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Key message 19 

 Intensively managed orchards in the landscape decrease alfalfa predators. 20 

 Alfalfa predators and herbivores are more abundant in landscapes with more 21 

proportion of alfalfa 22 

 Proportion of forest cover decreases some predatory taxa in alfalfa 23 

 Noncrop habitats, winter cereals, and the landscape Shannon index have minor 24 

effects. 25 

 Insect abundance in alfalfa varies with the plant growth stage 26 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Abstract 27 

 28 
We assess the effects of changing land use and crop management on alfalfa insect 29 

abundance by comparing it in 50 alfalfa fields when they were inserted in landscapes 30 

with different proportions of arable crops and orchards. Land use in a buffer of 500m. 31 

was assessed and alfalfa insect abundance was estimated with sticky yellow traps. 32 

Numbers of catches of several herbivores and predators were related to the proportion 33 

of landscape components and several field variables. Results indicated that the 34 

proportion of orchards in the buffer negatively affected the abundance of predators on 35 

alfalfa; likely because orchards treated with pesticides are a sink for predators moving 36 

in the landscape, among other possible causes. Other landscape variables such as 37 

noncrop habitats, winter cereals, and landscape diversity analyzed by the Shannon index 38 

had a minor influence. Among field variables, field size influenced positively the 39 

abundance of insects on alfalfa whereas alfalfa growth stage and age affected positively 40 

or negatively the different herbivores and predators. Of course, abundance of predators 41 

and prey was affected by the abundance of prey and predators, respectively. These 42 

findings suggest that a high proportion of intensively managed crops (orchards) in the 43 

landscape interferes with the role of alfalfa as a reservoir of predatory insects for 44 

adjacent crops and that the responses to local and landscape structures are temporal and 45 

species-specific as previously concluded for maize. Consequently, landscape and field 46 

management strategies to improve pest control must consider both types of variables as 47 

well as their changing influence when we modify them.  48 

 49 
Keywords: Agricultural landscape structure, Local variables, Alfalfa herbivores and 50 

predators, orchards, noncrop habitats. 51 

 

 



 

1. Introduction 52 

In recent decades, agriculture has intensified at local and regional scales worldwide, 53 

increasing the proportion of monocultures, field sizes, and the degrees of fragmentation 54 

of natural and seminatural habitats, causing fundamental changes in agricultural 55 

landscapes (Tscharntke et al. 2005; Baessler and Klotz 2006). These landscape changes 56 

are considered to be important factors modifying the abundances of both insect pest and 57 

natural enemy populations in agroecosystems (Ali et al. 2020). However, a meta-58 

analysis showed that crop pests and predators can also exhibit inconsistent responses to 59 

the composition of landscapes and that these responses might result from variations in 60 

how habitat and biocontrol are measured (Karp et al. 2018). Many studies investigating 61 

the impacts of natural enemies on pest suppression have focused on short-term effects 62 

and have rarely considered the effects of spatial and temporal changes in the use of land 63 

(Jonsson et al. 2018). Different natural enemies can respond to landscape variables at 64 

distinct scales (Chaplin-Kramer et al. 2011), and a lack of stability due to factors such 65 

as high levels of pesticide application in some crops (e.g., orchards) can affect their 66 

continuous recolonisation from the surrounding landscape (Happe et al. 2019). In many 67 

cases, naturally occurring natural enemies could largely replace chemical inputs to 68 

control pests (Karp et al. 2018; Jactel et al. 2019). Most landscape and biocontrol 69 

studies mainly focus on the importance of natural and seminatural habitats as providers 70 

of arthropods and services, but few studies look at the importance of other crops. A 71 

deep understanding of landscape effects on insect pests and/or natural enemies could 72 

help to modify the environment at the within-crop, within-farm or even landscape levels 73 

and the existing pesticide application practices. Such an understanding could then be 74 

used by farmers, pest control advisers and researchers to adjust the spatiotemporal 75 



structure of crops and to design successful pest management programmes that could 76 

help to mitigate pests and minimise risks associated with insecticide spraying (Meisner 77 

et al. 2017; Ali et al. 2020). 78 

In the Ebro Basin, alfalfa is one of the most common crops in the landscape. The alfalfa 79 

produced in this region represents more than 40% of Spain’s total alfalfa production 80 

(MAPA 2020). During the last two decades, several studies have described the 81 

composition, abundance and ecological role of insects that live in alfalfa, concluding 82 

that alfalfa is an important reservoir of natural enemies in the Ebro Basin (Núñez 2002; 83 

Pons et al. 2005) and a source of predators that colonise neighbouring maize fields (di 84 

Lascio et al. 2016; Madeira et al. 2014, 2018; Madeira and Pons 2016). This role of 85 

alfalfa has been studied at both the field and farm scales, but it may also be modulated 86 

by the characteristics of the landscape (Rusch et al. 2010). In the study region, the 87 

proportions of alfalfa crops in the landscape surrounding maize fields have been found 88 

to influence the abundances of herbivores and predatory insects in maize (Clemente-89 

Orta et al. 2020), but less is known about the inverse effect: how landscape composition 90 

affects herbivore and predator abundance on alfalfa. 91 

In recent years, the transformation of dryland areas to irrigated land, along with changes 92 

in market demands, have led to modifications of agricultural land use in our region. The 93 

most significant modifications occurred at the relative proportions of cultivated surface 94 

devoted to alfalfa and stone fruits; alfalfa has decreased in favour of orchards (IEC 95 

2020). A relevant consequence of the expansion of fruit tree cultivation is the increase 96 

in the amount of chemical pesticides sprayed in the area. These changes may have 97 

modified the abundances of pests and their natural enemies in alfalfa and other crops as 98 

in the case of maize (Clemente-Orta et al. 2020). An increase in pesticide use has been 99 

signalled as a main cause of landscape-wide natural enemy reduction, affecting both 100 



their behaviour and habitat recolonisation (Rusch et al. 2010). In addition, landscapes 101 

dominated by stone fruit orchards have been reported to negatively affect the richness of 102 

beneficial arthropod species in adjacent fields (Samnegård et al. 2018; Clemente et al. 103 

2020). 104 

In a previous study, the authors examined the effects of landscape composition on the 105 

abundances of pests and predators in maize fields (Clemente et al. 2020). To enhance 106 

the understanding of landscape effects on conservation biological control in the whole 107 

agroecosystem, we further evaluated whether changes in landscape composition or crop 108 

management practices could contribute to the design of more sustainable pest 109 

management programs for alfalfa. Surveys were performed in alfalfa fields over three 110 

consecutive years in spring and summer to test whether the increase in orchard surface 111 

together with their associated intensive management has negative consequences for the 112 

abundance of natural enemies and biological control functions in neighbouring alfalfa 113 

fields; we also tested whether those negative impacts change during the spring vs. the 114 

summer season. 115 

 116 

2. Material and methods 117 

2.1.  Study area 118 

This present study was conducted in three consecutive years in commercial alfalfa fields 119 

located in an area of the Ebro basin in which altitude was between 120 and 346 m, 120 

annual rainfall between 200 and 400 mm, Tmin between 8 and 24 °C and Tmax between 121 

18 and 38 °C (Fig. 1A and Appendix A1 Table S1). In this study, we were interested in 122 

crop-dominated landscapes (approximately 80% of crops). For this reason, the study 123 

area where alfalfa fields were selected comprised 700 km2, formed mainly by a mosaic 124 

of irrigated crop land with non cultivated patches (older fallows, natural habitats, 125 



margins, irrigation Canals and roads) and forest repopulated by Pinus halepensis (Mill). 126 

The prevalent arable crops are alfalfa and a crop rotation that mostly includes winter 127 

and summer cereals. Land use in the area has changed significantly in the recent 30 128 

years with more surface devoted to orchards to the detriment of arable crops (IEC 129 

2020), leading to a mixed landscape mosaic with fields of different shapes and sizes. 130 

The survey was conducted in 50 alfalfa fields. Some of the fields were the same over 131 

the three years, but others, due to crop rotations, remained in the study for only one or 132 

two years (Fig. 1A). Alfalfa fields were selected in a gradient of landscape composition 133 

ranging from landscapes with predominance of arable crops to others with a high 134 

percentage of orchards (Fig. 1B, Table S2). The size of selected fields varied between 135 

1.3 and 28.5 ha, a common range in the area (Appendix A1 Table S1). To avoid 136 

potential spatial autocorrelation, the minimum distance between alfalfa fields was ≥ 2 137 

km. 138 

Alfalfa is a perennial crop that remains in the field for 4 to 5 years and normally 139 

undergoes 5 to 6 cuttings during the growing season (March–October). When needed, a 140 

single insecticide treatment in April against the main pest, the alfalfa weevil (Hypera 141 

postica Gyllenhall), is applied (Madeira et al. 2014). However, in orchards, pesticide 142 

applications are more frequent and may include 7 to 14 chemical sprays (insecticides, 143 

fungicides and bioregulators), mowing of the herbaceous cover in the inter-rows 144 

(approximately once per month), herbicide applications and tree fertilisation (Cantero-145 

Martínez 2013; Bosch 2018; Teulon et al. 2018). Such intensive management practices 146 

in orchards are also common in other European countries (Happe et al. 2019). In both 147 

winter cereals and maize, pre- and postemergence herbicides are applied and seeds are 148 

treated with fungicides and/or insecticides. 149 

 150 



2.2. Landscape structure variables 151 

Landscape structure was quantified using ArcGIS software 10.3.1 (ESRI 2015). Every 152 

year, we characterised the landscape surrounding each sampled alfalfa field in a circular 153 

buffer area (0.5-km radius). The landscape composition was described by direct field 154 

inspection, orthophotos of the Plan Nacional de Ortografía Aérea (PNOA, 155 

https://pnoa.ign.es/), and geographical information maps of the Instituto Geográfico 156 

Nacional of Spain (https://www.ign.es). To incorporate seasonal variations in the 157 

landscape, two characterisations were performed every year, first in spring and then in 158 

summer. The elements initially identified in the landscape with the field inspection were 159 

grouped into eight categories: alfalfa, winter cereals, maize, orchards, forest, noncrop 160 

habitats and margins (Table 1 and Appendix A1 Table S2). 161 

Landscape diversity was characterised with the Shannon index (hereafter SHDI-L) 162 

where the different landscape elements were expressed as a function of the proportional 163 

abundance (roads and buildings not included), Li, and was calculated with FRAGSTAT 164 

(McGarigal et al. 2012) as follows: 165 

𝑆𝐻𝐷𝐼 − 𝐿 =  − ∑ 𝐿𝑖 × ln 𝐿𝑖

32

𝑖=1

 166 

 167 

2.3. Field variables 168 

These included alfalfa age, alfalfa growth stage, perimeter/area ratio of the field, and 169 

abundances of predatory (for the study of the herbivores) or of prey taxa (for the study 170 

of predators) (Table 1 and Appendix A1 Table S3). Alfalfa age was provided by the 171 

respective farmer, and the alfalfa growth stage was recorded at each sampling date using 172 

a measuring tape. The perimeter/area ratio of the alfalfa fields was calculated using 173 

ArcGIS software. 174 



 175 

2.4. Insect sampling and processing 176 

The insects (herbivores and predators) in alfalfa fields were sampled with yellow sticky 177 

traps (30×25 cm, Serbios, Badia Polesine, Italy). Three sticky traps were left for 1 week 178 

in each field; each trap was mounted on a metal bar and placed inside alfalfa fields 179 

starting at 30 m from the field border, with a distance of 15 m between traps along a line 180 

transect approximately parallel to the field border. Traps were positioned just above the 181 

crop canopy and were raised as alfalfa plants grew. Sampling was carried out about 182 

once a month, in the first year, 1 sample in spring and 3 samples in summer in the 183 

second year, 2 samples in spring and 3 samples in summer and in the third year, 2 184 

samples in spring and 2 samples in summer. Therefore, the number of samples was 6, 185 

23, and 21 in the first, second, and third year (Appendix A1 Table S1). Once the traps 186 

were collected, they were kept at 6-8 °C until catch identification at the family, genus or 187 

species level depending on their state of conservation. The abundance of trapped insects 188 

in the field was then averaged over the three yellow sticky traps. 189 

 190 

2.5. Statistical analyses 191 

We used Spearman rank correlations (Dormann et al. 2013) to test the degrees of 192 

correlation between landscape structure and field variables (Appendix A1 Table S4). 193 

Despite a few variables were moderately correlated (Spearman’s rho 0.4-0.59) 194 

(Campbell and Swinscow 2009), they were not excluded to build the models, as done by 195 

Schmidt et al. (2019). 196 

To analyse the effects of the landscape structure and local variables on alfalfa herbivore 197 

and predator abundances in spring and summer, we used a linear mixed-effects model 198 

where year was a random factor using the ‘nlme’ package (Pinheiro et al. 2018) in R 199 



software (R Development Core Team, 2018). Mean insect catches per trap in each field 200 

and sampling date were log transformed [log10(x+1)] to achieve as normal a 201 

distribution of the model residuals as possible. Spatial autocorrelation among fields of 202 

mean catches in spring and summer was tested using Moran’s I statistic (Paradis 2019) 203 

(Appendix A1 Table S5). Landscape metrics for each model was standardised (mean 204 

centred and scaled) using the ‘caret’ package (Max et al. 2018). We applied a 205 

multimodel inference approach to obtain a robust parameter estimate using the 206 

‘MuMIn’ package (Bartoń 2018). The dredge function of the models was used to 207 

describe the effects of independent variables on each dependent variable. Models were 208 

selected by comparing the Akaike information criterion corrected for small sample sizes 209 

(AICc) with the values of the full model. Model averaging was performed on the model 210 

set with ΔAiCc < 2 (Burnham and Anderson 2004). The model residuals were 211 

graphically inspected with Q-Q plots and histogram graphics to ensure there were no 212 

violations of normality and homoscedasticity assumptions (Zuur et al. 2010). Finally, 213 

we used the ‘effects’ package (Fox et al. 2016) to represent the effects in partial residual 214 

plots. 215 

 216 
3. Results 217 

3.1. Herbivore and predator abundances 218 

A total of 54,934 predators (17,102 in spring and 37,832 in summer) and 1,513,673 219 

herbivorous insects (456,547 in spring and 1,057,126 in summer) were collected in the 220 

50 sampled alfalfa fields in the three years. Although the species of predators and 221 

herbivores trapped on traps in spring and summer were the same, their abundance varied 222 

from one season to the other (Fig. 2 and Fig. 3). The predators were collected and 223 

identified as Aeolothrips spp. (Thysanoptera: Aeolothripidae) (predators of small 224 

arthropods mainly thrips but facultatively also feeding on pollen), Orius spp. 225 



(Hemiptera: Anthocoridae), Staphylinidae, Miridae, Nabidae (generalist predators), 226 

Cantharidae (rather generalist predators of small arthropods), Stethorus spp. (predators 227 

of red spider mites), and several predators of aphids namely Chrysopidae, Syrphidae 228 

and the coccinellids Propylea quatuordecimpunctata L., Hippodamia variegata Goeze, 229 

Coccinella septempunctata L. (Coleoptera: Coccinellidae) (Fig. 2). Aeolothrips spp. was 230 

the most abundant predator in both seasons, representing 61 and 57% of predators 231 

collected in spring and summer, respectively. In the case of herbivores, the following 232 

taxa were collected and identified: Frankliniella occidentalis Pergande (Thysanoptera: 233 

Thripidae) and other Thripidae, Empoasca vitis Göthe (Hemiptera: Cicadellidae), 234 

Aphididae, Zyginidia scutellaris Herrich-Schäffer (Hemiptera: Cicadellidae), 235 

Laodelphax striatellus Fallén (Hemiptera: Delphacidae) and other planthoppers (Fig. 3). 236 

Frankliniella occidentalis was the most abundant herbivore, representing 80 and 88% of 237 

the total herbivores in spring and summer, respectively. 238 

 239 

3.2 Abundance of alfalfa insects in relation to landscape variables 240 

The most parsimonious models for predators and herbivores are shown in Appendix A2 241 

(Tables S6 and S7, respectively), and the significant landscape variables are presented 242 

in Tables 2 and 3 for predators and herbivores, respectively. Although models of 243 

Nabidae and Miridae were represented, they were not considered in the results and 244 

conclusions, in the case of Nabidae due to their low abundance and in the case of 245 

Miridae due to the common omnivory of the family. 246 

The landscape structure surrounding alfalfa fields affected the abundances of both 247 

predators and herbivores found on this crop. However, the effect of landscape variables 248 

varied with the season (Tables 2 and 3). 249 



The landscape variables that most affected predator and prey abundances were the 250 

proportions of orchards, forests, alfalfa, maize and margins. The most significant results 251 

are summarized in the following paragraphs. Abundances of predators significantly 252 

related to the surrounding landscape are shown in Figures 4-8. Only in a few cases, the 253 

proportion of alfalfa was positively related to Chrysopidae in spring and to Syrphidae 254 

and Staphylinidae in summer. On the contrary, the abundance of predators was 255 

negatively related mainly to the proportion of orchards and forest for several predatory 256 

species in spring, as well the proportion of margins in summer for Orius spp., 257 

Aeolothrips spp. and Stethorus spp. Maize in spring was negatively related to 258 

Cantharidae and in summer, but positively related to P. quatuordecimpunctata and 259 

Aeolothrips spp.  260 

In the case of herbivores (Figs. 4-8), orchards were positively related to almost all 261 

herbivores (E. vitis and Aphididae in spring and summer, F. occidentalis and Z. 262 

scutellaris in spring and L. striatellus in summer, except the other species of Thripidae, 263 

which were negatively related in spring. The abundances of F. occidentalis and other 264 

Thripidae in spring was positively and negatively related to the proportion of forest, 265 

respectively. Alfalfa was positively related with other Thripidae in spring and with 266 

Aphididae in summer. Margins were positively related to the herbivores Aphididae 267 

(spring) and other Thripidae (summer). Maize in spring was negatively related to E. 268 

vitis and positively related to Aphididae in summer.  269 

 270 

3.3. Abundance of alfalfa insects in relation to field variables 271 

 272 

The effects of alfalfa field variables on predators and herbivores recorded on alfalfa are 273 

shown in Appendix A2 (Tables S6 and S7, respectively). Tables 2 and 3 show only the 274 



significant variables. The variables prey and predators in the field and the alfalfa growth 275 

stage were the field variables that most affected insect abundances (Fig. 9-11). 276 

Abundances of predators and herbivores (prey) were mostly positively related as 277 

expected in most of predator-prey relationships particularly for generalist predators. 278 

The alfalfa growth stage was positively related to the herbivore E. vitis and other 279 

planthoppers in spring and to the predator Orius spp. (spring and summer), H. 280 

variegata, Chrysopidae and Stethorus spp. in summer. The opposite effect was observed 281 

for the herbivores Aphididae (spring), other Thripidae and other planthoppers (summer) 282 

and for the predators Aeolothrips spp. (spring and summer) and Staphylinidae 283 

(summer). 284 

 285 

4. Discussion 286 

In the northeastern Iberian Peninsula, natural enemies are a crucial component of 287 

integrated pest management (IPM) approaches for pest control in alfalfa (Pons et al. 288 

2005). These natural enemies are important biological control agents of alfalfa pests, not 289 

only because they reduce the damage caused by pests but also because alfalfa is a 290 

source of the most abundant predators for other crops such as maize (Clemente-Orta et 291 

al. 2020; Madeira et al. 2014, 2018; di Lascio et al. 2016) and orchards (Batuecas et al. 292 

2021). Our results demonstrate that the proportions of orchards, forest, margins, maize, 293 

and alfalfa in the surrounding landscapes were the landscape variables that most 294 

influenced predator and herbivore abundances in alfalfa. 295 

The proportion of orchards in the landscape had negative effects on some alfalfa 296 

predators in spring, such as Orius spp. (the most abundant generalist predators recorded 297 

in alfalfa), Chrysopidae, Syrphidae, Cantharidae and Staphylinidae. Similar negative 298 

effects were reported in maize in our previous study in the area (Clemente-Orta et al. 299 



2020). Negative impacts of orchards in the landscape on the abundance of predators 300 

within other crops were also observed by Samnegård et al. (2018) and by Yang et al. 301 

(2018, 2019). In addition, the impact of orchards on the abundance and source-sink 302 

dynamics of predators can be related to orchard management (Lefebvre et al. 2016) 303 

since crop management practices (mainly intensity of pesticide use) have been shown to 304 

counteract the positive effects of landscape on higher predator abundances (Ricci et al. 305 

2019, Saqib et al. 2020). Natural enemy abundance and diversity in orchards depend on 306 

orchard management, and in general, they were higher in organically managed orchards 307 

than in nonorganically managed orchards (Happe et al. 2019). In contrast, a higher 308 

abundance of intensively managed orchards in the surrounding landscape reduced the 309 

colonisation of vegetable crops by predatory mirid bugs (Yang et al. 2018, 2019; 310 

Samnegård et al. 2018; Aviron et al. 2016). Although the negative effects of pesticides 311 

on predators in orchards may be masked by continuous orchard recolonisation from 312 

surrounding arable crops (Markó et al. 2017; Batuecas et al. 2021), this does not seem 313 

to be the case in orchards close to our alfalfa fields, as alfalfa fields within landscapes 314 

with a high proportion of orchards had low abundances of the abovementioned 315 

predators. However, although orchards in this area are sprayed, a rich community of 316 

spiders can still be captured in pitfall traps (Barrientos et al. 2019). Conversely, except 317 

for other Thripidae, the abundances of herbivores were higher in landscapes with high 318 

proportions of orchards. This higher herbivore abundance could be due to both the 319 

lower abundance of predators in alfalfa fields close to orchards and because some 320 

alfalfa herbivores are shared with fruit trees and orchard ground covers. This is the case 321 

for the western flower thrips F. occidentalis, an important pest of peach orchards under 322 

our conditions (Teulon et al. 2018); therefore, alfalfa and peach orchards could 323 

exchange thrips populations that would look for the best environment to feed and 324 



reproduce. Overall, the development of more sustainable orchard management practices 325 

(Aparicio et al. 2021; Denis et al. 2021) may enhance the populations of beneficial 326 

arthropods, which can later be a source for recolonization of arable fields after 327 

disturbances (Jeanneret et al. 2016). 328 

Forest was the second most influential landscape variable, showing five negative 329 

relationships (four predators and one herbivore). A positive relationship was shown 330 

only for the herbivore F. occidentalis. In the study area, forest habitats are small patches 331 

mainly formed by Pinus halepensis and a low diversity herbaceous plant cover. This 332 

low diversity of forest cover is likely to be the reason for the negative effect on 333 

predators, in contrast to the key positive role of forest cover recorded in tropical 334 

agricultural landscapes, where it increases natural enemy diversity and associated 335 

biological control services (Medeiros et al. 2019). 336 

 337 

Alfalfa cover in the landscape only showed positive effects. Three predatory groups 338 

(Chrysopidae in spring and Syrphidae and Staphylinidae in summer) and two 339 

herbivorous groups (other Thripidae in spring and Aphididae in summer) were more 340 

abundant in landscapes with high proportions of alfalfa. Alfalfa has been described in 341 

our area as a great reservoir for many generalist and specialist parasitoids and predators 342 

during all seasons, including the predators described above (Núñez, 2002; Pons et al. 343 

2005; Pons et al. 2013), which can move from different alfalfa fields to colonise other 344 

adjacent crops (di Lascio et al. 2016; Madeira et al. 2016; Madeira et al. 2018; Batuecas 345 

et al. 2021). Herbivores such as aphids and other Thripidae were favoured by a high 346 

proportion of alfalfa in the landscape. Aphids are one of the most important pests of 347 

alfalfa (Meissle et al. 2010; Pons et al. 2005). Since they are crop-specific (Blackman 348 

and Eastop 2000), they do not switch between the main arable crops in spring and 349 



summer (winter cereals and maize, respectively) in the study area. The positive 350 

relationship between alfalfa and these herbivores, mainly for aphids, could be a 351 

consequence of a resource concentration effect that occurs when high resource density 352 

patches attract and support the most specialist insects, which are more likely to find, 353 

remain on and reproduce on their hosts when these plants grow in such stands (Otway et 354 

al. 2005). 355 

Few effects of the proportion of maize in the landscape on the abundance of alfalfa 356 

insects were found. Cantharidae and the herbivore E. vitis were negatively correlated 357 

with maize in spring, and the predators P. quatuordecimpunctata and Aeolothrips spp. 358 

and Aphididae were positively correlated in summer. The significant relationship 359 

observed for P. quatuordecimpunctata confirms the results of previous studies that 360 

concluded that maize plays a major role as a source of P. quatuordecimpunctata and H. 361 

variegata for alfalfa after alfalfa cutting, some alfalfa individuals could move to maize 362 

after cutting and recolonize alfalfa once this crop has regrown (di Lascio et al. 2016). 363 

A more specific investigation would be necessary to explain the positive relationship 364 

found between aphid abundance on alfalfa and the proportion of maize in the landscape 365 

since these two crops do not share aphid species (Asín and Pons 1998; Pons et al. 2005; 366 

Madeira et al. 2014). Contrary to expectations, the number of Z. scutellaris in alfalfa 367 

was not related to maize, although it is one of the most abundant herbivores in maize. 368 

Field margins and noncrop vegetation in agricultural landscapes are potential ecosystem 369 

service providers because they offer seminatural habitats for arthropods (Mkenda et al. 370 

2019), especially when they suffer less disturbance and can act as refuges of natural 371 

enemies by providing them with important resources (Landis et al. 2000; Alomar et al. 372 

2002; Hatt et al. 2018). Although these habitats have often been shown to increase the 373 

abundance and diversity of natural enemies contributing to pest biological control in 374 



adjacent crops (Alignier et al. 2014; Tscharntke et al. 2016), their positive role depends 375 

on how margins are managed by growers. However, in our study, we only observed 376 

negative effects of margins for predators. Aeolothrips spp., Orius spp. and Stethorus 377 

spp. decreased in abundance with an increase in margins in the landscape. In addition, 378 

field margins enhanced the abundance of the herbivores Aphididae in spring and other 379 

Thripidae in summer. The opposite result was recorded in the area by Clemente-Orta et 380 

al. (2020) for maize and Orius spp. 381 

The noncrop habitats were only related to the abundances of two predators. Orius spp. 382 

increased their abundance (spring and summer) when the proportion of noncrop habitat 383 

increased whereas, in parallel, Syrphidae decreased in spring. Veres et al. (2012) 384 

attributed this role of noncrop habitats as refuges for Orius overwintering. However, the 385 

opposite has been found in some publications that report a positive effect of seminatural 386 

habitats on the abundance of hoverflies (e.g., Haenke et al. 2014; Schirmel et al. 2018). 387 

The benefit of noncrop habitats in terms of pest biocontrol enhancement remains 388 

inconclusive, as remarked by the meta-analysis of Karp et al. (2018). The different 389 

nature and composition of noncrop or seminatural habitats are likely to explain at least 390 

partially the different results found in the literature for their role in natural enemy 391 

abundance.  392 

Commonly, landscape diversity is expressed by the Shannon diversity index. In our 393 

study, Shannon index of landscape cover types was not a variable that significantly 394 

influenced predator abundance on alfalfa. However, significant negative relationships 395 

found between the landscape Shannon index and the abundance of relevant alfalfa pests 396 

(F. occidentalis and L. striatellus) could be explained by undetected increases in the 397 

abundance or preying activity of predators. There are several studies that have remarked 398 

that landscape diversity itself is not a meaningful characteristic that affects biological 399 



control services and pest suppression (Martin et al. 2016; Rusch et al. 2016; Tscharntke 400 

et al. 2016; Landis 2017; Karp et al. 2018), while others have reported a positive 401 

relationship between landscape diversity and natural enemy abundance (Rusch et al. 402 

2016; Aguilera et al. 2020).    403 

Winter cereals was the landscape variable that affected the abundances of the fewest 404 

alfalfa insects. Only two insects were affected: the predatory Staphylinidae were 405 

negatively affected, and the leafhopper E. vitis was positively affected, both in spring. It 406 

was expected that effects only occurred in spring because alfalfa and winter cereals only 407 

overlap at that time, although the sowing and harvesting dates of winter cereals have 408 

been more variable in recent years. In summer, winter cereals are already harvested. 409 

Since it has been reported that both crops share many predatory species in our area 410 

(Pons and Eizaguirre 2009), we expected more alfalfa-winter cereal mutual influences 411 

in spring. 412 

 413 

Landscape variables may explain part of the insect abundances in a crop, but local (field 414 

and immediate surroundings) conditions may also contribute to determine insect 415 

abundances. In our study, the predator-prey relationship in alfalfa was the most 416 

influential local variable; all herbivore abundances and almost all predator abundances 417 

were positively related to their predators or prey, respectively. This was to be expected, 418 

as more predators would concentrate in fields with more pest abundances. Exceptions 419 

were the planthopper L. striatellus and predatory Syrphidae, which were both shown to 420 

be negatively related to predators or prey, respectively, in summer. The positive effects 421 

of natural enemy abundance and prey abundance in alfalfa and other crops are 422 

commonly found in the literature (Elliott et al. 2002; Pons et al. 2005; Albajes et al. 423 

2011; Ardanuy et al. 2018; Clemente-Orta et al. 2020; Ali et al. 2020). Alfalfa growth 424 



stage was the second most significant local variable. In the study area, alfalfa undergoes 425 

five cuttings during spring and summer, causing disturbances to aerial insects that have 426 

to find temporary refuge in adjacent habitats and later move back to alfalfa. In the 427 

process of alfalfa recolonisation, insect movement dynamics are species-specific; some 428 

species return earlier than others, as observed in some predators (Madeira et al. 2014, 429 

2016, 2018; di Lascio et al. 2016). This could explain both the positive and the negative 430 

relationships between insect abundances and alfalfa growth stage. In fact, recent studies 431 

show that landscape effects could be present but masked or conditioned by the effects of 432 

local farm management (Begg et al. 2017; Petit et al. 2017; Karp et al. 2018). Other 433 

local variables, such as the field’s area-perimeter relationship and the alfalfa field age, 434 

play less important roles in determining the effects of local variables on alfalfa insect 435 

abundances and are only noticeable in summer. 436 

 437 

Conclusions 438 

- Orchard, forest, margins, maize, and alfalfa are the most influential landscape 439 

variables determining herbivore and predator abundances in alfalfa crops. 440 

- A high proportion of orchards in the landscape has a negative impact on the abundance 441 

of predators in alfalfa due to the intensive management of orchards. 442 

- The occurrence of forest patches negatively impacts the abundance of some predators. 443 

- Alfalfa cover has only positive effects on the abundances of a few predators and 444 

herbivores on alfalfa. 445 

- Contrary to expectations, noncrop habitats, other arable crops (winter cereals), and 446 

landscape measured by the Shannon index only play minor roles in determining the 447 

abundance of predators in alfalfa. 448 



- The abundance of alfalfa insects is mainly influenced by the amount of potential prey 449 

or potential predators on the crop and by alfalfa growth stage. 450 

This study provides evidence for the negative effects on alfalfa predators caused by the 451 

increase in intensively managed orchards within areas previously dominated by arable 452 

crops in the northeastern Iberian Peninsula. It also points out the importance of the 453 

temporality of local and landscape effects on the abundance of insects in different crops. 454 

In addition, the responses to local and landscape structure are highly species-specific. 455 

For these reasons, management strategies to maximise natural biocontrol should be 456 

designed at multiple spatial scales, including both local and landscape scales, also 457 

considering temporality, all of which are factors that may contribute to maintaining and 458 

increasing communities of natural enemies that can regulate crop pests in the study area. 459 
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 773 

 774 
Fig. 1. a. Location of alfalfa fields sampled in 1st. 2nd and 3rd years (2015, 2016 and 2017) in the Ebro Basin in the north-eastern Iberian 775 
Peninsula and b. Example of buffer description. Different shades indicate different crops in the landscape. The central point in the buffer 776 
indicates the middle sticky trap in the alfalfa field. 777 

 

 



 

 778 

Fig. 2. Abundance of predators (mean number of insects/trap ± SE) in alfalfa collected with yellow sticky traps in all samplings in spring and 779 
summer. 780 
 

 



  781 
Fig. 3. Abundance of herbivores (mean number insects/trap ± SE) in alfalfa collected with yellow sticky traps in all samplings in spring and 782 
summer. 783 
 



  784 
Fig. 4. Effects of the proportion of orchards (spring and summer) in the landscape on the abundances of predators and herbivores. 785 
 

 



  786 
Fig. 5. Effects of the proportion of forest (spring and summer) in the landscape on the abundances of predators and herbivores. 787 
 

 

 

 

 



  788 
Fig. 6. Effects of the proportion of alfalfa (spring and summer) in the landscape on the abundances of predators and herbivores. 789 
 

 



  790 
Fig. 7. Effects of the proportion of margins (spring and summer) in the landscape on the abundances of predators and herbivores. 791 
 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 8. Effects of the proportion of maize (spring and summer) in the landscape on the abundances of predators and herbivores. 792 
 



  793 
Fig. 9. Effects of the abundance of prey on the alfalfa field (spring and summer) on the abundance of predators. 794 
 

 



  795 
Fig. 10. Effects of the abundance of predators on the alfalfa field (spring and summer) on the abundance of herbivores. 796 
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 798 
Fig. 11. Effects of the alfalfa growth stage (spring and summer) on the abundances of predators and herbivores. 799 
 

 

 

 

 

 

 

 

 

 



 

 

Table 1. Landscape structure and local variables around sampled alfalfa fields within 0.5-km radii in the north-eastern Iberian Peninsula used in 800 
this study. 801 

Categories  Variables  Description               

Landscape structure 

Alfalfa Proportion of alfalfa             

Winter Cereals  Proportion of winter cereals (mainly wheat and barley)    

Maize Proportion of maize       

Orchards Proportion of fruit orchards (mainly peach)     

Forest Proportion of forest repopulated by Pinus halepensis    

Noncrop Proportion of unproductive areas, older fallows, natural habitats and wetlands 

Margins Proportion of margin strips (Marshall and Moonen, 2002)   

Shannon index Shannon diversity index calculated as landscape diversity in the buffers   

Local environment 

Perimeter/Area  Perimeter to area ratio of the sampled alfalfa field (m-1)     

Alfalfa growth Stage of alfalfa development (cm)      

Alfalfa age Number of years of alfalfa in the field     

Prey/Predator  Abundance of main prey and predators by each insect group     

 

 

 

 

 

 

 

 

 

 



Table 2. Significant variables (p values ≤ 0.05) in the best models (ΔAIC<2) relating predator abundance with landscape and field variables. 802 
Variables were standardised (mean-centred and scaled). Relative importance is the sum of Akaike’s weight associated with the variables in the 803 
best models. Marginal R² values indicate the amount of variation explained by fixed factors only, while Conditional R² values represent the 804 
variance explained by both fixed and random factors in the model. 805 

  Spring   Summer 

 Variables 

best Model 
Estimate Std. Error 

Adjusted 

SE 
z value Pr(>|z|) 

Relative 

importance 

R²  Variables best 

Model 
Estimate Std. Error 

Adjusted 

SE 
z value Pr(>|z|) 

Relative 

importance 

R² 

Species/Group Marg. Cond.  Marg. Cond. 

C. septempunctata 
(Intercept) -0.27 0.25 0.25 1.06 0.29090  0.24 0.37  (Intercept) 0.05 0.10 0.10 0.46 0.64600  0.23 0.37 

Prey 0.33 0.07 0.07 4.93 0.00000 1       Perimeter/Area -0.05 0.03 0.03 1.99 0.04620 0.79     

H. variegata n.a. 

         (Intercept) 0.75 0.23 0.23 3.19 0.00143  0.09 0.26 

         Alfalfa growth 0.13 0.07 0.07 1.96 0.04990 1   

                  Perimeter/Area -0.14 0.07 0.07 2.08 0.03746 1     

P. quatuordecimpunctata n.a. 

                  (Intercept) 1.16 0.12 0.12 9.63 < 2e-16   0.07 0.38 

         Alfalfa age -0.17 0.07 0.07 2.36 0.01829 1   

         Forest -0.17 0.07 0.07 2.32 0.02029 1   

                  Maize 0.27 0.08 0.08 3.44 0.00058 1     

Chrysopidae 

(Intercept) 1.03 0.56 0.57 1.81 0.07010  0.09 0.57  (Intercept) -1.33 0.46 0.47 2.84 0.00450  0.07 0.54 

Alfalfa 0.21 0.09 0.09 2.35 0.01900 0.64    Alfalfa growth 0.25 0.06 0.06 4.33 0.00002 1   

Orchards -0.21 0.09 0.09 2.30 0.02130 0.39       Prey 0.30 0.06 0.06 4.82 0.00000 1     

Syrphidae 

(Intercept) 0.24 0.32 0.32 0.73 0.46510   0.15 0.46   (Intercept) 0.58 0.12 0.12 4.84 0.00000   0.12 0.12 

Noncrops -0.12 0.05 0.05 2.39 0.01700 1    Alfalfa 0.11 0.04 0.04 2.73 0.00637 1   

Orchards -0.12 0.05 0.05 2.32 0.02060 0.96       Prey -0.07 0.04 0.04 2.09 0.03703 1     

Aeolothrips spp.  

(Intercept) -2.08 0.97 0.98 2.12 0.03367   0.22 0.69   (Intercept) -1.31 0.75 0.76 1.72 0.08525   0.30 0.54 

Alfalfa growth -0.20 0.10 0.10 1.99 0.04711 0.87    Alfalfa age 0.21 0.09 0.09 2.19 0.02874 1   

Forest -0.29 0.10 0.10 2.95 0.00317 1    Alfalfa growth -0.17 0.09 0.09 1.94 0.05297 0.89   

Prey 0.68 0.10 0.10 6.77 < 2e-16 1    Prey 0.59 0.09 0.09 6.74 < 2e-16 1   

          Maize 0.28 0.10 0.10 2.67 0.00766 1   

                    Margins -0.21 0.10 0.10 2.15 0.03136 0.89     

Orius spp. 

(Intercept) -2.04 0.64 0.65 3.15 0.00163   0.35 0.36   (Intercept) -3.61 0.77 0.78 4.63 0.00000   0.36 0.65 

Alfalfa growth 0.21 0.09 0.09 2.38 0.01732 1    Alfalfa growth 0.21 0.08 0.08 2.68 0.00738 1   

Prey 0.43 0.09 0.09 4.76 0.00000 1    Prey 0.70 0.09 0.09 8.08 < 2e-16 1   

Noncrops 0.25 0.09 0.09 2.69 0.00714 1    Margins -0.25 0.08 0.08 3.07 0.00212 1   

Orchards -0.25 0.10 0.10 2.41 0.01594 0.94       Noncrops 0.22 0.08 0.08 2.71 0.00673 1     

Staphylinidae (Intercept) 0.58 0.52 0.53 1.10 0.27238  0.19 0.43  (Intercept) -0.28 0.67 0.67 0.41 0.68262  0.28 0.28 

 Forest -0.21 0.06 0.06 3.34 0.00085 1    Alfalfa growth -0.34 0.08 0.08 4.19 0.00003 1   

 Prey 0.16 0.07 0.07 2.30 0.02143 1    Prey 0.24 0.09 0.09 2.66 0.00778 1   

 Orchards -0.15 0.07 0.07 1.97 0.04840 0.8    Alfalfa 0.18 0.09 0.09 1.93 0.05308 0.39   

  Winter Cereal -0.16 0.07 0.07 2.09 0.03647 0.9                         

Nabidae n.a. 
   (Intercept) 0.07 0.07 0.07 1.08 0.28220  0.07 0.25 

      Alfalfa growth -0.04 0.02 0.02 2.08 0.03710 1     

Miridae 

(Intercept) -2.59 0.72 0.73 3.55 0.00039  0.21 0.70  
n.a. 

        

Prey 0.49 0.07 0.07 6.71 < 2e-16 1            

Shannon 0.20 0.08 0.08 2.58 0.00983 1                         

Cantharidae 

(Intercept) -0.58 0.48 0.49 1.19 0.23396  0.28 0.37  (Intercept) -0.48 0.20 0.20 2.33 0.01990  0.12 0.12 

Forest -0.18 0.06 0.06 2.87 0.00416 1    Prey 0.08 0.03 0.03 2.74 0.00620 1   

Prey 0.16 0.07 0.07 2.42 0.01533 1             

Maize -0.25 0.08 0.08 3.15 0.00161 1             

Orchards -0.18 0.07 0.08 2.45 0.01440 1                         

Stethorus spp. n.a. 

                  (Intercept) 1.06 0.33 0.33 3.21 0.00135   0.13 0.34 

         Alfalfa growth 0.25 0.09 0.09 2.77 0.00569 1   

                  Margins -0.21 0.09 0.10 2.22 0.02643 0.95     



Table 3. Significant variables (p values ≤ 0.05) in the best models (ΔAIC<2) relating herbivore abundance with landscape and field variables. 806 
Variables were standardised (mean-centred and scaled). Relative importance is the sum of Akaike’s weight associated with the variables in the 807 
best models. Marginal R² values indicate the amount of variation explained by fixed factors only, while Conditional R² values represent the 808 
variance explained by both fixed and random factors in the model. 809 

  Spring   Summer 

 Variables best 

Model 
Estimate Std. Error 

Adjusted 

SE 
z value Pr(>|z|) 

Relative 

importance 

R²  Variables best 

Model 
Estimate Std. Error 

Adjusted 

SE 
z value Pr(>|z|) 

Relative 

importance 

R² 

Species/Group Marg. Cond.  Marg. Cond. 

F. occidentalis  

(Intercept) 3.57 1.05 1.06 3.35 0.000798  0.24 0.73  (Intercept) 4.99 0.55 0.55 9.07 < 2e-16  0.28 0.59 

Forest 0.43 0.14 0.15 2.96 0.003112 1    Alfalfa age -0.25 0.08 0.08 2.92 0.003510 1   

Predators 0.98 0.13 0.14 7.20 < 2e-16 1    Predators 0.62 0.09 0.09 7.06 < 2e-16 0.55   

Orchards 0.35 0.16 0.17 2.12 0.034354 0.89             
Shannon -0.40 0.17 0.17 2.29 0.022037 0.77                         

other Thripidae 

(Intercept) 4.57 0.50 0.51 8.99 <2e-16  0.13 0.55  (Intercept) 2.20 0.28 0.28 7.87 < 2e-16  0.33 0.33 

Forest -0.21 0.10 0.11 1.97 0.049200 0.84    Alfalfa growth -0.29 0.07 0.07 4.17 0.000031 1   

Orchards -0.37 0.13 0.13 2.72 0.006600 0.61    Predators 0.42 0.07 0.07 6.09 < 2e-16 1   
Alfalfa 0.33 0.13 0.13 2.53 0.011600 0.43       Margins 0.15 0.07 0.07 2.07 0.038100 1     

E. vitis 

(Intercept) 1.79 0.30 0.30 5.93 <2e-16   0.43 0.43   (Intercept) 4.08 0.32 0.33 12.52 < 2e-16   0.23 0.23 

Alfalfa growth 0.24 0.10 0.10 2.48 0.013300 1    Predators 0.19 0.09 0.09 1.98 0.047700 0.9   

Predators 0.65 0.12 0.12 5.42 0.000000 1    Orchards 0.41 0.09 0.10 4.30 0.000017 1   

Maize -0.31 0.12 0.12 2.48 0.013300 0.59    Perimeter/Area -0.18 0.09 0.09 2.10 0.036000 1   

Orchards 0.29 0.14 0.14 2.02 0.043600 0.57             
Winter Cereal 0.28 0.12 0.12 2.38 0.017100 0.46                         

L. striatellus  

(Intercept) -0.01 0.29 0.29 0.05 0.958990   0.1408 0.2338   (Intercept) 1.75 0.21 0.21 8.24 <2e-16   0.15 0.15 

Predators 0.30 0.11 0.11 2.81 0.005030 1    Predators -0.24 0.07 0.07 3.24 0.001200 1   

          Orchards 0.17 0.07 0.07 2.27 0.023300 0.83   
                    Shannon -0.16 0.08 0.08 2.04 0.041600 0.83     

Aphididae 

(Intercept) 2.14 0.36 0.37 5.79 0.000000   0.25 0.46   (Intercept) 3.10 0.39 0.40 7.82 < 2e-16   0.13 0.47 

Alfalfa growth -0.17 0.07 0.07 2.28 0.022348 1    Alfalfa 0.42 0.12 0.12 3.58 0.000341 1   

Predators 0.38 0.10 0.10 3.71 0.000205 1    Maize 0.29 0.10 0.10 2.81 0.005003 1   

Margins 0.17 0.08 0.08 2.12 0.033691 0.93    Orchards 0.42 0.10 0.11 3.96 0.000076 1   
Orchards 0.26 0.10 0.10 2.59 0.009708 1                         

other Planthoppers  

(Intercept) 0.59 0.40 0.41 1.46 0.145300   0.12 0.42   (Intercept) 1.15 0.22 0.22 5.27 0.000000   0.09 0.23 

Alfalfa growth 0.17 0.09 0.09 2.01 0.044200 0.9    Alfalfa growth -0.16 0.07 0.07 2.23 0.025900 1   
Predators 0.21 0.10 0.10 1.98 0.047900 0.88       Shannon 0.16 0.08 0.08 2.08 0.037800 0.89     

Z. scutellaris 

(Intercept) 0.60 0.34 0.34 1.74 0.081100   0.16 0.16   (Intercept) 1.82 0.38 0.38 4.75 0.000002   0.11 0.11 

Predators 0.35 0.14 0.14 2.56 0.010500 1    Predators 0.42 0.12 0.12 3.45 0.000567 1   
Orchards 0.27 0.14 0.14 2.00 0.045200 0.84                         

 




