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Abstract

Pork quality classification is supported by different reference standards that are widely
reported in the literature. However, selecting the most suitable standard for each type of
meat samples remains a challenge, due to their intrinsic variation according to the quality
parameters’ interval. The usage of meta-learning was proposed to automatically recommend
the most adequate standard for a determined sample collection, leading to a more accurate
classification. The meta-learning procedure has emerged from the machine learning research
field to solve the algorithm selection dilemma, outlining a new method for pork quality
classification. The applicability and advantages of using a suitable classification standard
for pork quality were addressed using the J48 Decision Tree (DT) algorithm, which serves as
the meta-recommender. Experiments conducted with six pork standards revealed promising
results based on a few meta-attributes (L∗, water hold capacity, and dataset entropy) as the
approach successfully recommended all scenarios.
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DT Decision Tree.

FPW Filter-paper Wetness methodology.

H(a*) a∗ conversion from HunterLab to CIELab*.

H(b*) b∗ conversion from HunterLab to CIELab*.

H(L*) L∗ conversion from HunterLab to CIELab*.

ML Machine Learning.

PFN Pale, Firm and Non-Exudative.

pH potential of Hydrogen.

pHu ultimate potential of Hydrogen.

PM Pressing Method.

PSE Pale, Soft and Exudative.

RFN Reddish Pink, Firm and Non-Exudative.

RSE Reddish Pink, Soft and Exudative.

WHC Water Holding Capacity.

1. Introduction

Meat quality is a term used to describe several meat properties that result from the
interaction between ante and post-mortem muscle metabolism (Maltin, Balcerzak, Tilley &
Delday, 2003; Durkin et al., 2009; Sima, Heres, Klont & Mireşan, 2015). Evaluating meat
quality is an essential task for the industry, which aims to match the consumer demands of
meat and meat products from different market niches, according to their quality (Sosnicki,
Pommier, Klont, Newman & Plastow, 2003; Elmasry, Barbin, Sun & Allen, 2012; Teixeira
& Rodrigues, 2019; Gonzalez et al., 2020; Piórkowska et al., 2020).

From a technological perspective, pork quality could be defined by some few measur-
able parameters, including the pH, drip loss and colour, which are interrelated and define
the quality perceived by the consumer (Lee et al., 2000). In the literature, different pork
quality standards have been derived from the combination of these parameters based on
their different thresholds. However, a consensus for the best combination have not been
reached (Cazedey, Torres Filho, Fontes, Ramos & Ramos, 2016). In fact, pork samples are
sometimes classified into three or more categories based on a given standard.
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Kušec et al. (2007) proposed a plurality of criteria to classify pork quality, such as the
standards from Kauffman et al. (1993); Santos et al. (1994); Van Laack, Solomon, Warner &
Kauffman (1996); Warner, Kauffman & Greaser (1997); Flores, Armero, Aristoy & Toldra
(1999); Van Laack & Kauffman (1999); Channon, Payne & Warner (2000); Joo et al. (2000);
Du & Sun (2006); Maganhini et al. (2007); Faucitano et al. (2010); Barbin, Elmasry, Sun &
Allen (2012); Bauer, Petzet, Schwagele, Scheier & Schmidt (2013); Tomovic et al. (2014).

This multiplicity of pork quality standards reflects the lack of standardisation, in which
a given sample could be classified into different classes depending on the standard selected
(Cazedey, Torres Filho, Fontes, Ramos & Ramos, 2016). Determining pork quality is funda-
mental for the modern food industry (Du & Sun, 2006), aiming to standardise their products
according to specific niche markets, which demands specifications according to measurable
parameters. However, the factors affecting these meat quality parameters, such as genet-
ics, the ante-mortem stress, or the post-mortem carcass chilling, among others, leads to a
wide variation in the measurements. Thus, to better match the demands of different market
niches, considering the intrinsic variation in meat quality parameters, an automated system
based on machine learning (ML) could be the solution for a smart decision making. The
ML procedures could contribute to better revenues of meat companies, able to sell pork
cuts and carcasses matching the market specifications and improving product homogeneity.
Furthermore, ML would solve the question to whether which pork standard would be the
most appropriate to classify a given pork sample, improving the accuracy in the decision
making.

ML solutions have been widely applied in the area of food research for several food
products, such as seeds, fruits, and meat (Barbon et al., 2016a,b; Caballero et al., 2016;
Kamruzzaman et al., 2016; Mohareb, Papadopoulou, Panagou, Nychas & Bessant, 2016;
Sanz et al., 2016; Peres et al., 2018; Pereira, Barbon, Valous & Barbin, 2018; Castro et al.,
2019).

ML algorithms can build a classification model based on the knowledge extracted from a
given data set. Recommending an adequate pork quality standard for classification requires
in-depth knowledge about the collected samples, called the dataset, along with the available
ones from the literature. Meta-learning has thus emerged from the ML research field to
solve the selection problem by assessing data and recommending the most effective solution
(Campos, Barbon & Mantovani, 2016; Aguiar et al., 2019). Following the principles of Meta-
learning, we propose the use of meta-recommendation of the most appropriate pork quality
standard through the decision tree (DT) algorithm.

DT has been widely chosen for classification in the literature. This is because this al-
gorithm is considered as one of the most powerful ML algorithms due to its advantages,
such as low computational cost, ability to handle missing values, as well as irrelevant re-
sources (Harrington, 2012). Accordingly, this algorithm can be easily implemented in an
industrial environment and interpreted in contrast to many “black box” solutions, such as
ANN (Barbon et al., 2016b).

In this work, we propose a method based on meta-learning that can be used to rec-
ommend the most appropriate classification standard to determine pork qualification based
on the sample characteristics analysed. Accordingly, the number of classified samples was
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maximised, the demand of parameters to perform a test was verified, and confidence was
obtained in the results of the classification.

2. Materials and Methods

In the first step, our meta-model, which involved grouping several different datasets to
describe the vast variability of sample types according to the literature’s selected standards,
was established. This step is described in depth in Section 2.1. In the second step, meta-
features were extracted from the original datasets, which were composed of the traditional
quality parameters. The meta-features are features based on Information Theory and Statis-
tics described in Section 2.3. The meta-dataset was obtained from meta-features and was
applied to create a meta-model by using the ML algorithm; the J48 DT was employed. This
induction procedure is described in Section 2.4. After this step, the meta-model could be
applied to a new dataset to recommend the most suitable classification standard, to ulti-
mately automatically reduci the number of unclassifiable samples (Peres et al., 2018) and
perform further classification.

2.1. Pork Quality Standards
Pork samples were obtained from ten different slaughterhouses, the total number of

longissimus lumborum muscles collected was 1,301. The meat quality parameters were de-
termined at 24 hours post-mortem in the collected loin samples, and included the ultimate
pH (pHu), the water holding capacity (WHC ) and lightness (L∗) of instrumental colour
measurement.

The pHu was measured 24 hours post-mortem using a Testo 205 pH-meter. The WHC
was obtained by the Pressing Method (PM ) proposed by Hamm (1960) and adapted by
Wilhelm, Maganhini, Hernández-Blazquez, Ida & Shimokomaki (2010) and the L∗ value
(CIELab, 1976) was determined with a portable Minolta R colourimeter (model CR-10,
illuminant D65, 8o angle of inclination - Tokyo, JP) after blooming for 30 min.

We used different methodologies to measure the WHC and L∗ values and compare them
with those obtained by Kauffman et al. (1993) and Faucitano et al. (2010). The measure-
ments were fist standardised by means of mathematical transformations proposed by Peres
et al. (2018) (equations 1,2) and traditional ones (3,3,4,5) enabling a comparison among the
pork quality standards. DL and FPW represent drip loss and filter-paper wetness method-
ologies, respectively.

DL = 0.100707 · PM (1)

DL = −0.36 + 0.064 · FPW (2)

H(L*) = 10
√
Y (3)

H(a*) = 17.5 · (1.02 ·X)− Y√
Y

(4)
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H(b*) = 7 · Y − (0.847 · Z)√
Y

(5)

In equations 3,4, and 5, X, Y, and Z are the coordinates from the CIE XYZ primary
colour system used to obtain the CIELab space colour.

2.2. Datasets
To match the requirements of all classes described in the pork quality standards, we

used real and synthetic datasets. The real-life dataset was composed of 1,301 samples that
could not represent samples for each class proposed in the literature, further demonstrating
a significant difference in their number, which caused an imbalanced learning problem. The
imbalanced learning problem is compromised of the performance of most learning algorithms
because most assume or expect a distribution of balanced classes in the training set. Thus,
these algorithms fail to correctly represent the distributional characteristics of the data and
hence, provide unfavourable class accuracy (He & Garcia, 2009).

A possible solution to this type of problem is to collect more data; however, this would
not guarantee a balance of samples of all classes. To overcome this drawback, an additional
synthetic dataset, supported by the literature, was created to explore a vast variety of sample
setups balancing the number of samples from each class. The synthetic dataset was created
by running 130 random generations, where each was composed of 1000 samples grounded
at intervals of six different patterns (Kauffman et al., 1993; Van Laack, Solomon, Warner
& Kauffman, 1996; Warner, Kauffman & Greaser, 1997; Van Laack & Kauffman, 1999;
Faucitano et al., 2010; Barbin, Elmasry, Sun & Allen, 2012) (Table 1). The real-life and
synthetic data set are available online1.

2.3. Meta-dataset and Meta-features
The meta-dataset is the repository used to support the induction of a meta-model (or

predictor). This repository is composed of meta-features and a target related to their best
match. Thus, each dataset (real-life or synthetic) had its meta-features extracted and as-
sessed with the best pork quality standard among the six possibilities (exposed in Table 1).
The adequate standard was identified by observing the most significant number of classified
samples with minimal bias when compared to all standards over a given dataset.

For instance, a dataset N with 1,000 samples, classified according to Kauffman et al.
(1993) had 376 hits, Van Laack, Solomon, Warner & Kauffman (1996) - 378 hits, Warner,
Kauffman & Greaser (1997) - 385 hits, Van Laack & Kauffman (1999) - 339 hits, Faucitano
et al. (2010) - 341 hits; and Barbin, Elmasry, Sun & Allen (2012) - 400 hits. Therefore, the
dataset was labeled as Barbin, Elmasry, Sun & Allen (2012), indicating Barbin, Elmasry,
Sun & Allen (2012) is the most suitable standard to classify the dataset observed. This
process was thus used to label all datasets.

The extracted meta-features were decomposed into statistical moments (mean, standard
deviation, skewness, and kurtosis), information theory (entropy), and a simple descriptive

1http://www.uel.br/grupo-pesquisa/remid
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Table 1: Standards and parameters for the classification of pork quality

Standard Class pHu

WHC L∗

FPW DL CieLab HunterLab

Kauffman et al. (1993)

PSE - - > 5.0 - > 58

RSE - - > 5.0 - 52− 58

PFN - - < 5.0 - > 58

RFN - - < 5.0 - 52− 58

DFD - - < 5.0 - < 52

Van Laack, Solomon, Warner & Kauffman (1996)

PSE < 5.5 - > 5.0 > 50 -
RSE < 5.9 - > 5.0 43− 49 -
RFN 5.4− 6.0 - < 5.0 43− 49 -
DFD > 6.0 - < 2.0 < 43 -

Warner, Kauffman & Greaser (1997)

PSE < 6.0 - > 5.0 > 50 -
RSE < 6.0 - > 5.0 42− 50 -
RFN < 6.0 - < 5.0 42− 50 -
DFD ≥ 6.0 - < 5.0 < 42 -

Van Laack & Kauffman (1999); Kauffman et al. (1993)
PSE - - > 6.0 > 50 -
RSE - - > 6.0 < 50 -
RFN - - < 6.0 < 50 -

Faucitano et al. (2010)

PSE < 6.0 ≥ 80 ≥ 4.76 > 50 -
PFN < 6.0 < 80 < 4.76 > 50 -
RSE < 6.0 ≥ 80 ≥ 4.76 43− 48 -
RFN < 6.0 < 80 < 4.76 43− 48 -
DFD ≥ 6.0 < 40 < 2.2 < 42 -

Barbin, Elmasry, Sun & Allen (2012)
PSE 5.45 ± 0.08 - 7.0 ± 1.5 53.1 ± 1.7 -
RFN 5.59 ± 0.15 - 3.8 ± 0.6 47.2 ± 2.8 -
DFD 6.11 ± 0.19 - 0.6 ± 0.2 39.2 ± 1.9 -

DL (drip loss); FPW (filter paper wetness); DFD (dark, firm, dry); PFN (pale, firm,
non-exudative); PSE (pale, soft, exudative); RFN (red, firm, non-exudative); and RSE (red, soft,
exudative)

information (maximum and minimum values) of the original parameters (pH, WHC, L∗) as
suggested in the literature (Mantovani et al., 2015; Campos, Barbon & Mantovani, 2016).

The meta-dataset was composed of 140 instances (one from each dataset), 21 meta-
features, and a suitable dataset according to the identification process. In the next step, the
meta-model was induced to perform the prediction of a classification standard from a new
dataset.

2.4. Meta-model
The J48 DT (Quinlan, 1993) was selected to build the meta-model and generate a user-

friendly model supporting ease comprehension (Barbon et al., 2016a). A DT model is
characterised by branches related to a given feature and a threshold that begins from a root
node; each leaf node represents a class label (e.g., pork quality standard). The first division
of the DT occurs from the root node and the choice of the meta-feature that represents this
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is the meta-feature with the highest gain of information; this occurs because the higher the
gain of information, the more efficient the division (Quinlan, 2014). The path from the root
node to leaf represents the classification rules. A significant advantage of J48 is related to
the hierarchical relationship of the meta-features, automatically selecting the ones that best
explain the problem.

The environment used to create the meta-model was WEKA 3.8 (Witten & Frank, 2000).
We used the standard hyperparameters in the algorithm by considering the full training set
as the classifier model.

3. Results and Discussion

The meta-model derived to meta-recommend the adequate pork quality standard dis-
played a high-performance level for carrying out its task. An accuracy of 100% is related
to the recommending of suitable standards for real and synthetic datasets in all cases. The
coefficient of agreement (Kappa) presented the maximum value, demonstrating the trustwor-
thiness of the model performance and validating that the result interpretation is legitimate
and not by chance (Cohen, 1960). The 140 instances were correctly classified and the ro-
bustness and precision of the meta-recommendation model generated were confirmed. The
meta-features selected could distinguish each standard in the literature to perform the rec-
ommendation.

Another important achievement was a concise DT as shown in Figure 1. The obtained
DT was not complex; as it is based on only 4 meta-features, it is possible to recommend a
pork quality standard.

L*
Kurtosis

WHC
Skewness

L*
Maximum

Van Laack &
Kauffman (1999) 

WHC
Skewness

WHC
Skewness

WHC
Skewness

WHC
Skewness

EntropyKauffman et al.
(1993)

WHC
Skewness

WHC
SkewnessEntropy

Barbin, Elmasry,
Sun & Allen (2012)

Faucitano et al.
(2010)

Van Laack,
Solomon, Warner &

Kauffman (1996)

Warner, Kauffman &
Greaser (1997)

≤ -1.11 > -1.11

≤ -0.16 > -0.16 ≤ -1.73 > -1.73

≤ -1.86 > -1.86> -1.86≤ -54.79 > -54.79

Figure 1: Decision Tree (J48) to recommend the most suitable pork quality standard

The root node was composed by the meta-feature L∗ Kurtosis; this was followed by the
intermediary nodes (WHC Skewness, Entropy and L∗ Maximum). Each leaf presented the
most standard to classify the pork quality for the dataset in this study.
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A possible explanation for the selection of L∗ as the most important meta-feature of DT
is its contemplation in all classification standards (Table 1). In addition, L∗ is the result of
the behavior of pH and WHC (Pearce, Rosenvold, Andersen & Hopkins, 2011).

The idea of cause and consequence between parameters and their effects on pork quality
is evident, as a high correlation exists between pH and L∗ (Boler et al., 2010; Wyrwisz,
Półtorak, Zalewska, Zaremba & Wierzbicka, 2012; Kim et al., 2016).

Considering a hypothetical situation in which the pH decreases during postmortem
metabolism, the WHC will be smaller. This can be explained because the pH condition
of the pork, when approaching the isoelectric point of the myofibrillar proteins, causes the
neutralisation of the positive and negative charges. This reduces the intracellular space,
resulting in a greater amount of exudates on the surface of the meat (Lawrie, 2006; Bowker
& Zhuang, 2015). This alteration of the myofibrillar structure affects the light scattering
properties. Further, the pork becomes lighter (Hughes, Oiseth, Purslow & Warner, 2014).
Moreover, the opposite is also true.

Some insights into the pork standard behaviour were obtained by observing the DT
structure. The most recent standards (Barbin, Elmasry, Sun & Allen (2012) and Faucitano
et al. (2010)) present a different split of L∗ maximum from the others, based on the L∗

defined threshold alone. However, the former standards (Kauffman et al., 1993; Van Laack,
Solomon, Warner & Kauffman, 1996;Warner, Kauffman & Greaser, 1997) can be identified
by observing the entropy meta-feature of a given dataset alone.

The proposed classification system is the first approach with a potential implementation
scope at the industry level. According to the new definition of meat quality categories, this
model should evolve according to the new definitions, adding other parameters that could
improve the success in sorting carcasses and cuts according to meat quality. This could
allow the meat and meat product industry to apply different models according to differences
in intrinsic sources of pork variation, such as genetics, production system, or ante-mortem
treatment, and match the demands from meat processors and consumers. It would also
enable a better understanding of the possible causes leading to a higher incidence in low
meat quality categories, enabling decisions to be made with a standardised and objective
method.

Applying the meta-recommendation procedure enables a multivariate approach to quality
classification in the meat industry. By integrating meat quality data with inputs related to
pig genetics, the type of production system or ante-mortem treatment, among others, leads
to a better match between the market and consumer demands, which affect, to an ultimate
extent, the economic sustainability of the meat industry. The benefits delivered by using a
suitable quality classification go beyond the optimisation of carcass classification by reducing
the number of unfeasible carcasses. The suggested standard can reveal possible marketplaces
and customers as each proposed standard has been established by observing the thresholds
of normality grounded on a particular breed and pork marketing strategy.

Using the DT provided by the recommendation system, the industry can follow the path
employed to derive the recommendation for obtaining insights about the attribute interval
used to identify the suggested pattern. In other words, it is possible to comprehend the
attributes that interfere with the final recommendation for managing procedures that can
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settle this parameter, such as pre-slaughter stress and animal welfare strategies to handle
WHC and L∗ values.

4. Conclusion

Meat quality evaluation is essential in the food industry. However, the following question
arises: “What is the adequate technological quality standard to classify a given pork sam-
ple?”. Herein, we exploited meta-learning to answer this question and provided insights into
pork quality standards. Using meta-features extracted from a dataset of pork quality pa-
rameters, we could build a DT meta-model that could recommend, in all experimental cases
(140 datasets), the right standard among the six possibilities. Furthermore, some peculiar-
ities and assumptions of the current literature models could be made. Hence, our proposal
contributes to the selection of the most suitable standard for presenting more reliable re-
sults regarding sample classification. Thus, after this first successful approach of applying
a meta-grading system for meat quality classification, further research should consider the
link with sensory attributes, allowing the industry to better match consumer demands with
a broader scope of meat quality perception.
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