baked goods  682 

As summarized in Table 4, several types of baked goods have been enriched with protein, impacting 683 

their nutritional, technological, and sensory quality depending on the main ingredient, type, and amount 684 

of protein, as well as the presence or absence of gluten. 685 

***Table 4*** 686 

4.5.1. Gluten-containing  687 

Fortification of gluten-containing cookies typically incorporate dairy proteins (e.g. whey protein or 688 

casein) (Gani et al. 2015; Wani et al. 2015). The application of plant proteins showed contradictory 689 

outcomes, likely due to the range of formulations (Tang and Liu 2017; Gani et al. 2015; Wani et al. 690 

2015). Partial substitution of wheat flour with whey and soy protein (0–30%) resulted in relevant effect 691 

on rheological quality depending on the type and amount of protein (Tang and Liu 2017). Increasing the 692 

level of soy protein from 5 to 30% resulted in higher water absorption, opposite to whey protein 693 

concentrate. Biscuits enriched with 5% and 10% of soy protein were smaller, while those made with 694 

30% soy protein were wider, but all of them had good overall acceptability scores (Tang and Liu 2017). 695 

Tang and Liu (2017) reported that whey protein provoked an increase of  expansion, but this effect was 696 

not observed in others studies (Gani et al. 2015; Wani et al. 2015).  697 

Different species of microalgal biomass (Spirulina platensis, Chlorella vulgaris, Tetraselmis suecica, 698 

and Phaeodactylum tricornutum at 2 and 6%) were used to substitute wheat flour in cookies formulation 699 

(Batista et al. 2017). Increasing level of fortification increased protein, phenolic contents and antioxidant 700 

potential (Singh et al. 2015; Batista et al. 2017). Cookies prepared with Spirulina 701 

platensis and Chlorella vulgaris showed higher protein contents compared to Tetraselmis suecica, 702 

and Phaeodactylum tricornutum. Regardless of the specie, the addition of 2% strongly affected sensory 703 

aspects of cookies (e.g. smell, taste, and overall acceptability) due to the presence of sulfuric compounds, 704 

diketones, α-ionone, and β-ionone. Cookies enriched with 2% Spirulina platensis recorded the highest 705 

acceptance score (Batista et al. 2017); whereas adding up to 6% of Chlorella without affecting the 706 

sensorial properties was possible if the biomass was suitably pre-treated (e.g. defatting) (Sahni, Sharma, 707 

and Singh 2019). This suggests that suitable pre-treatments can ensure the mitigation of the undesirable 708 

components responsible for off-flavors, thereby favoring incorporation at higher levels. Another option 709 

might be the inclusion of hydrocolloids such as guar gum. For instance, high levels of fortification (>7% 710 

Spirulina platensis and >30% sorghum flour) negatively affected the textural and sensory attributes of 711 
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flavor and graininess. However, when guar gum was added to the formulation (Spirulina platensis 7%, 712 

sorghum flour 30% and guar gum 1%), it was possible to maintain a good quality (P. Singh et al. 2015). 713 

4.5.2. Gluten-free  714 

Dairy and soy protein are the most used protein sources in gluten-free products (Sahagún and Gómez 715 

2018b; Mancebo, Rodriguez, and Gómez 2016). However, available scientific literature is scarce, and 716 

it is not possible to compare the results of the different studies, which are based on different 717 

combinations of main ingredients (e.g. rice flour, starch, maize flour) and different proteins. 718 

The substitution of rice flour by soy protein (up to 10% addition level) affected the quality of cookies,  719 

improving them (decrease in the hardness) when adding 7.5% soy protein along with glycerol 720 

monostearate (0.5%)  (Sarabhai et al. 2015). Soy protein isolate inclusion resulted in light crust color of 721 

cookies, due to its lower lysine amounts, as compared to whey protein which participate in Maillard 722 

reaction (Sahagún and Gómez 2018b). The combination of protein and emulsifier enabled the formation 723 

of gluten free cookie dough similar to the structure of that based on gluten proteins (Sarabhai et al. 724 

2015). 725 

The protein addition in this type of product not only affects the technological quality, but also has a 726 

significant impact on the nutrient value. The substitution of maize flour with soy protein isolate (5-30%) 727 

increased the protein content of cookies from 8.69 (5%) to 29.11 (30%); while the calorific value 728 

decreased from 468 (control) to 383 cal/100 g (30%). Cookies enriched with 20% soy protein were well 729 

accepted by consumers, but increasing levels of substitution decreased the overall acceptability of the 730 

enriched products (Adeyeye, Adebayo-Oyetoro, and Omoniyi 2017). 731 

Different mixtures of rice flour, maize starch, and pea protein (up to 20%) were used to develop protein 732 

rich cookies. Pea protein incorporation increased hydration properties of the mixture and dough 733 

consistency, leading to smaller, softer, and darker cookies compared to the control. Fortified cookies 734 

(20% pea protein) showed higher acceptability (the best scores for texture and odor). Therefore, protein 735 

and starch can be used to adjust the desired cookie characteristics depending on the needs of 736 

manufacturers (Mancebo, Rodriguez, and Gómez 2016).  737 

Recently, a comparative study was performed to evaluate the effect of different types of protein (pea, 738 

potato, egg white, and whey) (15–30%) on cookies (Sahagún and Gómez 2018b). The hydration 739 

properties of protein-supplemented doughs were lower than the control, except for pea protein. 740 

Subsequently, G′ and G″ values for pea and potato protein were like the control, while egg white and 741 

whey protein had lower values. As a result, egg white produced harder cookies, whey protein produced 742 

wider cookies, potato protein produced darker cookies, and pea protein did not affect cookie parameters, 743 

but consumers preferred pea protein cookies (30% addition level) (Sahagún and Gómez 2018b).  744 
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4.6. Snacks and bars  745 

 The addition of protein from plants has made a great impact on sports/performance nutrition bars. 746 

According to the Mintel Global New Products Database (GNPD), in the 12 months prior to July 747 

2019, 14% of total European launches in sports/performance and nutrition markets featured a vegan/no 748 

animal ingredients claim, a five percentage point increase since 2014 (Mintel 2018). The “high-protein” 749 

claim was amongst the top three claims made by snack bars globally in 2019 (Mintel, 2019). This market 750 

expansion is going beyond traditional soy and dairy proteins to new and innovative alternatives 751 

including pea protein and microalgae protein (Mintel, 2019). Pea protein isolates were used to formulate 752 

extruded rice snacks, where 30% inclusion resulted in high initial expansion but delayed melt 753 

solidification, resulting in melt shrinkage and non-uniform final extrudate structures. However, 754 

extrudates containing 20% pea proteins isolates had the highest final expansion, and no significant 755 

shrinkage was observed (Philipp et al. 2018). The incorporation of 2.6% Spirulina platensis provided 756 

an increase of 22.6% in protein, 28.1% in lipids, and 46.4% in minerals compared to 0% Spirulina 757 

platensis -based snacks (Lucas et al. 2018). Also, the enriched products had adequate physical and 758 

structural properties, which resulted in  82% acceptance index  (Lucas et al. 2018; Lucas et al. 2017). 759 

Similar results were found in the case of maize extrudates enriched with Spirulina platensis (2-8%), 760 

where protein content increased (average 0.6%) with each 1% increase in Spirulina platensis 761 

concentration. However, sensorial acceptance was reduced in products enriched with the higher 762 

percentages of Spirulina, due deterioration of properties such as color and crispness (Tańska, Konopka, 763 

and Ruszkowska 2017).  764 

Snack bars enriched with 2% and 6% Spirulina platensis presented no significant difference compared 765 

to the control (0% Spirulina platensis) (Lucas et al. 2019). These additions (2% and 6%) provided a 766 

protein increase of 11.7% and 29.9% respectively. The physicochemical (texture and color) and 767 

microbiological parameters remained stable during storage (30 days) (Lucas et al. 2019). Overall, snacks 768 

seem a suitable vehicle for health-beneficial components of microalgae and other sources of protein (See 769 

Table 4).  770 

4.7. Other products and beverages  771 

Non-animal proteins have been used for reformulating innovative beverages (Table 5). Textured soy 772 

protein was incorporated into egusi (white seed melon- Cucumeropsis mannii) soup and stew-sauce, 773 

which are typical Nigerian foods. The swelling ratio ranged from 2.05 to 5.39 depending on the brand 774 

when texturized soy protein was used, which influenced the acceptability of the sensory perception of 775 

the enriched soups and sauces. In this case, the addition of 70% textured soy protein granules were 776 

accepted by the consumers (Alamu and Busie 2019). 777 

https://www.mintel.com/global-new-products-database
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Babault et al. (2015) reformulated sport drinks by adding different protein isolates (85% protein 778 

content). A comparative in vivo study (n=161 males) was conducted to compare whey protein vs pea 779 

protein supplementation on muscle thickness and strength during a 12-week resistance training program. 780 

The study used sports drinks (300 mL) containing 25 g of protein (pea isolates or whey protein 781 

concentrate), or a placebo (no protein added). Increases in thickness were significantly greater in the pea 782 

group as compared to placebo, whereas there was no difference between whey and the two other 783 

products. Muscle strength also increased with time with no statistical difference between groups. Since 784 

no difference was obtained between the two protein groups, the authors suggested that vegetable pea 785 

protein could be used as an alternative to whey-based dietary products (Babault et al. 2015). 786 

A shake for elderly developed using a low amount of Spirulina increased the protein content from 41.3 787 

(0% Spirulina platensis) to 43.4% (0.75% Spirulina platensis). Sensorial analysis (based on a 9-point 788 

hedonic scale) revealed that the product containing Spirulina platensis was appreciated and recorded an 789 

acceptance score (7.7) within the range of that of the control (7.9) and higher than that of commercial 790 

(6.9) (Santos et al. 2016).  791 

Smoothies enriched with Spirulina platensis (2.2%) showed the higher acceptance scores compared to 792 

those enriched with Chlorella vulgaris; this can be explained by the strong marine odor and flavor of 793 

Chlorella compared to Spirulina platensis. The enriched smoothies (2.2% Spirulina platensis) showed 794 

stable quality including sensory properties during storage (5 °C for 14 days) (Castillejo et al. 2018). 795 

The incorporation of microalgal biomass (Spirulina, Chlorella or Tetraselmis; at concentrations ranging 796 

from 0.5 to 2.0%) increased viscosity, antioxidant capacity, and phenolic content of a broccoli-based 797 

soup. Increasing the level of addition of microalgae (all species regardless of addition level) reduced the 798 

sensorial acceptability compared to broccoli-only soup (91.1%), where the most accepted was that 799 

formulated using 0.5% addition level of Tetraselmis (82.2% acceptance rate based on a 5-point hedonic 800 

scale) (Lafarga, Acién-Fernández, et al. 2019). 801 

***Table 5*** 802 

 803 

5. Trends in the market of animal-free proteins 804 

The non-animal protein market is continuously growing, with no signs of slowing. It is expected to 805 

represent one-third of all protein fortification by 2054 (Mintel 2019a). Perceived health benefits are the 806 

main driver for consumer purchase, while concerns about animal ethics or the environmental impact of 807 

animal products are secondary drivers. 808 
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Generally, animal protein sources provide higher protein contents and the required amino acid contents 809 

to qualify as high quality proteins compared to most plant-based proteins (Gorissen et al. 2018; van 810 

Vliet, Burd, and van Loon 2015). However, serious concerns are rising over the high prevalence of 811 

allergies and intolerances (lactose) and increased incidence of cardiovascular diseases, various cancers, 812 

and mortality risks (Burger and Zhang 2019; Virtanen et al. 2019; O’Sullivan et al. 2016). Also, 813 

consumers may have concern over the association of the spread of diseases through meat (e.g. bovine 814 

spongiform encephalitis and multidrug-resistant bacteria). Although many plant protein sources are 815 

considered deficient in essential amino acids particularly lysine and leucine  (Gorissen et al. 2018; van 816 

Vliet, Burd, and van Loon 2015), they may provide health benefits due to their association with the 817 

reduction of body mass indices (BMIs), blood pressures, blood cholesterol, incidence of the 818 

cardiovascular diseases, and diabetes (Sokolowski et al. 2019; Navruz-Varli and Sanlier 2016; De Souza 819 

et al. 2017; Lopez et al. 2019; Turner-McGrievy et al. 2020; Cramer et al. 2017; Martini et al. 2018). 820 

Environmental concerns  include climate change, resource scarcity, environmental sustainability, and 821 

rainforest clearing (Janssen et al., 2016; Lopez et al., 2019; Schmidt et al., 2015). Global warming and 822 

sustainability concerns have been shown to deviate consumer interest from animal-based products to 823 

plant-based food products (Nadathur, Wanasundara, and Scanlin 2017; Reipurth et al. 2019; De Boer, 824 

Schösler, and Aiking 2014). Plant-based protein production is more environmentally friendly, producing 825 

considerably less greenhouse gas emissions compared with that of meat protein, and is less exhausting 826 

to natural resources (energy, water, and land inputs) (Fresán et al. 2019; Fresán et al. 2018). As a matter 827 

of fact, the production of plant foods tends to generate a smaller carbon footprint when compared to 828 

animal sources (Lynch, Johnston, and Wharton 2018; Boukid, Zannini, et al. 2019; Klamczynska and 829 

Mooney 2017; Apostolidis and McLeay 2016). Some proteins are mainly recovered from by-products, 830 

which contribute in reducing the industrial wastes and its implication on economy and environment 831 

(Cheetangdee and Benjakul 2015; Senaphan et al. 2018). Producing a unit of animal food protein induces 832 

more environmental damage than producing an equivalent unit of plant food protein (Gardner et al. 833 

2019). Algal proteins can be obtained from a relatively sustainable source, since algae i) is a rich source 834 

of proteins; ii) do not compete with traditional food crops for land; iii) is a multiuse crop (fuel, food, 835 

feed..); and iv) mitigate greenhouse gas emissions (Tredici et al. 2015; Klamczynska and Mooney 2017; 836 

Laurens et al. 2017). Fungal proteins do not require agricultural land and may be obtained through a 837 

circular economy based on recycling agri-industrial wastes (Ritala et al. 2017; Satari and Karimi 2018; 838 

J. Lonchamp et al. 2019; Finnigan, Needham, and Abbott 2016). Algal and fungal alternative sources 839 

can be far more sustainable (lower foot printing) than animal and some plants sources (S Matassa 2016; 840 

J. Lonchamp et al. 2019; Laurens et al. 2017). Although, when the production is scaled up for 841 

commercial use, to obtain desirable product and keep consistency, costly/not sustainable technologies 842 

may be used, making them comparable in resource use to animal products. 843 

https://www.sciencedirect.com/topics/medicine-and-dentistry/hypotension
https://www.sciencedirect.com/topics/medicine-and-dentistry/diabetes-mellitus
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Vegan and vegetarian diets are increasing in popularity due to ethical (animal-related), health (self-844 

related) and environment-related motives (Janssen et al. 2016). Ethical considerations are fueled by 845 

concerns over animal welfare, animal suffering in farming, animal rights, and speciesism (Costa et al. 846 

2019; Chuck, Fernandes, and Hyers 2016; Radnitz, Beezhold, and DiMatteo 2015; Faber et al. 2020). 847 

Vegetarians do not consume animal flesh (meat, poultry, fish or seafood) but consume other animal 848 

derived products including eggs and dairy, while vegans exclude both flesh meat and animal-derived 849 

food from their diet (Appleby et al. 2016; Faber et al. 2020; Rosenfeld and Burrow 2017). Flexitarian 850 

population following a semi-vegetarian diet will have also a great impact on the growth of non-animal 851 

proteins market (more than one in five Americans is a flexitarian) (Mintel 2019b). This diet consists on 852 

the reduction of the consumption of animal products in favor of those plant-based products, opening 853 

new opportunities for plant protein applications. 854 

 855 

6. Safety and regulation 856 

Generally, ensuring food safety requires the assessment of nutritional value, microbiological, 857 

toxicological, and allergenic risks. The main safety concern of proteins is their allergenicity. For grain 858 

protein, regulatory aspects are clear in this regard, where thresholds of major allergens (such as gluten 859 

and soy) have been defined (Codex alimentarius commission 2009). The General Standard for 860 

the Labelling of Prepackaged Foods (CXS 1-1985) includes provisions for the declaration of certain 861 

foods and ingredients known to cause hypersensitivity referred  to as “allergen labelling” (Codex 862 

Committee On Food Labelling 2019). Furthermore, it is mandatory to declare the presence in any food 863 

or food ingredients obtained through biotechnology of an allergen transferred from any of the list of 864 

allergen products. When it is not possible to provide adequate information on the presence of an allergen 865 

through labelling, the food containing the allergen should not be marketed. In the EU, the Regulation 866 

1169/2011 establishes that the mandatory information on the package label informs consumers on the 867 

absence or presence of a potentially allergenic food components aligning with what declared in the 868 

Codex (European Parliament 2011). Likewise, some allergic reactions to mycoprotein have been 869 

reported but no regulation are imposing the declaration of mycoprotein as an allergen on the label of 870 

meat substitute products (Jacobson and DePorter 2018). In the UK, the safety of mycoprotein was 871 

cleared in 1983 as the first novel food with no further revision in respect to its allergenicity (FAO/WHO 872 

2000). Regarding novel foods, EU legislation included proteins deriving from algae (microalgae and 873 

seaweed) and required that the ingredients must apply and fulfil the criteria found in the context 874 

of Regulation (EU) 2015/2283, before they can be launched onto the food market (European Parliament 875 

2015). This regulation requires that, to ensure safety, all the characteristics of the novel food that may 876 

pose a safety risk to human health are investigated and possible effects on vulnerable groups of the 877 
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population must be determined. However, no clear indication was mentioned about the assessment of 878 

allergy risks related to novel protein. At present, there is no predictive and validated method for the 879 

assessment of novel protein allergenicity (Pali-Schöll et al. 2019). Therefore, the allergenicity 880 

assessment for these novel foods is focused on immediate risks to consumers due to the presence of 881 

existing IgE that could arise either from unexpected exposure to an allergen to which they are already 882 

allergic, or to a likely cross-reactive protein based on Codex guidelines (Abdelmoteleb et al. 883 

2021).  Based on the risk assessment of the Food Safety Commission of China and the guidelines set by 884 

the Codex Alimentarius Commission, the standard applied on the edible algae foods (blue algae, green 885 

algae, brown algae and red algae) set limits only to some heavy metals and pheophorbide, and no 886 

mention to potential allergens (Food Safety Commission of China and the guidelines set by the Codex 887 

Alimentarius Commission 2013). Nevertheless, some maximum residues levels are not yet set for algal 888 

proteins. Indeed, algal species are not known to have toxic metabolites, yet they can accumulate toxic 889 

elements (e.g. heavy metals) if exposed during their cultivation (Rzymski 2015; Hosseini, Khosravi-890 

Darani, and Mozafari, 2013). Noteworthy, innovative accurate analytical tools are required to achieve 891 

regulatory and safety approval. In all cases, the general labeling requirements set in Regulation (EU) 892 

1169/2011 and other relevant labeling requirements in EU food law must be applied for protein 893 

ingredients and their inclusion in food product (European Parliamentand Council of the European Union 894 

2011). 895 

 896 

7. Conclusions  897 

This article focused on gaining insight into the non-animal proteins market and forthcoming trends 898 

(health, ethics, and environmental impact) in food and beverages. Away from the propaganda over 899 

animal versus non-animal proteins, this comprehensive review examined the most significant 900 

motivations behind consuming strictly or partially non-animal proteins. First, the expansion of protein 901 

alternatives (from plant, algae, and fungi) has been shown several times in published studies. Scientific 902 

evidence has shown animal proteins do have a better amino acid profile, but consuming more non-903 

animal proteins does not mean compromising such a benefit. Indeed, blending proteins from different 904 

(non-animal) sources can enable additional benefits. This does not mean that plant protein alternatives 905 

are overtaking animal protein sales, but it means that the non-animal protein market will keep growing 906 

to meet the needs of the growing global population (9 billion by 2050) (The World Bank, 2016), while 907 

at the same time shifting to more sustainable protein sources.  908 

For the future, innovation is the key to boost the growth of plant protein market, where these points must 909 

be considered:  910 
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i) Breeding: the selection new varieties or strains with peculiar properties (higher productivity, 911 

higher proteins content, and better amino acid composition, less anti-nutrients, etc) to 912 

respond to manufacturers/consumers requirements.  913 

ii) Other plant sources such as lupin protein and oat protein might emerge because consumers 914 

probably will want additional protein sources to choose from. 915 

iii) Innovative technologies (cost effective, green, and sustainable) will enable companies to 916 

overcome the challenges of productivity, shelf life, nutritional completeness, and sensory 917 

acceptability of the final product. 918 

iv) Safety and allergenicity: many alternative proteins are considered novel foods, where EFSA 919 

already defined a list of edible species from algae and fungi but still their purified 920 

ingredients (proteins extracted from these species) must go through the procedure of risk 921 

assessment for regulatory and safety approval. 922 

v) Building trust with consumers may be achieved by using recognizable ingredients in 923 

products with clean labels, are non GMO, vegetarian, vegan, contain and free-froms. 924 

vi) Personalized nutrition is likely the future of the food industry: alternatives proteins enable 925 

a larger portfolio of ingredients, making tailor-made products possible for consumers to try 926 

non-traditional sources of proteins. 927 
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Table 1: A debrief on the current situation of non-animal proteins market 2235 

Source  Market value  Ingredients  Food application  Leading companies   Region  References  

Plant proteins 

Soy 

protein  

expected to reach US$7.3 billion 

by 2025 (at a CAGR of 7.1% 

from 2019 to 2025) 

isolates; concentrate; 

protein flour; textured 

protein 

bakery and 

confectionery, meat 

extenders and substitutes, 

nutritional supplements, 

beverages 

Archer Daniels Midland, DuPont, The Scoular 

Company, Fuji Oil Asia Pte, Cargill, and 

DowDupont 

North America accounts 

for the major market 

share 

(Meticulous 

Research®, 

2019b). 

Wheat 

protein  

is expected to reach a value of 

US$1,836.480 million by 2024, 

from US$1,274.150 million in 

2018, growing at a CAGR of 

6.28% 

gluten; textured protein; 

hydrolyzed protein 

bakery and snacks, 

nutritional supplements, 

dairy products, processed 

meat 

 

Archer Daniels Midland, Agridient, Amilina, 

Anhui Reapsun Food, Cargill, Chamtor, Crespel 

& Deiters GmbH, Crop Energies, Dengfeng 

Grainergy Agricultural Development, 

Jaeckering, Kroener Staerke, Manildra Group, 

MGP Ingredients, Inc, Permolex, Roquette, and 

Tereos Syrol 

North America accounts 

for the major market 

share  

(Research and 

markets, 

2019b). 

Pea 

protein  

estimated at US$32.09 million 

in 2017, and is expected to reach 

US$176.03 million by 2025, 

growing at a CAGR of 23.6% 

during the forecast period (2018 

- 2025) 

isolates; concentrate; 

textured protein 

bakery, meat extender 

and substitute, nutritional 

supplement, beverage, 

snacks 

Cargill, Icorporated, DuPont, Kerry Inc., 

Glanbia plc, The Scoular Company, Avebe, 

Growing Naturals, LLC, Puris 

North America is 

estimated to be the 

largest market  

(Meticulous 

Research®, 

2019a). 

Potato 

protein  

forecasted to reach US$ 168.47 

million by 2024 growing at a 

CAGR of 7% during the forecast 

period (2019 - 2024) 

isolates; concentrate Beverage, Snacks & Bar, 

Animal Nutrition 

Avebe, Tereos Group, Agridient, Agrana, 

PEPEES SA, Kemin Industries, Inc., Omega 

Protein Corporation, Roquette Foods 

North America leads the 

market followed by 

Europe  

(Mordor 

Intelligence, 

2019b) 

Rice 

protein  

expected to reach 180 million 

US$ in 2024, from 120 million 

US$ in 2019, growing at a 

CAGR of 7.7% during the 

forecast period (2019-2024) 

isolates; concentrate bakery and snacks, 

nutritional supplements 

AIDP Inc., Axiom Foods Inc., Bioway (Xi’an) 

Organic Ingredients Co., Ltd., Golden Grain 

Group Ltd., RiceBran Technologies, Nutrition 

Resource Inc., Shaanxi Fuheng (FH) 

Biotechnology Co., Ltd., and Shafi Gluco Chem 

Pvt., Ltd.  

The market is spread 

across North America, 

Latin America, Asia 

Pacific, Europe, and 

Middle East and Africa. 

(Beroeinc 

2019) 

(Research 

TechSci, 2019). 

Corn 

protein  

expected to reach 80 million 

US$ in 2024, from 65 million 

US$ in 2019 

Zein (conventional and 

organic) 

Food and beverage 

industry, pharmaceutical, 

cosmetics and coating 

agents 

Zein Products, Archer-Daniels Midland 

Company, Glanbia plc, AGT Food & 

Ingredients, Burcon Nutrascience Corporation, 

Penta International, E. I. Du Pont De Nemours 

And Company, Roquette Freres, Cargill Inc., 

Zein is primary available 

in North America, 

Europe and Asia-Pacific, 

South America, Middle 

East and Africa  

(Global info 

research, 2019).   
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Cosucra Groupe Warcoing, Ingredion Inc., CHS 

Inc  

Non-animal proteins 

Algal 

protein  

expected to grow at a CAGR of 

7.03% to reach a total market 

size of US$0.838 billion by 

2023, increasing from US$0.596 

billion in 2018 

form: powder and liquid; 

source: marine and 

freshwater algae; type: 

Spirulina platensis, 

Chlorella and other algae 

 Bakery & 

Confectionery, 

Beverages, Breakfast 

Cereals, Sauces, 

Dressings & Spreads, 

Snacks) 

 Allma, Cyanotech Corporation, Earth Rise 

Nutritionals, Energybits, Far East Bio-Tech Co., 

Heliae Development LLC, Myanmar Spirulina 

Factory, Nutrex Hawaii Inc., Roquette Klötze, 

and TerraVia Holdings Inc. 

North America accounts 

for major revenue share 

of global algal protein 

market, followed by 

Europe   

(Mordor 

Intelligence, 

2019a). 

Fungal 

protein  
 estimated at around US$ 200 

million in 2018 growing at 

CAGR of 12% 

 minced and slices food & beverage such as 

meat alternatives and 

meat extenders 

Marlow Foods Ltd., Yutong Industrial CO. 

Limited, Shouguang FTL BIO. CO., LTD. and 

3fbio Ltd 

Europe, followed by 

North America 

(Factmr 2019) 

2236 
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Table 2: Bread as a vehicle or non-animal proteins  2237 

Protein source  Level of addition Effect of the addition Reference  

Gluten-containing  

Vital gluten  0 and 1% of wheat flour - improve the mixing tolerance and 

handling of doughs with low 

protein content 

-improve bread volume and 

improved yield, color, crumb 

uniformity, and crumb firmness  

(Bardini et al. 2018; 

Boukid et al. 2018; 

Boukid, Carini, et al. 

2019) 

Vital gluten, 

zein, pea, potato 

isolates  

15% of wheat flour  -increase protein content of bread  

-pea and potato proteins weakened 

the dough 

-gluten increases the volume; faba 

and pea proteins maintain a similar 

firmness to that of the control 

-zein and gluten produces the best 

bread (high volume and lowest 

firmness)  

(Hoehnel et al. 2019) 

Vital Gluten 2%, 4%, 5%, and 6% of 

wheat flour 

-enhance dough properties  

-improved bread yield, color, 

crumb uniformity, and firmness 

- 

(Giannou and Tzia 2016) 

Soy protein 

hydrolysate 

  

 0-20%   of wheat flour --reduce dough stability 

 

(Schmiele et al. 2017) 

 

Soy protein 

isolates 

0-30% of wheat flour -decrease breads specific volume 

and increase hardness 

(Zhou, Liu, and Tang 

2018). 

A. platensis 11% of wheat flour -improve the nutritional properties 

(proteins and mineral content) of 

breads 

(Ak et al. 2016) 

Chlorella 

vulgaris 

1-5% of wheat flour -up to 3% enhance bread 

properties, but beyond decrease 

bread volume and increase 

firmness  

(Graça et al. 2018) 

Gluten free 

Soy protein 

isolates 

2.3-4% of rice flour or a 

mixture of potato and 

cassava starches 

- -increase water retention and 

reduce batters stability 

-decrease specific volume  

(Masure et al. 2019) 

Rice protein 

concentrate   

2% of rice flour - enhance the 

rheological properties of the batter 

and the relative elasticity of breads  

(Suphat Phongthai et al. 

2016) 

Rice or pea 

protein 

5 and 10% of rice flour-

corn starch 

-enhance volatile profile   (Pico et al. 2019). 

Pea and rice 

concentrate  

10% of millet flour Improve bread quality (structure 

strengthening, specific volume and 

sensory quality) and reduce 

firmness  

(Tomić, Torbica, and 

Belović 2020) 

Pea protein 

isolate 

30% of starch   -descrease spefic volume and 

increase firmness   

(Sahagún et al. 2020) 

Zein 5% of a blend of maize 

flour (70%) and pre-

gelatinized maize flour 

(30%) 

enhance bread crumb cell structure 

and increased loaf volume.  

(Khuzwayo, Taylor, and 

Taylor 2020). 

Brown algae 

addition 

 2-10% -increase the antioxidant activity  
-decrease bread lightness and 

yellowness  
-The addition of 4% of 

(Różyło et al. 2017). 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pea-protein
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pea-protein
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increase specific volume and 

results accepted by  

 2238 

  2239 
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Table 3: Pasta and noodles as vehicles of non-animal proteins 2240 

 2241 

Product  Protein source  Level of addition Effect of the addition Reference  

Gluten-

containing  

    

Noodle Pea proteins  Up to 12.5% Do not affect product 

texture and sensory 

perceptual properties 

(Wee et al. 

2019). 

Pasta  D. salina 1, 2, and 3% of durum 

wheat semolina  

-enhance its nutritional 

value (protein content, 

minerals, phytochemicals 

and unsaturated fatty 

acids) 

- increase of the pasta 

volume and weight,  

-increase cooking losses. 

- 1% addition did not 

affect flavor, mouthfeel 

and overall acceptability, 

(El-Baz, F.K., 

Abdo, S.M. 

and Hussein 

2017) 

Pasta  

 

Spirulina platensis 5, 10 and 15% of durum 

wheat semolina 

-increase in weight and 

volume 

- decrease pasta 

luminosity and yellow 

index and increasing 

green index  

-10% was the most 

appreciated in terms of 

flavor and appearance 

(Özyurt et al. 

2015) 

Gluten-free     

Spaghetti  

 

Soy protein isolate 0, 2.5, 5.0, 7.5, 10.0 % of 

rice flour  

- decrease the starch 

retrogradation and result 

in porous structure  

(Detchewa et 

al. 2016). 

Pasta  Soy proteins 5, 10, and 15% of 

banana flour  

-increase optimum 

cooking time, swelling 

index, water absorption 

index, and cooking loss 

(Rachman et 

al. 2019). 

Pasta 

 

Potato, pea and rice 

protein isolate 

6% and 12% of   

extruded quinoa and 

non-extruded quinoa 

(red and white) flour 

-increase protein content 

and pasta firmness 

(Linares-

García et al. 

2019). 

Pasta Spirulina platensis 1-15% of rice flour 

and Psyllium gel in a 

50/50 ratio 

Increase phenolic 

compounds, 

Chlorophylls, 

carotenoids, and 

antioxidant activity 

(Fradinho et 

al. 2020). 

Pasta-like 

sheets 

Protein isolate (>90% 

proteins) 

+ dietary 

fiber (containing 21% 

proteins, 37% starch 

and 42% fiber)  

protein to fiber ratios 

(100/0, 90/10, 80/20, 

70/30 and 50/50, 

respectively) 

-form strong protein 

network (high strength 

and extensibility) 

(Muneer et al. 

2018). 

Noodles  Zein  5% of rice flour  increase dough stability 

and rice noodles firmness 

(Kim et al. 

2019) 

Noodles  Zein  5% and 10% of rice 

flours with different 

amylose contents (12, 

19, and 26%) 

- generate a strong 

viscoelastic protein 

network 

(Jeong et al. 

2017). 
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Table 4: Baked goods and snacks  2243 

Product  Protein source  Level of 

addition 

Effect of the addition  Reference  

Baked goods 

Gluten-containing  

Biscuits  Soy protein isolate 0-30% of wheat 

flour 

-increase water absorption 

-Biscuits enriched with 5% 

and 10% were smaller, while 

those made with 30% were 

wider, but all of them had 

good overall acceptability 

scores 

(Tang and Liu 

2017). 

Biscuits A. platensis 1.63, 3, 5, 7, 

8.36% of wheat 

flour  

 

-increase protein, phenolic 

contents and antioxidant 

activity 

- 

( Singh et al. 2015). 

Biscuits A. platensis, C. 

vulgaris, T. 

suecica and P. 

tricornutum 

2 and 6%   of 

wheat flour 

 

--2% of Spirulina was 

acceptable by panelists 

(Batista et al. 2017)  

Cookies  Chlorella (defatted 

flour) 

3, 6, 9 and 12% 

of wheat flour 

6% of chlorella was liked  by 

panelists 

(Sahni, Sharma, 

and Singh 2019). 

Gluten-free     

Cookies Soy protein 

concentrate  

5, 7.5 and 10% of 

rice flour  

-7.5% decrease hardness ) (Sarabhai et al. 

2015). 

Cookies   Soy protein isolate  5-30% of maize 

flour  

--increase the protein content 
and decrease calorific value  

-20% was accepted by 

panelists 

(Adeyeye, 

Adebayo-Oyetoro, 

and Omoniyi 2017) 

Cookies Pea proteins isolate   0, 10 and 20% of 

different 

mixtures of rice 

flours and maize 

starches 

-increase hydration 

properties of the mixture and 

dough consistency 

-produce small, soft and dark 

cookies  

-20% was accepted by 

panelists 

(Mancebo, 

Rodriguez, and 

Gómez 2016) 

Cookies Pea and potato 

protein isolates  

0, 15 and 30% of 

corn flour  

potato protein produced 

darker cookies, and pea 

protein did not affect cookie 

parameters, but consumers 

preferred pea protein cookies 

(30%) 

(Sahagún and 

Gómez 2018b) 

Snacks 

Extruded snacks 

 

Pea protein isolates 0- 30% of rice 

starch 

20% pea proteins isolates had 

the highest final expansion 

without significant effect on 

shrinkage  

(Philipp et al. 

2018). 

Extruded snacks Spirulina platensis  0.4, 1.0, 1.8, 2.6, 

and 3.2% of a 

mix (2:1 ratio of 

-increase protein content 

-82% acceptability index 

 

(Lucas et al. 2018) 
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organic rice flour 

and organic corn 

flour) 

 

Corn grits 

extrudates  

Spirulina platensis  2-8% of total 

formulation 

-increase protein content 

-decrease sensory 

acceptability   

(Tańska, Konopka, 

and Ruszkowska 

2017) 

Snack bars based 

on oat and rice 

flakes  

Spirulina platensis  2 and 6% of total 

formulation  

- increase protein content 

-stability of  physicochemical 

(texture and color) and 

microbiological parameters 

during storage (30 days)  

(Lucas et al. 2019). 
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Table 5: Beverages fortified with non-animal proteins  2245 

Product  Protein source  Level of 

addition 

Effect of addition Reference  

Egusi (white seed 

melon- Cucumeropsis 

mannii) soup and stew-

sauce 

 

Textured soy protein 70% 70% textured soy 

protein granules 

were accepted 

by the consumers 

(Alamu and 

Busie 2019). 

Sport drink Pea protein isolates  

 

25 g of 

protein in 

to 300 mL 

-increase muscle 

strength and 

thickness 

(Babault et al. 

2015). 

A shake for elderly  

 

Spirulina platensis 0.75% 0/75% was 

accepted by the 

consumers  

(Santos et al. 

2016) 

Smoothies  

 

Spirulina platensis or 

Chlorella vulgaris  

2.2% Stable sensory 

properties and 

quality during 

storage (5 °C for 

14 days) 

(Castillejo et 

al. 2018). 

Broccoli-based soup Spirulina 

platensis, Chlorella, 

or Tetraselmis 

0.5-2.0% -increase viscosity, 

antioxidant 

capacity, and 

phenolic content  

-0.5% was the most 

accepted  

(Lafarga, 

Acién-

Fernández, et 

al. 2019) 
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