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Abstract: Vaccines are considered one of the greatest global health achievements, improving the wel-
fare of society by saving lives and substantially reducing the burden of infectious diseases. However,
few vaccines are fully effective, for reasons ranging from intrinsic limitations to more contingent short-
comings related, e.g., to cold chain transport, handling and storage. In this context, subunit vaccines
where the essential antigenic traits (but not the entire pathogen) are presented in rationally designed
fashion have emerged as an attractive alternative to conventional ones. In particular, this includes the
option of fully synthetic peptide vaccines able to mimic well-defined B- and T-cell epitopes from the
infectious agent and to induce protection against it. Although, in general, linear peptides have been
associated to low immunogenicity and partial protection, there are several strategies to address such
issues. In this review, we report the progress towards the development of peptide-based vaccines
against foot-and-mouth disease (FMD) a highly transmissible, economically devastating animal dis-
ease. Starting from preliminary experiments using single linear B-cell epitopes, recent research has led
to more complex and successful second-generation vaccines featuring peptide dendrimers containing
multiple copies of B- and T-cell epitopes against FMD virus or classical swine fever virus (CSFV). The
usefulness of this strategy to prevent other animal and human diseases is discussed.

Keywords: epitope-based vaccines; peptide; vaccines; FMDV; veterinary medicine

1. Introduction

In an era of globalization, the presence of animal disease has a decisive impact on
the economic growth prospects of most countries as it affects, beyond the sanitary status
of the actual animal populations involved, the viability of many related sectors such as
public health, trade, environment and tourism, among others [1]. Importantly, the majority
of novel, emergent infectious diseases originate in animals in a manner mainly associated
with human activities, which makes animal disease detection and control of paramount
interest (One World One Health) [2]. Over the years, the international community has
reached the compromise of establishing global, transparent and democratic policies to
address such epidemiological issues [3]. As a result, sanitary measures are mainly based
on international standards, guidelines and recommendations that are regularly updated
and consensually adopted by countries at the annual meetings of the World Organization
for Animal Health (also known as the Office International des Epizooties, OIE). Despite
these efforts, a real picture of today’s animal health situation lays bare the crucial need for
stronger initiatives in veterinary health [4]. According to the 2020 OIE’s Animal Diseases,
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Infections and Infestations list, there are 117 conditions caused by different pathogenic
agents that affect thirteen categories of terrestrial and aquatic animals, which can be largely
prevented and controlled by vaccination (Figure 1).
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Although nearly 75% of such reported diseases have a preventive strategy, to date only
one—rinderpest in cattle and other ruminant animals—has been eradicated. Indeed, the
World Health Organization (WHO) has reported that infectious disease is the second major
cause of death—after slaughter—in animals. To make sense of these statistics, one should
bear in mind that vaccination—arguably the most rational, cost-effective and successful
strategy to curb infectious disease, prevent its associated economic losses and increase
the lifespan of livestock—is in practice only moderately successful. Few vaccines are
fully effective, for diverse reasons ranging from inherent limitations (see below) to more
contingent shortcomings related, e.g., to cold chain transport, handling and storage. This
review will focus on peptide-based, fully synthetic vaccines that aim to overcome many of
the pitfalls of conventional ones. We start with a general survey of epitope-based vaccines
and spotlight foot-and-mouth disease virus (FMDV) as a model for peptide-based vaccine
development. In addition, advances on the development of analogous peptide vaccines
against another important animal virus, namely classical swine fever virus (CSFV), are
also reviewed.

Current State of FMD Vaccines

FMD vaccines were one of the earliest animal vaccines developed, with first attempts to
immunize animals by exposure to infectious virus at the end of the 19th century (for review
see [5–8]). Based on the acquired experience, vaccination has become the predominant
instrument to globally control FMD, although no vaccine is able to cross-protect against
all serotypes or even between some subtypes of the virus. Current vaccines consist of
chemically inactivated (i.e., “killed”) purified whole virus preparations, as vaccination
efforts using attenuated virus showed unacceptable danger of virulence reversion in
vaccinated animals [9]. To prepare the vaccine, FMDV isolates that antigenically match
those circulating in the field should be (i) adapted to grow in an established cell line
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(e.g., BHK-21) for virus amplification [10–12], (ii) inactivated by treatment with binary
ethyleneimine (BEI) [13] (iii) purified to remove FMDV nonstructural proteins (NSPs)
for serological DIVA (differentiating infected from vaccinated animals) testing, and (iv)
formulated with adjuvant/s (aluminum hydroxide or saponin for ruminants and mineral
oil adjuvants for other target species). From this perspective, industrial vaccine production
requires costly high containment facilities and advanced logistics to constantly adapt
vaccine strains and grow large quantities of virulent virus, with the permanent risk of
virus escape. Other important limitations include FMD viral particle thermolability and
dependency on a cold chain to preserve virus stability and immunogenicity, which increase
the manufacturing cost [14].

Inactivated FMD vaccines meet OIE standards and have been effective to control FMD
in some regions. However, these vaccines provide short-lived protection (4–6 months)
and require revaccination at least every six months, increasing the probabilities of NSPs
contamination that leads to false positive results [15–18]. Additionally, conventional vac-
cines against FMD do not provide sterile immunity, so vaccinated animals may become
persistently infected if exposed to infectious virus, resulting in a carrier state of FMDV [19],
which is one of the major threats for livestock international trade. Such concerns led EU and
Western countries to endorse severe programs based on test-and-slaughter policies—the
so-called “stamping out” procedure—to maintain the “disease-free status” of the country.
After multiple FMD outbreaks in non-endemic countries, this policy was translated into
wholesale killing of infected and contact animals [20,21], refocusing OIE’s regulation into
a new “vaccination-to-live” policy (EU directive 2003/85/EC). This new policy made a
clear move to support vaccination campaigns as a measure to counteract FMD, but, also,
warned of the need to improve current vaccines [22].

2. Overview of Epitope-Based Vaccines

Although most vaccines licensed in veterinary medicine use the entire attenuated or
inactivated pathogen (Table 1), cells of the adaptive immune system do not recognize it as a
whole, but molecular portions of it known as epitopes [23]. In fact, the majority of pathogen
proteins are unnecessary for achieving a full protective response and, indeed, some of them
can lead to unwanted side effects such as allergy, autoimmunity and off-target responses.
These and other safety concerns set the basis for a new generation of vaccines, termed
“epitope-based”, consisting of the minimal subset of immunodominant regions responsible
for inducing positive, desirable B- and T-cell mediated immune responses [24].

Table 1. Vaccine world production values compiled from World Animal Health Information System
(WAHIS) interface in 2005 and 2019.

Type of Vaccine 2005 2019

Live attenuated vaccine 402 444
Inactivated vaccine 285 329
Conjugated vaccine 6 6

Recombinant vector vaccine 6 13
Subunit vaccine 1 4

DNA vaccine - 2

B-cells generally recognize solvent-exposed motifs and bind, via B-cell receptors (BCRs),
antigen epitopes that can be either linear peptide sequences or conformational epitopes,
made up by sequence-remote residues brought spatially close by the three-dimensional
folding of the antigen (Figure 2a). For their part, T-cells recognize antigens through a T-cell
receptor (TCR) when the antigen is loaded on the surface of antigen-presenting cells (APCs)
bound to molecules of the major histocompatibility complex (MHC). T-cell epitopes are
sequential (continuous) peptides resulting from processed or partially degraded antigens
presented by MHC class I (MHC I) or II (MHC II) molecules that interact with two different
types, CD8+ and CD4+ T-cells, respectively (Figure 2b) [25–27]. The gene polymorphisms in
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MHC class II and I influenced the recognition of the individual T-cell epitopes. Therefore, it
is crucial an adequate selection of T-epitopes able to be recognized by MHC alleles frequently
represented in the host population target of vaccination. The formulation of peptide-based
vaccines comprising promiscuous T-cell epitopes, ensure an efficient population coverage
and a successful vaccine development.
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Figure 2. General scheme of (a) B-cell epitope recognition through: (1) linear (continuous residues); and (2) conformational
(discontinuous residues) B-cell epitopes from antigens binding B-cell receptor (BCR) immunoglobulins displayed on
the surface of/attached to B-cells; (b) T-cell epitope recognition by peptides derived from antigens presented via major
histocompatibility complex (MHC) I and II molecules bound to APCs and recognized by (3) CD8+ and (4) CD4+ T-cells T
cell receptors (TCR), respectively. Adapted from [28,29].

An appropriate identification of immunogenic motifs in antigens is the first funda-
mental step when designing epitope-based vaccines [30]. Advances in knowledge on B-cell
epitope sequence and structure have been achieved by techniques such as nuclear magnetic
resonance (NMR), and/or X-ray crystallography of antigen-antibody three-dimensional
structure complexes [31,32], and by epitope mapping using predictive bioinformatic al-
gorithms [33] and/or peptide library screening by antibody binding assays [34–36]. On
the other hand, T-cell epitopes can be predicted by means of bioinformatic algorithms and
experimentally characterized using MHC multimers and lymphoproliferation or ELISPOT
assays [37,38].
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Immunogenic epitopes can be faithfully reproduced by peptides, generated by either
genetic engineering or (generally far more accurately) chemical synthesis. In all cases, these
approaches imply the absence of infectious agent throughout the vaccine manufacturing pro-
cesses, hence the avoidance of many risks associated with classical vaccine production [39].
Another desirable feature fulfilled by subunit (e.g., peptide-based) vaccines is that they can
be designed to allow differentiating infected from vaccinated animals (DIVA condition) by
straightforward serological tests [40]. In addition, peptides in freeze-dried form are chemi-
cally stable, even at ambient temperature, thus eliminating the need for constant cold-chain
storage and transport required by conventional vaccines [41]. Despite these advantages, the
peptide-based approach to vaccines is not free from challenges (e.g., limited immunogenicity
of free peptides, intrinsic conformational flexibility that complicates emulating native-like
bioactive spatial arrangements, etc.), all of which continue to require special efforts, as
discussed hereafter (Table 2). Other related limitations when using a restricted number of
viral epitopes as immunogens is that stem from the antigenic heterogeneity of viruses in the
field [42]. Such constrains explain why despite many efforts invested in the development
of peptide vaccines, only a few related to cancer [43–45], malaria [46] and HIV [47] have
entered clinical trials.

Table 2. Pros and cons of peptide-based vaccines.

Pros Cons

Absence of infectious agent Laborious identification of antigenic epitopes
No risk of mutation or reversion Emulating 3D structures

Chemical stability T-cell epitopes insufficiently specified
DIVA capability Low immunogenicity

Simple handling, storage and transport
Easy to manufacture

3. FMDV-Specific Immune Response

The development of effective epitope-based vaccines relies on an ever-growing un-
derstanding of virus–host interaction and of the mechanisms of immune response against
FMDV. Substantial knowledge gaps remain about FMD pathogenesis, but it is reason-
ably well established that protective immunity, in both animal models and natural hosts,
requires the induction of high levels of serotype-specific in vitro neutralizing antibodies
(nAbs) [48]. As mentioned above (Section 2), B-lymphocytes recognize pathogen epitopes
(in this case on the FMDV particle) to produce specific antibodies that achieve neutral-
ization mainly by preventing FMDV-cell attachment [49,50]. In cattle and pigs, optimal
B-cell activation and antibody production relies on the proper activation of components
involved in the adaptive mechanism such as Th lymphocytes (also known as T helper cells
or CD4+ T lymphocytes) [51]. It is well known that T-cell epitope recognition following
antigen processing and presentation in the context of MHC class II molecules stimulates
Th lymphocytes to produce cytokines such as IFN-γ, differentiation factors and cognate
interactions with B-cells necessary for development of the adaptive immune response
against FMDV [52,53].

Additional studies have proposed the phagocytic system as an unconditional com-
panion of effector humoral immunity, by clearance of virus-antibody complexes through
in vivo opsonization [49]. Thus, macrophages (MΦ) and dendritic cells (DCs) internalize
and degrade FMDV antibody complexes [53–55]. Aside from that, DCs are regarded as the
most potent antigen-presenting cells (APCs), with a key role in linking the innate with the
acquired immune responses [56,57]. The interaction of FMDV with APCs is considered the
initial step for developing an effective immune defense that, interestingly, involves both
MHC class I and class II molecules [58,59]. Indeed, FMDV infection has been related to
significant down-regulation of MHC class I expression on susceptible cells, preventing the
presentation of viral peptides by FMDV infected cells to effector cytotoxic T lymphocytes
(CTLs) and leading to virus escape [60].
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In certain circumstances, high levels of circulating in vitro nAbs do not correlate with
protection while, in contrast, animals with low titers have become protected [49]. These
observations would seem to suggest that the effector humoral immunity involves more
than high antibody levels, and that the phagocytic system might also play a role in anti-
FMDV protection, but the mechanisms involved are poorly understood [61]. An outline of
current views on FMDV immune response, including memory effects by activated B- and
T-cells, is shown in Figure 3.
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Figure 3. Schematic representation of the adaptive immune response induced by FMDV. APCs
present viral peptides (T-cell epitopes) via MHC class I and II molecules to CD8+ and CD4+ T-
lymphocytes, respectively. CD4+ T-cells can (i) cooperate with activated B-lymphocytes to produce
nAbs; and (ii) interact with CD8+ T-lymphocytes that are previously activated by association with
MHC class I molecules on the surface of infected cells, to trigger a cytotoxic (CTL) response.

4. FMDV Antigenic Structure
4.1. B-Cell Epitopes

Over the last few decades, the three-dimensional structures of various FMDV serotypes
and subtypes have been solved by X-ray crystallography, enabling a deeper understand-
ing of FMDV antigenicity [62]. Despite their sequence variability, all FMDVs share an
icosahedral capsid made up of 60 protomers, each consisting of four structural, VP1–VP4
(VP1–3 external, VP4 internal), plus eleven mature non-structural proteins (NSPs) La, Lab,
2A, 2B, 2C, 3A, 3B1–3, 3C and 3D, involved in viral replication and interaction with host
cells [63,64]. External proteins VP1–3 consist of structurally similar cores containing eight-
stranded β-sandwiches of two four-stranded β-sheets connected by surface-exposed loops.
Although the entire accessible surface is known to be antigenic, it is in the loops where the
main antigenic features have been identified, particularly by using monoclonal antibody
(mAb)-resistant (MAR) mutants. Early results on the O1 BFS strain evidenced five antigenic
sites (1–5): (i) site 1 containing the G–H loop (residues 134 to 158) and the C-terminus
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(residues 200 to 213) of VP1, (ii) sites 3, 2 and 4 comprising VP1 (residues 43–44, B–C loop),
VP2 (residues 70–73, 75, 77 and 131) and VP3 (residue 58) loops, respectively; and (iii) site 5
(residue 149), functionally independent but physically overlapping with site 1 [65]. Similar
sites have also been identified in other serotypes and/or subtypes, with the G–H loop as a
constant feature [66–68]. Aside from linear, continuous site 1 (termed site A in serotype C),
with the prominent role in vaccine development discussed below, all other neutralizing
sites were conformationally-dependent, discontinuous structures.

In parallel with the above-mentioned studies, enzymatic cleavage of FMDV serotype
O corroborated the antigenic role of VP1 and its ability to mediate cell attachment. Thus,
trypsin-digested FMDV particles reduced 100-fold the infectivity and 10 to 100-fold the ability
to elicit nAbs in guinea pigs [69]. Interestingly, digestion caused VP1 cleavage exclusively
at Arg 144 within the G–H loop [70]. This region, structurally disordered and comprising
a highly conserved Arg-Gly-Asp (RGD) triplet, serves as a recognition site for host cell
integrin receptors [71,72]. Subsequent mapping of VP1 in serotypes O, C and A [73–75]
using fragments whose immunogenicity had been previously tested in mice, allowed a more
accurate definition of immunodominant sites [76,77]. However, vaccination trials using
VP1-based immunogens (e.g., recombinant VP1 [78], synthetic B-cell epitope peptides [79],
or inclusion at permissive locations within heterologous virus-like particles [80]), showed
modest immunogenicity and poor protection, deflating initial expectations. With the benefit
of hindsight, such failures are now seen as associated to issues such as a non-native folding
of recombinantly made VP1 that occludes antigenic sides or the low amount of epitopes
displayed by free (non carrier-conjugated) peptides [81,82]. Additional data on alternative B-
cell epitopes outside VP1 have also been described, including continuous immunodominant
sites on NSPs [83–85].

4.2. T-Cell Epitopes

Early studies in natural FMDV hosts allowed the identification of Th epitopes in
VP1 [86,87]. Despite the VP1 G-H loop, the high sequence variability of this protein among
the multiple FMDV serotypes spurred the search for T-cell epitopes in more conserved
domains [88]. Thus, T-cell epitopes for cattle [89] and swine [90] were identified in VP4,
a highly conserved structural protein. In particular, peptide VP4(20–34) was shown to
bind four different bovine MHC (BoLA) haplotypes and to be presented by MHC class II
DQ molecules [91]. The same peptide was also recognized as a porcine T-cell epitope in
FMDV-stimulated lymphocytes from vaccinated outbred pigs, providing further evidence
of the promiscuous nature of this region [90]. Upon T-cell epitope recognition, effector
(inflammatory) or regulatory (suppressive) T-cells can be activated, depending on the co-
stimulatory signals expressed [92]. Incorporation of the nucleotide sequence corresponding
to the VP4(20–34) epitope into a DNA vaccine turned out to be detrimental in mice,
promoting exacerbation of clinical signs after FMDV challenge [93]; and a fusion protein
corresponding to VP1(133–158) and VP4(20–34) did not afford full protection in guinea
pigs [81]. Thus, further experiments are required to assess the potential of VP4(20–34) as a
T helper epitope in natural hosts.

T-cell epitopes have also been described in NSPs, which generally exhibit low sequence
variability among serotypes and are thus likely to be recognized in heterotypic contexts.
For instance, overlapping peptides covering all FMDV NSPs allowed identification in pigs
of heterotypic and promiscuous T-cell epitopes located in proteins 3A, 3D and 3C [94].
In particular, peptide 3A(21–35) induced lymphoproliferation and cooperated in eliciting
nAbs when displayed in linear tandem with the VP1 G-H loop peptide. The potential of
this 3A(21–35) T-cell epitope as a key element in novel, fully protective peptide vaccines,
has been subsequently confirmed [95–98] and is described in more detail below.

Other T-cell epitopes have been described in 3D protein in cattle [99] and swine [100].
A recombinant vaccinia virus encoding 3D showed anti-FMDV response, and overlapping
peptides spanning 3D allowed the identification of several T-cell epitopes in pigs [91,101].
Similar to 3A(21–35), the inclusion of one of these peptides, 3D(56–70), in a vaccine prototype
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promoted induction of high nAb titers and a potent IFN-γ response detectable up to
3 months after immunization [102]. As of now, several CD4+ T-cell epitopes identified in
cattle and swine are now available as candidates for inclusion into peptide-based vaccines.

4.3. CTL Epitopes

Induction of nAbs and effector T-cells (both responses, not just one) tops the wish
list in FMDV vaccine design. In this case, CD8+ T-cells are activated by the recognition of
viral-derived peptides associated with MHC class I molecules on the surface of infected cells
(Figure 3), to trigger a cytotoxic (CTL) response. Stimulation of CTL responses against ex-
ogenously vaccine antigens can be achieved by activation of the so-called cross-presentation
pathway. The targeting of T-cell epitopes to dendritic cells (DCs), capable of priming this
response, together with the use of toll-like receptors (TLRs) ligands, is a promising strategy
for induction of systemic CTL responses. Then, activated CD8+ T-cells directly exert their
function by killing virus-infected cells, and indirectly by secreting cytokines that enable
the activation of other immune cells. While conventional FMDV vaccines are poor CTL
inducers, eliciting CD8+ T-cells against conserved epitopes by vaccination would improve
the immune response, especially for highly variable viruses like FMDV [58,103].

Determination of CTL epitopes in outbred populations is a complex task due to the
low number of inbred animals within FMDV natural hosts. For this reason, CTL epitope
characterization has been mostly addressed by in silico predictions and inbred mice, with
the understanding that such models need to be confirmed experimentally. For example,
Barfoed et al. reported a murine H2-Kd-restricted CTL epitope that induced cell immunity
in mice but did not achieve a protective effect in other animals [104]; in contrast, Gao et al.
described several 9-residue peptides from FMDV VP1 that not only induced CTL response
in mice but also provided protective response in guinea pigs [105–107].

Up to now, there are few reports of FMDV peptides recognized by swine and bovine
MHC class I molecules, also referred as swine (SLA) and bovine leukocyte antigen (BoLA),
respectively. Guzman et al. described BoLA N*02201-restricted epitopes in VP1(795–803)
of FMDV O UKG/2001 inducing a CTL response in vitro by αβ CD8+ but not CD4+ T
cells [58]. Other peptides have also been identified by predictive approaches as binding
BoLA-Al [108,109] and SLA MHC class I alleles [110,111]. Apart from computational
analysis, Ning et al. have studied by X-ray diffraction the interaction between a FMDV
CTL epitope and SLA-2*04:02:02, providing the first 3D structure of the peptide binding
groove (PBG) and the critical residues that could serve as CTL epitopes [112]. All these
studies reveal the potential of FMDV CTL epitopes but the CD8+ response to such peptides
remains to be evaluated in vaccinated/infected pigs or cattle.

5. Reproducing FMDV Antigenic Sites by Synthetic Peptides
5.1. Discontinuous Antigenic Sites

After the characterization of antigenic sites in FMDV, the next step is reproducing them
as synthetic peptides that can function as vaccine candidates. This is not an easy task, as most
antibodies bind to conformational, discontinuous epitopes [113,114]. In this regard, synthetic
peptide replicas of the discontinuous sites must be designed so that they bring epitope-
relevant residues spatially close in a native-like arrangement providing adequate epitope-
paratope interaction. Furthermore, peptides in solution are far more flexible than folded
proteins, so their mobility must somehow be restricted by strategies such as cyclization,
which for well-defined structural motifs, e.g., loops, offers some possibilities [115].

An initial approach by our groups was reconstructing discontinuous sites on the basis
of the crystal structure of the antigen pinpointing key residues involved in recognition.
The goal was to mimic discontinuous antigenic side D of serotype C, which has five critical
residues on three external loops of capsid proteins VP1 (residue 193), VP2 (residues 72, 74
and 79) and VP3 (residue 58) recognized by monoclonal Ab resistant (MAR) mutant anal-
ysis [114]. These residues and their adjoining regions were combined following the idea
of “loop integration”, by means of a disulfide bridge and a poly-proline helix (Figure 4a),
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into a covalent construct able to elicit modest nAb levels [116]. In a subsequent effort,
the cross-sectional view (loop integration) of the capsid was replaced by a “front” side
view (surface approach) (Figure 4b), providing a better mimic of the contact surface by dis-
playing only highly exposed elements and avoiding inner residues within the loops [117].
The resulting design was a medium-size disulfide-closed cyclic array able to bind FMDV-
derived monoclonal antibodies, thus supporting (by way of NMR studies) the hypothesis
that surface-exposed residues were involved in recognition. The designed replica and
three analogs defining slightly different ring sizes were inoculated in unconjugated form in
guinea pigs, eliciting a FMDV nAb response similar to virus-immunized animals. Unfortu-
nately, vaccination with these peptides did not provide consistent protection against FMDV
challenge. To the best of our knowledge, no similar studies attempting to reproduce FMDV
discontinuous epitopes have been reported. In any event, some important conclusions
could be drawn from that work: (i) cyclic structures above a certain size (ca. 25 residues)
may elicit high antibody titers without conjugation to carrier proteins, immune recognition
being possibly related to ring size or resistance to proteolysis [118]; (ii) by their reduced
flexibility relative to linear counterparts, cyclic peptides can provide reasonable native-
like mimicry of conformationally folded, discontinuous viral antigenic sites [119]; (iii) a
front-view rather than a cross-sectional approach provides optimized display of relevant,
surface-exposed residues involved in antibody recognition [116,117,120,121].
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5.2. Continuous Antigenic Sites

Although antigenic sites of viral proteins are mainly discontinuous, some sites are
indeed continuous, i.e., reproducible by linear peptide replicas, an attractive goal that
has stimulated many research efforts. The pioneering work was done on the continuous
B-cell epitope at the VP1 G–H loop of FMDV. Linear peptides reproducing this loop from
various FMDV serotypes induced nAbs in mice and guinea pigs [122] and achieved lim-
ited protection in swine [79]. Further work involved chimeric peptides that juxtaposed
two antigenic sites, e.g., the G–H loop and the C-terminus of VP1, in linear fashion, also
inducing nAbs [73] and modest protection in swine [123] and cattle [124,125]. Another
linear construction, the ACT peptide, integrated site A (G–H loop of VP1), plus the VP1
C-terminus, plus a T-cell epitope [VP1(21–40)] identified in cattle [82,86], again affording
partial protection in a large-scale vaccination trial. In a different approach, peptide libraries
termed mixotopes [126], reproducing in combinatorial form various antigenically relevant
mutations described at the G–H loop were used to immunize guinea pigs [127] with low
success: the performance achieved by these linear constructs in host species was signifi-
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cantly lower than that of conventional vaccines [128]. In all those endeavors, the challenge
in emulating immunogenicity by the reductionist approach inherent to peptide vaccines
was compounded by other issues affecting their development, including among others: (i)
the difficulty in correlating neutralizing responses with protection in peptide-vaccinated
animals [60,129,130]; (ii) the high degree of antigenic diversity of FMDV; (iii) the lack of
recognition of many peptide immunogens by T cells and MHC molecules [89,131]; and (iv)
the vulnerability of short peptides to proteases.

Altogether, those early setbacks in achieving protection against FMDV with peptides
replicating continuous epitopes helped researchers figure out key elements in engineering
more successful candidates. First, the absolute need to include promiscuous T-cell epitopes
capable of evoking adequate T-cell responses and optimizing the production of FMDV
nAbs [101,132]. Second, the advantages of using more than one epitope copy (single vs.
tandem peptides) to circumvent the low immunogenicity of uncoupled peptides [133]. And
third, the possibility of minimizing proteolytic degradation by strategies such as cyclization
or the use of non-native and/or protease-resistant D-amino acids such as the retroenantio
approach [134,135].

6. Next-Generation Peptide Vaccines: Multimerization Approaches

As discussed above, linear peptides are poorly immunogenic when administered
alone. Considering that in natural contexts, infectious agents usually display several dif-
ferent antigenic motifs, each of them in more than one copy, it seems quite reasonable to
attempt to present, in man-made replicas, such epitopes in multimeric fashion, as molecular
structures of higher order than individual peptides. This idea has given rise to a broad range
of scaffolds where multiple peptide replicas are covalently attached. Examples include
template-assisted synthetic protein (TASP) platforms [136], gold nanoparticles (GNP) [137],
aromatic hydrocarbons [138], or four-armed star polymers [139], in addition to the classic
poly lysine core, multiple antigenic peptide (MAP) system pioneered by Tam [140,141].

Tam’s strategy consists of a branched architecture where the peptide motifs grow
from the Nα and Nε amino groups of a lysine core, giving rise to multivalent, molecularly
defined constructs termed dendrimers (Figure 5). From the outset, MAPs have been suc-
cessfully applied for vaccine purposes [142,143]. Other advantages of MAP immunogens
include their (relative) simple design and synthesis, the versatility for achieving combined
(e.g., B-and T-cell epitope) immune response, or moderate enzymatic resistance [144].
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Preparation of peptide dendrimers involves either standard SPPS methods or conjuga-
tion in solution of previously prepared building blocks through various ligation chemistries,
e.g., thioether, hydrazine, oxime, thiazolidine, thio-maleimide or azide–alkyne. Thiol-based
ligations exploit thiol chemoselectivity for either thiol-disulfide exchanges, or for nucle-
ophilic substitution on alkyl halides (particularly if activated, e.g., α-halocarbonyl), or for
Michael-type addition to conjugated olefins. High multiplicity MAPs, i.e., tetra-, octameric
or above, pose increased challenges due to steric hindrance (slowing reactivity) and insolu-
bility (intra- and intermolecular aggregation phenomena) [145–147]. Alternative methods
to address such issues and reduce byproduct formation have been reported, including a
reverse thioether ligation route, where a chloroacetyl-derivatized epitope is tethered to a
thiol-functionalized form of a Lys dendron core [148].

7. FMDV Dendrimer Peptide Vaccines

Multimerization via dendrimer synthesis opens the possibility of displaying well-
defined FMDV B-and T-cell epitopes into a single molecule, overcoming the limitations of
single peptides. In accordance with this strategy, a tetravalent prototype, hereafter termed
B4T, was designed and synthesized by our groups. First, a peptide reproducing the het-
erotypic and highly conserved FMDV 3A(21–35) T-cell epitope was built on solid phase and
elongated at the N-terminus by two Lys residues defining a putative cathepsin D cleavage
site, and followed by a four-branched Lys core derivatized by chloroacetyl groups. This
dendrimer precursor was cleaved from the resin, purified and characterized. In parallel,
a B-cell epitope peptide from type C FMDV [VP1 (136–154)] acetylated at the N-terminus
and C-terminally elongated with a Cys residue was made and purified. Conjugation of
the two components by thioether ligation at pH~7 yielded a crude with B4T as the main
product. Subsequent HPLC purification allowed to isolate B4T-rich fractions that were used
for immunization. Two doses of B4T elicited high titers of FMDV-nAbs, activated T-cells
(IFN-γ release) and induced full protection in swine upon infection with homologous FMDV.
The tetrameric construct generated high levels of mucosal IgA preventing virus transmission
from challenged to contact control animals [97,149]. Based on these results, the presentation
of B-cell epitopes in dendrimeric fashion was found to be essential for protection, as linear
versions of the B-cell in tandem with the same T-cell epitope did not protect pigs [96]. In a
similar trial on cattle, a B4T-like construct afforded also protection, albeit partially [150,151].

These results have stimulated extensive research on dendrimer vaccine prototypes
targeted at more epidemiologically relevant FMDV serotypes. Interestingly, a downsized
version, named B2T, bearing two copies of the B-cell epitope from type O FMDV VP1
protein [VP1 (140–160)] linked to one copy of 3A(21–35) T-cell epitope by means of a much
more efficient thiol-maleimide ligation (Figure 6), improved nAb and IFN-γ responses
over the tetravalent dendrimer in Swiss CD1 mice [98]. This somehow counterintuitive
outcome, where less B-epitope copies elicit better responses, was remarkably validated in
pigs, showing full protection (100%, 6/6 animals) against FMDV challenge [95]. In addition,
the maleimide-linked B2T platform performed also better than an equivalent bivalent but
thioether-linked construct, underlining the impact of even the slightest structural details
on complex biological events such as vaccination with peptides. Further experiments in
swine demonstrated that one single dose of B2T was able to elicit high nAb titers against
FMDV and activation of IFN-γ-producing cells [152]. Remarkably, long-term anti-FMDV
protective responses have been detected up to five months post-immunization even with a
4-fold lower dose, highlighting the feasibility of these dendrimers as FMDV vaccines [102].

More recently, a new dendrimer peptide, named B2T-TB2, consisting of two B2T
molecules joined tail-to-tail by click [copper Cu(I)-assisted alkyne-azide cycloaddition]
chemistry has been described [147] (Figure 7). The B2T-TB2 peptide was able to elicit high
nAb titers in both mice and swine [153].
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The modular design of B2T constructs makes replacement of either B- or T-cell epitopes
a feasible option. In the latter case, this allows to explore in depth the modulation of the B-
cell response by T-cell epitopes. In this line, a B2T peptide harboring another T-cell peptide,
i.e., that located at 3D(56–70), showed similar nAb levels than those afforded by 3A(21–
35), including as well a potent IFN-γ response upon in vitro recall with the homologous
dendrimer [154], thereby extending the repertoire of swine T-cell epitopes usable.

The immune response was influenced not only by the presence but also by the ori-
entation of the T-cell epitope [149]. Thus, B2TT constructs displaying the T-3A and T-3D
epitopes in tandem showed different immunomodulatory effects for the two juxtapositions.
Also, the requirement of T-cell epitope inclusion in the peptide vaccine was again con-
firmed, by comparison with ineffective immunizations with construct B2, lacking a T-cell
epitope. Our studies also suggest that T-cells producing IFN-γ in response to in vitro recall
with the FMDV dendrimer are memory cells (CD4+2E3- T-cells) and, to a lesser extent,
cytotoxic T-cells (CD8β+) [155].

On the other hand, we have recently addressed the influence of SLA allele composition
on the response of 63 pigs to B2T constructs [156]. A robust significant correlation between
SLA-II Lr-Hp and T-cell response, as well as a slightly less significant correlation to the
neutralizing antibody response evoked by the B2T dendrimers were found. In particular,
allele groups SLA-I Lr-Hp Lr-59.0 and Lr-22.0 as well as Lr-0.15b were found associated with
high T-cell responses and nAb titers, respectively. These 3 allele groups are highly abundant
Lr-Hp in European farmed pigs, which is of potential value for peptide vaccine design.
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All in all, B2T-type dendrimers constitute efficient FMDV immunogens, eliciting robust
immune responses at both serum and mucosal levels, thus providing a reliable pharmaceutical-
like alternative to undefined, risk-prone biologicals such as inactivated vaccines.

8. Extending the Dendrimer Vaccine Approach to Classical Swine Fever

The versatile and customizable nature of B2T dendrimers has also been exploited to de-
sign vaccines against classical swine fever virus (CSFV), another important pig disease [157].
The immunogenicity against CSFV of three B2T-type candidates displaying respectively
three different B-cell epitopes from glycoprotein E2 (i.e., (694–712), (712–727) [158], or (829–
842)) [159], joined to a T-cell epitope from NS3 protein (residues 1446–1460) was tested in
domestic pigs [160,161]. Those B-cell epitopes had been already reported to induce CSFV-
neutralizing antibodies when administered in monomeric form [158,162–165]. However,
only pigs immunized with the construct including E2(694–712) B-cell epitope had a high
and uniform antibody response against the immunogen, giving rise to partial protection
against CSFV challenge [161]. Surprisingly, in another study, a B2T prototype combining
CSFV B-cell epitopes with FMDV 3A(21–35) T-cell epitope elicited an improved antibody
response against CSFV and higher levels of protection against virus challenge than those
afforded by the same dendrimer harboring the CSFV T-cell epitope from NS3 protein [166].

In summary, the MAP-inspired B2T (or, more generally, BnT) strategy stands out for
its ability to increase peptide immunogenicity, particularly in swine [97,160,161,167]. The
branching arrangement may protect certain residues from enzymatic cleavage, causing
epitopes to be processed and presented more efficiently by antigen-presenting cells [167,168].
Altogether, these results support the relevance of dendrimer peptides as an effective way to
combine different B- and T-cell epitopes into a single molecular entity with good prospects
of vaccine application, plus the ability to explore mechanisms involved in the modulation
of the immune response (reviewed in [144]).

9. Concluding Remarks

Peptide-based vaccines are attractive and timely alternatives to traditional vaccines [169].
Strategies to improve their low immunogenicity have given rise to plausible candidates
against human infectious diseases and cancer, some of them at advanced stages of clinical
trials [170,171]. Veterinary medicine must obviously join the trend of novel safer, versatile
vaccines to overcome the shortcomings of conventional ones.

For a rational design of an efficient peptide vaccine against viruses—extendable to
other pathogens—, three main limitations must be reckoned with. First, the partial knowl-
edge of immune effector mechanisms, especially the role of CD4+ and CD8+ lymphocyte
responses in protection. Second, the difficulties in reproducing conformation-dependent
B-cell antigenic sites must be kept in mind and addressed, along with conformation-
independent (continuous) determinants, which can be easily mimicked by linear peptides
and included in synthetic constructs. And third, the intrinsic handicaps of single linear
peptides such as their low immunogenicity and short half-life in serum due to enzymatic
degradation. Interestingly, peptides facing similar challenges have already shown to be
effective against other infectious or genetic diseases [44,170,172,173], so their value in
immune protection should not be underestimated. Among the most valuable advantages
of peptide vaccines are (i) their inherent safety; (ii) the ability to achieve high antigen
density in a single molecule and to avoid antigens with detrimental responses; and (iii) the
possibilities of engineering by multimerization, cyclization, etc.

FMDV peptide vaccines discussed in this review exemplify the steps involved in
effective vaccine development, and in particular how various shortcomings can be over-
come. Substantial efforts to understand FMDV-host interactions have provided useful clues
towards rational design of candidates. However, the genetic diversity of FMDV, common
to RNA viruses and translating into good adaptability and, more pertinently, high antigenic
variability has limited the odds of a universal subunit (or for that matter conventional)
vaccine.
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Multimeric arrangements of well-defined FMDV B- and T-cell epitopes into dendrimer
constructs have given rise to novel formulations eliciting robust immune responses in
natural host that significantly expand the scope of subunit vaccines. While issues such
as dosage, cost-effectiveness, immunization schedules or duration of the protection have
been only partially addressed, FMDV dendrimer peptide vaccines stand now as effective
candidates likely to enter the veterinary vaccine pipeline in coming years.

Extension of the modular approach underlying dendrimeric vaccines is conceptually
possible provided B- and T-cell epitopes capable of evoking protective responses are known.
This is the case of CSFV, another important livestock viral disease, for which dendrimer
peptides analogous to those developed for FMDV have been shown to confer partial
protection against viral challenge. It is noteworthy that the dendrimer approach could also
be extended to newly emerging pathogens such as the novel pandemic beta-coronavirus
SARS-CoV-2. Indeed, experiments in our laboratories are in progress to assess whether B2T-
like platforms tailored to SARS-CoV-2 may induce neutralizing nAbs, opening possibilities
of contributing to prevent the current pandemic.
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