This is the peer reviewed version of the following article: Maes D, Sibila M, Kuhnert P, Segales J, Haesebrouck F, Pieters M. Update on Mycoplasma hyopneumoniae infections in pigs: Knowledge gaps for improved disease control. Transbound Emerg Dis. 2018;65(Suppl.1):110–124. doi.org/10.1111/tbed.12677, which has been published in final form at https://doi.org/10.1111/tbed.12677. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
Update on *Mycoplasma hyopneumoniae* infections in pigs: knowledge gaps for improved disease control

D. Maes {sup1}, M. Sibila {sup2}, P. Kuhnert {sup3}, J. Segalés {sup4,5}, F. Haesebrouck {sup1}, M. Pieters {sup6}

{sup1} Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
{sup2} IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
{sup3} Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland
{sup4} Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
{sup5} UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
{sup6} Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States

Authors M. Sibila and P. Kuhnert contributed equally to the paper.

Correspondence: Dominiek.Maes@UGent.be
Summary

*Mycoplasma hyopneumoniae* (*M. hyopneumoniae*) is the primary pathogen of enzootic pneumonia, a chronic respiratory disease in pigs. Infections occur worldwide and cause major economic losses to the pig industry. The present paper reviews the current knowledge on *M. hyopneumoniae* infections, with emphasis on identification and analysis of knowledge gaps for optimizing control of the disease. Close contact between infected and susceptible pigs is the main route of *M. hyopneumoniae* transmission. Management and housing conditions predisposing for infection or disease are known, but further research is needed to better understand *M. hyopneumoniae* transmission patterns in modern pig production systems, and to assess the importance of the breeding population for downstream disease control. The organism is primarily found on the mucosal surface of the trachea, bronchi, and bronchioles. Different adhesins and lipoproteins are involved in the adherence process. However, a clear picture of the virulence and pathogenicity of *M. hyopneumoniae* is still missing. The role of glycerol metabolism, myo-inositol metabolism and the *Mycoplasma* Ig binding protein (MIB) - *Mycoplasma* Ig protease (MIP) system should be further investigated for their contribution to virulence. The destruction of the mucociliary apparatus, together with modulating the immune response, enhances the susceptibility of infected pigs to secondary pathogens. Clinical signs and severity of lesions depend on different factors, such as management, environmental conditions and likely also *M. hyopneumoniae* strain. The potential impact of strain variability on disease severity is not well defined. Diagnostics could be improved by developing tests that may detect virulent strains, by improving sampling in live animals and by designing ELISA assays allowing discrimination between infected and vaccinated pigs. The currently available vaccines are often cost-efficient, but the ongoing research on developing new vaccines that confer protective immunity and reduce transmission should be continued, as well as optimization of protocols to eliminate *M. hyopneumoniae* from pig herds.
Keywords: pig – Mycoplasma hyopneumoniae - review

Introduction

*Mycoplasma hyopneumoniae* (*M. hyopneumoniae*) is the primary pathogen of enzootic pneumonia (EP), a chronic respiratory disease in pigs, and one of the primary agents involved in the porcine respiratory disease complex (PRDC; Thacker and Minion, 2012). Infections with *M. hyopneumoniae* are highly prevalent worldwide, and cause tremendous financial losses to the pig industry. Losses are mainly due to costs for treatment and vaccination, decreased performance and increased mortality derived from secondary infections (Holst et al., 2015).

Similar to other Mycoplasmas, *M. hyopneumoniae* has a small genome, lacks a cell wall and is pleomorphic. *M. hyopneumoniae* is very difficult to isolate because of its slow growth and potential overgrowth with other swine mycoplasmas. Bacterial culture is usually attempted when an isolate is deemed, but not for routine diagnostics. The organism is primarily identified on the mucosal surface of the trachea, bronchi, and bronchioles (Blanchard et al., 1992). It affects the mucosal clearance system by disrupting the cilia on the epithelial surface and, additionally, the organism modulates the immune system of the respiratory tract (Thacker and Minion, 2012). Therefore, *M. hyopneumoniae* predisposes animals to concurrent infections with other respiratory pathogens including bacteria, parasites and viruses. Infections also lead to increased use of antimicrobials. While *M. hyopneumoniae* can be virtually recovered from pigs of all sites in segregated production systems, the clinical presentation of EP is mainly observed in growing and finishing pigs. Vaccination against *M. hyopneumoniae* is widely practiced and is often cost-efficient in affected herds. Additional control measures include optimizing management and biosecurity, reducing other risk factors and disease elimination.

The present paper reviews the current knowledge on *M. hyopneumoniae* infections, with emphasis on identification and analysis of knowledge gaps for optimizing control measures.
Epidemiology

To date, domestic pigs and wild boar are the only hosts known to become infected with *M. hyopneumoniae*. In pigs, there is no clear indication of susceptibility based on age, although clinical presentation of the disease is usually evident in grow-finishing stages. Close contact between infected and susceptible pigs is the main route of *M. hyopneumoniae* transmission.

Piglets are considered free from *M. hyopneumoniae* at birth, as *in utero* transmission has not been documented, and first exposure events occur during the lactation period, when piglets are in contact with dams shedding the microorganism (Calsamiglia and Pijoan, 2000; Nathues et al., 2013). In fact, the length of the lactation period has been suggested as one risk factor for piglet colonization with *M. hyopneumoniae* prior to weaning (Pieters et al., 2014).

Piglet colonization with *M. hyopneumoniae* at weaning age is of special importance in segregated production systems, where pigs are transferred to clean facilities for the growing and finishing phases. It has been proposed that the initial group colonization with *M. hyopneumoniae* determines downstream clinical presentation and disease severity (Fano et al., 2007; Sibila et al., 2007), although the effect of other factors needs to be considered for disease presentation as well. The influence of the lactation period duration in piglet colonization is evidenced by the successful application of segregated early weaning (SEW) to obtain *M. hyopneumoniae*-free pigs born to positive dams (Alexander et al., 1980). Research data has shown that transmission of *M. hyopneumoniae* among pen-mates is slow (Meyns et al., 2004; Villarreal et al., 2011b; Roos et al., 2016), fitting the picture that disease presentation can be the result of early group colonization and subsequent transmission events. However, a clear understanding of *M. hyopneumoniae* transmission in the field is still needed in order to improve infection models used in experimental research.

Dams and piglets in the breeding herds are considered the reservoir of *M. hyopneumoniae* infections for the entire production system. Circulation of *M. hyopneumoniae* is thought to
occur among existing sows and be transmitted to incoming gilts, which are capable of maintaining the pathogen within the farm and are responsible for the majority of bacterial shedding to newborn pigs (Calsamiglia and Pijoan, 2000; Fano et al., 2005). In this manner, the constant addition of gilts and birth of piglets provide critical susceptible populations needed to maintain pathogen transmission. On the other hand, infection with *M. hyopneumoniae* has a long duration, reaching up to 240 days (Pieters et al., 2009), complicating the already slow disease transmission scenario observed in sow herds. A critical aspect of the epidemiology of *M. hyopneumoniae* is based on the long pathogen persistence, which determining factors are poorly understood. Nevertheless, management practices at the sow farm such as minimizing cross-fostering and limiting the length of the lactation period may help mitigating the effect of *M. hyopneumoniae* transmission by decreasing risk factors for piglet colonization (Nathues et al., 2013a; Nathues et al., 2013b; Pieters et al., 2014; Vangroenweghe et al., 2015). Therefore, identification of risk factors for disease transmission at the sow farm is key for downstream disease control. In continuous flow production systems, *M. hyopneumoniae* colonization in piglets at weaning may not be as influential as in segregated systems. In continuous flow systems, there is a fairly constant contact between animals of different ages, facilitating transmission of *M. hyopneumoniae*. In this respect, the colonization of piglets at weaning is not the only determining factor for downstream infection.

An additional source of variability regarding epidemiology of *M. hyopneumoniae* lies on the demonstration of distinct strains circulating in the field. Partial sequencing of the P146 gene (Mayor et al., 2007), and Multiple-Locus Variable number tandem repeat Analysis (MLVA; Vranckx et al., 2011; Dos Santos et al., 2015) are commonly used to discriminate *M. hyopneumoniae*. The use of *M. hyopneumoniae* molecular characterization has aided outbreak and area spread investigations, by tracking specific strains. In addition, it has enabled research directed at understanding pathogen variability and its relationship with disease presentation.
(Michiels et al., 2017). However, current tools for *M. hyopneumoniae* characterization are based on the sole evaluation of similarities in specific loci, and do not indicate strain virulence and/or antigenicity. Development of molecular characterization methods allowing strain virulence evaluation would be beneficial in order to tailor control strategies at the farm level, and could shed light on understanding potential cross-protection among strains.

Vectors do not seem to play an important role in the transmission of *M. hyopneumoniae* in pigs, however, little research has been performed on this topic. Data from Nathues et al. (2012) showed that personnel working with pigs for several hours could harbor the bacterium in their upper respiratory tract, as detected via PCR in nasal swabs; however, the potential for pathogen transmission was not evaluated. Airborne transmission of *M. hyopneumoniae* has been suspected for decades (Goodwin, 1985). Cardona et al. (2005) demonstrated that the microorganism could travel for at least 300 m, and Otake at al. (2010) showed that air samples recovered *M. hyopneumoniae* DNA from as far as 9.2 km from an infected farm. In the latter case, the air sample was shown to be infectious when inoculated to animals using a swine bioassay.

The geographical distribution of *M. hyopneumoniae* infections is assumed to be worldwide. The prevalence is low in some Scandinavian countries, and Switzerland is free after the application of a national eradication program (Stark et al., 2007). Specific data on *M. hyopneumoniae* prevalence by country is not available in the literature, as the disease is not considered of obligatory report and does not limit commercial trade.

Wild-boar has been shown to harbor *M. hyopneumoniae* and may carry identical genotypes found in EP outbreaks (Sibila et al., 2010; Kuhnert et al 2014). However, this might be rather the result of spillover from domestic pig outbreaks than representing wild boars as a reservoir.
**Incubation period and kinetic pattern**

Under experimental conditions, where usually seronegative animals are challenged with a high infectious dose of *M. hyopneumoniae*, lung lesions and onset of coughing can appear as early as 7-14 days post-infection (dpi; Blanchard et al., 1992; Lorenzo et al, 2006), with maximum severity and extension of lung lesions occurring around 28 dpi (Villarreal et al., 2011a). The minimal infectious dose to induce lung lesions was established at $10^5$ color-changing units per ml (CCU/ml) per pig (corresponding to $10^8$ mycoplasmas; Marois et al., 2010). Since differences in virulence among strains do exist, this minimal infectious dose is probably strain dependent.

Under natural conditions, the incubation period is difficult to predict as it depends on production system, presence of secondary infections, immune status of animals, virulence of the *M. hyopneumoniae* strain and infectious pressure (Sibila et al., 2009). Indeed, it was postulated that a critical mass of pigs should be infected to elicit the appearance of clinical signs (Calsamiglia et al., 1999). Nevertheless, in clinically affected farms, seroconversion as well as coughing would appear after, approximately, 1 to 6 weeks post infection (Leon et al., 2001).

*M. hyopneumoniae* is excreted from the respiratory tract of infected individuals through exhalation of microscopic droplets during coughing episodes and/or by nose-to-nose direct contact (Hermann et al., 2008). *M. hyopneumoniae* DNA has also been detected in different samples from the oral cavity such as oro-parhyngeal swabs (Hermann et al., 2008; Fablet et al., 2010), oral fluids (Roos et al., 2016) and tonsilar samples (Sibila et al., 2007, Fablet et al., 2010).

It is known that sows of different parity number may shed the organism, the younger ones being the main shedders (Sibila et al., 2007; Boonsoongnern et al., 2012). Practices directed at segregation of parity, giving special care to parity-one dams and piglets and separating them from the rest of the herd, have been reported to provide significant control of *M. hyopneumoniae*
infections in young parity dams (Moore, 2003). Nonetheless, it remains unclear whether this excretion is uniform and continuous or, on the contrary, is of variable intensity and intermittent. An experimental longitudinal study showed the onset of excretion at 7-14 dpi, followed by an irregular and inconsistent shedding (detection of *M. hyopneumoniae* DNA at nasal cavities) up to 91 dpi (Fano et al., 2005). Indeed, longer excretion was indirectly demonstrated by the transmissibility of *M. hyopneumoniae* to naïve contact pigs at 214 dpi (Pieters et al., 2009). Under natural conditions, shedding duration and kinetics are more difficult to be ascertained, since a low bacterial load is usually present at upper respiratory tract sites (Hermann et al., 2008; Sibila et al., 2009). In a study where *M. hyopneumoniae* detection was assessed in nasal swabs at 9 sampling points through the productive life of pigs, two out of 33 (6%) non-vaccinated animals were continuously nested PCR positive in the last five sampling points (from 12 to 25 weeks of age; Sibila et al., 2007). On the contrary, in a longitudinal study in sows, only 2.4% of them had at least one of the three assessed respiratory sites (nasal, tonsillar and oro-pharyngeal swabs) positive by PCR. For all these positive sows, *M. hyopneumoniae* was detected at one out of eight sampling occasions (Fablet et al., 2011). Takeuti et al. (2017) followed 44 gilts longitudinally from their weaning until after the weaning of their first offspring, collecting laryngeal swabs every 30 days in an endemically infected farm, and identified approximately 20% of gilts negative throughout the study, while other gilts were positive for *M. hyopneumoniae* by real-time mostly once, with a proportion of gilts being positive at multiple samplings. Therefore, considering that the sow population is the origin of *M. hyopneumoniae* circulation, shedding pattern in such population deserves further investigations.
Pathogenicity

Adhesins and lipoproteins

Adhesion along the entire length of cilia of ciliated epithelium of the respiratory tract (trachea, bronchi and bronchioles) of pigs is the first step of infection with *M. hyopneumoniae* followed by induction of ciliostasis and loss of cilia (Debey and Ross, 1994). The primary adhesin of *M. hyopneumoniae* is the P97 and its paralogues (Hsu et al. 1997; Hsu et al. 1998). The other family of adhesins, related with P97, is formed by P102 and its paralogues (Adams et al., 2005). Finally, P159 is an adhesin unrelated to the other two (Burnett et al., 2006). Adhesin receptors on the eukaryotic cell are mainly glycosaminoglycans and fibronectin. Most of the proteins from the P97/P102 paralog families and P159 are post-translationally processed and cleaved, a system observed with many other surface-associated proteins (Seymour et al., 2010). Like that, Tacchi et al. (2016) identified 35 proteins that are endoproteolytically cleaved in *M. hyopneumoniae*. These include not only adhesins but also lipoproteins and even multifunctional cytosolic proteins “moonlighting” at the cell surface. This massive processing and cleavage leads to a very dynamic surface topography of *M. hyopneumoniae* that could well be involved in host evasion and modulation of the immune response. The cleaved fragments of the P97/P102 paralog families and P159 remain on the cell surface and function as receptors of heparin, plasminogen and fibronectin, thereby influencing interaction of *M. hyopneumoniae* with its host (Bogema et al., 2012, Simionatto et al., 2013).

P146 (LppS) is an adhesion lipoprotein containing a serine rich region, the genetic basis of it is also used for genotyping (Mayor et al., 2007). The homolog in *Mycoplasma conjunctivae* was hypothesized to be involved in pathogenesis and in *M. hyopneumoniae* it is also proteolytically processed (Belloy et al., 2003, Bogema et al., 2012). This together with the fact that *M. hyopneumoniae* can alter the number of consecutive serine repeats in P146 (so far observed
from 9 up to 48) could indicate that it is also involved in antigen variation and immune evasion (Dos Santos et al. 2015).

Cell-surface lipoproteins, alternatively called lipid associated membrane proteins (LAMP), have also been found to be implicated in apoptosis. Whole membrane lipoprotein fractions were shown to induce apoptosis via caspases 3 and 8 activation in vitro in various cell types, including porcine peripheral blood mononuclear cells (PBMC; Bai et al., 2015; Ni et al., 2015).

Furthermore, LAMPs activate production of nitric oxide (NO) and reactive oxygen species (ROS) in the host cell.

**H$_2$O$_2$ production**

Mycoplasmas in general lack classical virulence factors like toxins. It has remained obscure for a long time how these smallest self-replicating organisms could elicit toxic effects. Recently the production of toxic metabolites like H$_2$O$_2$ was found as a virulence mechanism of certain mycoplasma species. The bovine pathogen Mycoplasma mycoides subsp. mycoides SC is able to take up glycerol efficiently, which is then metabolized by glycerolphosphate-oxidase (GlpO) leading to the production of hydrogen peroxide. Similar metabolic pathways account for virulence in the human pathogen Mycoplasma pneumoniae (Hames et al., 2009). For M. hyopneumoniae, Ferrarini et al. (2016) reconstructed a metabolic model based on its genome. They postulated an ability of M. hyopneumoniae to use glycerol as a carbon source, thereby enabling the production of hydrogen peroxide. In fact, the homologous gene glpD is present in M. hyopneumoniae. However, functional assays for testing production of hydrogen peroxide were so far all negative for various strains of M. hyopneumoniae (Kuhnert, personal communication). Thus, whether production of toxic metabolic compounds from glycerol is a possible virulence mechanism in M. hyopneumoniae remains to be investigated.
Comparative studies with other Mycoplasmas

Differences in strain virulence have been observed for *M. hyopneumoniae* (Vicca et al., 2003; Villarreal et al., 2009; Woolley et al., 2012). Moreover, the most closely related *Mycoplasma flocculare* is a commensal of the pig not causing any disease (Siqueira et al., 2013). This allows for large scale comparisons on the genome, transcriptome, proteome, metabolome and secretome level in order to find differences related to virulence and pathogenesis (Pinto et al., 2009; Liu et al., 2013; Siqueira et al., 2013; Siqueira et al., 2014; Ferrarini et al., 2016; Paes et al., 2017). In a study comparing the pathogenic strain 168 with its attenuated derivative, Liu et al. (2013) found that besides the known virulence associated proteins (mainly adhesins), also mutations in genes involved in metabolism and growth contribute to virulence. In a genome-reduced organism like *M. hyopneumoniae* that lost most of its biosynthetic capacity, it is not surprising that further loss of gene functions has a dramatic influence on survival and growth of the microorganism. This also holds true for *e.g.* lipoproteins involved in nutrient acquisition (Browning et al., 2011). Nevertheless, such attenuated strains could be a basis for live vaccines.

A genome comparison of *M. hyopneumoniae* and *M. flocculare* revealed differences in genome structure and organization (Siqueira et al., 2013). Some genes of the P97 adhesin family were absent in *M. flocculare*, showed sequence differences or were missing domains involved in adhesion to host cells. However, there were no specific factors identified that could explain the pathogenic nature of *M. hyopneumoniae* compared to the commensal *M. flocculare*.

An integrative conjugal element (ICE) has been identified in the genomes of pathogenic strains 7448 and 232, while it is absent in the non-pathogenic strain J (Pinto et al., 2007). The ICE from *M. hyopneumoniae*, called ICEH, was also found in the pathogenic strain 168 but likewise in its attenuated variant (Liu et al., 2013). While ICE, acting as self-replicating mobile genetic elements, are generally recognized to be involved in virulence, their role in the pathogenicity of *M. hyopneumoniae* remains unclear. The fact that there are notable differences of ICEH
between the strains indicate that they are at least involved in horizontal gene transfer, thereby maintaining genome plasticity and variability of *M. hyopneumoniae*.

Ferrarini et al. (2016) used a genome-scale metabolic modeling approach to get insight into the virulence of *M. hyopneumoniae*. Besides a glycerol conversion pathway potentially leading to peroxide production in *M. hyopneumoniae*, another significant metabolic pathway was identified to be absent in *M. flocculare* which is the myo-inositol uptake and catabolism. Functional and *in vivo* assays have to be conducted to proof whether these *in silico* findings play a role in virulence and pathogenicity.

Differences in virulence could also be due to variation in expression levels of virulence associated genes like adhesins. This was observed in a proteome analysis of *in vitro* cultures comparing the non-pathogenic strain J to virulent strains 7448 and 7422 (Pinto et al., 2009). They identified 64 proteins being overexpressed in the pathogenic strains compared to the non-pathogenic strain, the most prominent being P97.

Finally, the secretomes of *M. hyopneumoniae* and *M. flocculare* grown in a serum reduced medium were compared recently, looking more precisely at factors directly involved in mycoplasma-host interaction (Paes et al., 2017). A higher number of secreted proteins was found with *M. hyopneumoniae* compared to *M. flocculare* (62 vs 26). While *M. hyopneumoniae* secreted adhesins, methylases, nucleases and lipoproteins, *M. flocculare* secreted only two adhesins that were also found in the *M. hyopneumoniae* secretome. There was a difference between the transcriptome and the secretome using the same Mycoplasma strains (Siqueira et al., 2014).

These comparative “omics” studies confirmed that adhesins play a major role in virulence and pathogenesis. However, there are no clear-cut factors that differ between pathogenic and non-pathogenic strains or differ between the pathogen *M. hyopneumoniae* and the commensal *M. flocculare*. 
Mycoplasma-host interaction and immune modulation

Infection with *M. hyopneumoniae* is often chronic what indicates a certain degree of immune evasion of the microbe. In a study looking at introgression of domestic swine genes into the wild boar population, an increased *M. hyopneumoniae* disease susceptibility in hybrid animals was observed (Goedbloed et al., 2015). The authors hypothesized that the large-scale use of antibiotics in the swine breeding sector may have led to selecting deleterious properties of domestic swine immune genes. These in turn lead to the increased disease susceptibility if introgression to the wild boar occurs. These observations confirm a certain host-predisposition for *M. hyopneumoniae* which in the opposite direction can also be achieved by selecting for more resistant breeds (Borjigin et al., 2016). Furthermore, it indicates certain “immune degeneration” of domestic pigs, allowing *M. hyopneumoniae* to cause disease in a well-protected animal. The destruction of the mucociliary apparatus together with down-modulating the immune response at later stages enhances the susceptibility of *M. hyopneumoniae* infected pigs to secondary pathogens (Shen et al., 2017).

The host immune response is considered to be the main driver of pulmonary lesions. At the same time, *M. hyopneumoniae* modulates the immune response in order to persist in the host. Pro-inflammatory cytokines like IL-1, TNF-α and IL-6 are induced during infection and plasmin is recognized as central to the regulation of inflammatory responses (Woolley et al., 2013). A number of the P97/P102 adhesin family members interact with plasminogen of the porcine host and enhance its activation to plasmin, a serine protease which in turn stimulates macrophage signaling resulting in production of ROS and cytokine release, thereby contributing to inflammation (Syrovets et al., 2012). A leucine aminopeptidase has recently been shown to “moonlight” as a multifunctional adhesin, including binding and cleaving of plasminogen, on the *M. hyopneumoniae* cell surface (Jarocki et al., 2015). Plasminogen is readily available in the ciliated airways affected by *M. hyopneumoniae* (Seymour et al., 2012).
Interaction with surface accessible actin on the epithelial cells and causing cytoskeletal rearrangements allows the organism being phagocytosed. It is hypothesized that *M. hyopneumoniae* can survive within the phagolysosome, escape it and reside within the cytoplasm (Tacchi et al. 2016). Thereby it can not only evade the immune system but could disseminate to internal organs and persist within its host without causing disease. Isolation of *M. hyopneumoniae* from other tissue than lung has in fact been reported (Le Carrou et al., 2006; Marois et al., 2007; Marchioro et al., 2013).

Immune evasion by specifically cleaving immunoglobulins has been described for *M. mycoides* subsp. *capri* (Arfi et al., 2016). This two-protein system consists of a *Mycoplasma* Ig binding protein (MIB) and a *Mycoplasma* Ig protease (MIP), where the MIB is necessary for the proteolytic activity of MIP. The two proteins are encoded by two genes organized in tandem and often found in multiple copies in various mycoplasmas including *M. hyopneumoniae* (Arfi et al., 2016). How far this MIB-MIP system plays a role in virulence and immune evasion of *M. hyopneumoniae*, deserves further studies.

A clear picture of virulence and pathogenicity of *M. hyopneumoniae* is still not available. The role of glycerol metabolism, myo-inositol metabolism and the MIB-MIP system should be further investigated for their contribution to virulence.

**Interaction of *M. hyopneumoniae* with other pathogens**

Different interactions have been described between *M. hyopneumoniae* and other pathogens. *M. hyopneumoniae* predisposes pigs to infections with secondary bacteria. Combined experimental infections with *M. hyopneumoniae* and either *Pasteurella multocida* (*P. multocida*) (Amass et al., 1994) or *Actinobacillus pleuropneumoniae* (*A. pleuropneumoniae*) (Marois et al., 2009) result in more severe lesions compared to the single infections. Co- or subsequent infections with *P. multocida* and *A. pleuropneumoniae*, and with other bacteria such
as Bordetella bronchiseptica, Haemophilus parasuis, Trueperella pyogenes, streptococci or staphylococci are commonly found in field outbreaks of EP.

Initial studies focussing on the interaction between M. hyopneumoniae and porcine reproductive and respiratory syndrome virus (PRRSV) could not demonstrate a potentiating effect of both pathogens (Van Alstine et al., 1996). Subsequently, it was shown that M. hyopneumoniae significantly prolonged and increased the severity of PRRSV-induced pneumonia under experimental conditions (Thacker et al., 1999). Dual infection studies with M. hyopneumoniae and swine influenza virus (SIV) could not show the potentiating effects of both pathogens as observed with PRRSV. The effect was less pronounced and only transitory (Thacker et al. 2001; Yazawa et al. 2004). Deblanc et al. (2012) showed that M. hyopneumoniae infection increased the severity of H1N1 SIV but not that of H1N2 SIV. Opriessnig et al. (2004) indicated using an experimental study that M. hyopneumoniae infection potentiates the severity of porcine circovirus type 2 (PCV2)-associated lung and lymphoid lesions, increases the amount of PCV2-antigen and prolongs its presence, and increases the incidence of post-weaning multisystemic wasting syndrome in pigs. Sibila et al. (2012) however, could not demonstrate an interaction between M. hyopneumoniae and PCV2 infection.

Flesja and Ulvesaeter (1980) reported that the extent of pneumonia was associated with the presence of liver lesions due to migrating Ascaris suum larvae.

Finally, Pósa et al. (2013) showed that pigs receiving feed contaminated with Fumonisin B elicited more severe lung lesions upon M. hyopneumoniae challenge infection compared to pigs fed with non-contaminated feed. Pigs that received feed contaminated with the mycotoxin deoxynivalenol (DON) did not develop more severe disease and lesions upon experimental M. hyopneumoniae infection than pigs fed with non-contaminated feed (Michiels et al., 2016). A full review of all interactions between different respiratory pathogens has been published by Opriessnig et al. (2011).
Clinical signs and lesions

Infections with *M. hyopneumoniae* are clinically characterized by an intermittent, variable in intensity, dry non-productive cough (Sibila et al., 2009), which may last from weeks to months. When this type of coughing affects simultaneously many animals of different ages, also other pathogens such as SIV or PRRSV may be involved in the problem (Nathues et al., 2012). Under an endemic scenario, disease course implies high morbidity but low mortality. When *M. hyopneumoniae* enters into a naïve population, the disease may be more severe, affecting animals of all ages and increasing the morbidity up to 100% (Thacker and Minion, 2012). If other bacterial and/or viral agents are involved, or in case of poor air quality due to particulate matter and ammonia (Michiels et al., 2015), clinical signs may be aggravated including labored breathing, pyrexia, anorexia, lethargy and even death (Maes et al., 1996). In uncomplicated cases, a variable proportion of animals might remain subclinically infected for several weeks (Fano et al., 2005), with no evidence of coughing or pulmonary lesions at slaughter.

Coughing is the direct consequence of the lung lesions observed in affected animals, which consist of purple to gray consolidated areas affecting the apical and middle lobes and, eventually, cranial part of diaphragmatic lobes (García-Morante et al., 2016). In case of secondary bacterial infections, pigs show heavier and firmer lungs with higher proportion of tissue affected, and gray-to-white mucopurulent exudate in the airways. In recovered lesions, whitish firm and thickened interlobular connective tissue formation (scars) can be observed (Thacker and Minion, 2012).

Both clinical signs and macroscopic lesions are suggestive, but not exclusive, of *M. hyopneumoniae* infection. Other pathogens such as SIV or *P. multocida* should be considered within the most probably differential diagnoses (Sibila et al., 2009). *Pasteurella multocida* is considered a secondary pathogen, following infection with *M. hyopneumoniae* or another pathogen. Infections with *P. multocida* may cause catarrhal-purulent pneumonia, which is
grossly seen as cranioventral pulmonary consolidation (Register et al., 2012). At microscopic level, *M. hyopneumoniae* produces a well differentiated broncho-interstitial pneumonia. At early stages of infection, perivascular and peribronchiolar lymphoplasmacytic hyperplasia, pneumocyte type II hyperplasia and edema fluid in the alveolar spaces with presence of neutrophils, macrophages and plasma cells is observed (Blanchard et al., 1992). As disease progresses, these lesions are aggravated with an evident peribronchial and perivascular lymphoid follicles (Sibila et al., 2007), with and increased number of goblet cells and hyperplasia of submucosal glands (Thacker and Minion, 2012).

Intensity of clinical signs and severity of lesions may depend on different factors, such as management, environmental conditions and *M. hyopneumoniae* strain. Information on the impact of strain variability may exert on lung lesions severity and clinical signs onset and duration is still not well defined. Whereas it has been reported that co-infection with more than one strain resulted in more severe lesions (Villarreal et al., 2009; Michiels et al., 2017), such potentiation was not observed in others (Charlebois et al., 2014). To date, the lack of a known virulence marker together with the coexistence of different strains at individual and farm levels (Nathues et al., 2011; Vranckx et al., 2011, 2012a; Pantoja et al., 2016), prevent knowing the impact of a particular strain on the severity of clinical signs and lung lesions.

**Socio-economic impact**

*M. hyopneumoniae* is a species-specific pathogen of suids. Therefore, it is not of zoonotic concern and no impact on public health is considered. However, infections with *M. hyopneumoniae* cause major economic losses to the pig industry, mainly because of reduced performance, uneven growth, increased number of days to reach slaughter weight, treatment and control costs, and increased mortality in case of complicated infections (Holst et al., 2015). Unfortunately, few updated information on the economic impact of EP is available, and existing
Data have been mostly generated by assessing the relationship between evaluation of lung lesions at slaughterhouse with average daily weight gain (ADWG). Whereas a reduction of 6-16% in the growth rate in finishing pigs was reported by some authors (Pointon et al., 1985, Rautiainen et al., 2000), no impact of lung lesions on ADWG at experimental (Escobar et al., 2002; García-Morante et al., 2016) or natural (Scheidt et al., 1990; Straw et al., 1990) conditions was detected by other authors. The economic impact of \textit{M. hyopneumoniae} subclinical infection has been inferred only once from the difference in ADWG (38 g/d) between seropositive and seronegative pigs from 18 different cohorts (Regula et al., 2000). The importance of subclinical infections should be further studied, especially in eradication programs.

**Diagnostics**

Clinical signs and lungs lesions can lead to a tentative diagnosis, but laboratory testing is necessary for a conclusive diagnosis. The use of remote systems for cough recording at the barn level and analysis appears to be a potential tool for early EP detection, although such systems have not been validated for \textit{M. hyopneumoniae} infections in the field. Bacterial isolation remains a confirmatory method for pathogen detection; however the requirement to use specialized media, the high cost associated with the technique, the common overgrowth of other bacteria in the sample, and the low sensitivity of the method make significant detractors for this approach. Nevertheless, recent work from Cook et al. (2016) promises to aid controlling bacterial overgrowth with \textit{M. hyorhinis}, and data from Ferrarini et al. (2016) may help with development of the highly needed media specifically suited for \textit{M. hyopneumoniae} growth. Improving \textit{M. hyopneumoniae} culture and isolation methods will help increasing strain collections, which can be used for research, diagnostics and vaccine development, and evaluation of antimicrobial sensitivity testing.
Tissue detection of *M. hyopneumoniae* can be accomplished with several techniques, including immunohistochemistry (IHC; Oppriesnig et al., 2004), *in situ* hybridization (ISH; Boye et al., 2001) and PCR (Dubosson et al., 2005; Strait et al, 2008). *In situ* hybridization and ISH allow for detection of *M. hyopneumoniae* in the target tissue, however; this feature can be considered a limiting factor, as only small tissue sections can be evaluated. The application of PCR has allowed for a significant increase in detection of *M. hyopneumoniae* in multiple sample types and, nowadays, real-time PCR constitutes one of the most common methods for *M. hyopneumoniae* detection (Dubosson et al., 2005; Strait et al., 2008). Real-time PCR is characterized for its high specificity and sensitivity. Samples collected from the *M. hyopneumoniae* target tissue, such as bronchi and bronchioles in the lower respiratory tract, exhibit a higher sensitivity compared to samples obtained from the upper respiratory tract. *In vivo* sampling by means of tracheo-bronchial (Fablet et al., 2010) or laryngeal (Pieters et al., 2017) swabs tested by real-time PCR appears to offer a high sensitivity, at least during the early stages of EP. Oral fluid samples tested by PCR have shown low sensitivity when compared to other sample types (Pieters et al., 2017), especially before clinical signs are evident. Further, Hernandez-Garcia et al. (2017) showed the lack of consistency of *M. hyopneumoniae* detection with the use of oral fluids, even after long periods of time post-infection. Ideally, an *in vivo* sample obtained from the bronchioles, and of easy collection, is envisioned by swine practitioners.

Circulating antibodies (IgG) can be detected in pigs exposed to *M. hyopneumoniae*. Antibodies are developed several weeks after initial infection (Thacker and Minion, 2012), can be the result of maternal antibody absorption in piglets (Bandrick et al., 2008), or can be generated after vaccination (Maes et al., 2008). Antibodies against *M. hyopneumoniae* can be detected with ELISA tests regardless of origin, which complicates interpretation. Also, in the chronic phase of infection, antibodies against *M. hyopneumoniae* wane and are no longer detected.
Commercial ELISA kits are available for *M. hyopneumoniae* antibody detection, and although based on different antigens and ELISA platforms, they exhibit similar accuracy (Erlandson et al., 2005; Pieters et al., 2017) and are equally unable to differentiate pigs that have been vaccinated from those that have suffered from the disease. The use of several serological parameters to forecast lifetime pneumonia was assessed under natural and experimental conditions. The IgG2 OD-values at systemic levels showed the best correlation with *M. hyopneumoniae* associated lung lesions severity (García-Morante et al. 2017). Further research is warranted to improve ELISA assays, including discrimination between infected and vaccinated pigs, and providing higher specificity.

**Prevention and Control**

**Management and biosecurity**

Avoiding the introduction of *M. hyopneumoniae* into negative farms is crucial in order to remain free from the infection. While *M. hyopneumoniae*-specific biosecurity measures have not been developed, the use of general strategies is recommended to maintain a *M. hyopneumoniae*-free status or to elude the introduction of new bacterial strains into herds. For example, the use of farm air filtration systems, usually in place to avoid infections with PRRSV, is becoming popular in sow farms in North America. However, the specific effect of air filtration systems on reduction of *M. hyopneumoniae* infections or the value in area control programs has not been evaluated.

Introduction of *M. hyopneumoniae* via fomites does not appear to be a high risk for farms, and regular disinfection and decontamination systems are thought to be effective against this bacterium. Of special importance is the fact that *M. hyopneumoniae* survival outside of the host is limited, based on the pathogen dependence on the host environment. Nevertheless, data from Browne et al. (2017) suggests that *M. hyopneumoniae* can survive outside of host on certain
plastic surfaces and in dust for up to 8 days when temperatures are low (4°C). This information highlights the need to keep decontamination systems in place in order to avoid pathogen introduction.

The highest risk for pathogen introduction to swine farms resides in incoming pigs and this is especially important for *M. hyopneumoniae* infections. The epidemiological features of this bacterium make it difficult for early detection and clinical presentation, although testing protocols, generally based on serological testing, are in place and are widely used to screen unvaccinated incoming pigs for *M. hyopneumoniae* infections. However, clinical outbreaks have been reported months after the suspected pathogen introduction, when control is far from being effective. Therefore, the development of diagnostic protocols aimed at early detection and surveillance, are of paramount importance.

**Therapeutics**

Antimicrobials active against *M. hyopneumoniae* include tetracyclines, 15- and 16-membered ring macrolides, lincosamides, pleuromutilins, fluoroquinolones, florfenicol, aminoglycosides and aminocyclitols (Hannan et al., 1997). *M. hyopneumoniae* is intrinsically resistant to antibiotics which interfere with the polymerization of cell wall precursors, such as beta-lactam antibiotics, and to polymyxins, 14-membered ring macrolides (such as oleandomycin and erythromycin), rifampin, trimethoprim and sulfonamides. Acquired resistance has been documented for tetracyclines, 16-membered ring macrolides (tylosin, tilmicosin), lincosamides (lincomycin) and fluoroquinolones (Stakenborg et al., 2005; Le Carrou et al., 2006; Vicca et al., 2007; Thongkamkoon et al., 2013; Tavío et al., 2014). The susceptibility to valnemulin and tiamulin may have decreased in the period 1997 (Hannan et al., 1997) to 2013 (Thongkamkoon et al., 2013; Tavío et al., 2014). However, taken together, acquired antimicrobial resistance does currently not seem to constitute a major problem for treatment of *M. hyopneumoniae* infections.
(Klein et al., 2017), although the situation may be different for other bacteria complicating these infections. Finally, within a farm, strains with differences in antibiotic susceptibility may co-exist (Thongkamkoon et al. 2013).

Many different studies have shown the efficacy of various antimicrobials for the treatment and control of *M. hyopneumoniae* infections (reviewed by del Pozo Sacristán, 2014). For most antimicrobials tested, performance improved, and lung lesions as well as clinical signs decreased. Results of treating field cases of EP may be disappointing because the disease signs and the shedding of micro-organisms tend to reappear after cessation of the therapy.

**Vaccines**

Vaccination is widely applied worldwide to control *M. hyopneumoniae* infections. Commercial vaccines mostly consist of inactivated, adjuvanted whole-cell preparations that are administered intramuscularly (Maes et al. 2008). Table 1 gives an overview of different commercially available *M. hyopneumoniae* bacterin vaccines. Recently, an inactivated vaccine based on soluble antigens of *M. hyopneumoniae* is also commercially available (USA: Fostera PCV MH, Zoetis; in Europe: Suvaxyn Circo + MH RTU, Zoetis). It is a one-shot vaccine combined with PCV2 that can be administered to piglets from three weeks of age onwards. In addition, attenuated vaccines against *M. hyopneumoniae* have been licensed in China (Feng et al. 2013) and Mexico. The vaccine in Mexico is a thermosensitive mutant of *M. hyopneumoniae* (VaxSafe MHYO, Avimex).

Vaccination reduces clinical signs and lung lesions and improves performance. Also, commercial vaccines reduce the number of organisms in the respiratory tract (Meyns et al., 2006; Vranckx et al., 2012b) and decrease the infection level in a herd (Sibila et al., 2007). However, studies under experimental (Meyns et al., 2006) and field conditions (Pieters et al.,
(2010; Villarreal et al. 2011b) showed that vaccination conferred only a limited reduction of the transmission ratio of *M. hyopneumoniae*.

The exact mechanisms of protection are not yet fully understood. Studies suggest that systemic cell-mediated immune responses are important for protection (Marchioro et al., 2013). Vranckx et al. (2012b) reported a lower infiltration of macrophages in the lung tissue in vaccinated animals upon infection with *M. hyopneumoniae*, indicating that vaccination modulates the immune response following infection. The importance of local mucosal antibodies remains unclear. The serum *M. hyopneumoniae* specific antibodies raised after vaccination are not suited to evaluate protective immunity (Djordjevic et al., 1997).

Different vaccination strategies have been adopted, depending on the type of herd, production system and management practices, infection pattern and preferences of the pig producer. Vaccination of piglets, applied once or twice, is most commonly used. Single vaccination at either 7 or 21 days of age was efficacious in a pig herd with clinical respiratory disease during the second half of the fattening period (Del Pozo Sacristan et al., 2014). Recent experimental (Arsenakis et al. 2016) and field studies (Arsenakis et al. 2017a) showed that vaccinating piglets three days prior to weaning conferred slightly better results than vaccination at weaning, possibly because of less interference of weaning stress.

Vaccination confers beneficial effects in most infected herds, but variable effects are obtained. This may be due to different factors such as improper vaccine storage conditions and administration, vaccination compliance, infection level, diversity of *M. hyopneumoniae* strains and co-infections. The influence of maternally derived antibodies on vaccine responses in piglets is not fully elucidated. Martelli et al. (2006) showed that passively acquired antibodies have little or no effect on either a vaccine induced priming or subsequent anamnestic response. Sibila et al. (2008) and Arsenakis et al. (2017b) showed that vaccination of sows at the end of gestation, resulted in a lower number of *M. hyopneumoniae* colonized piglets at weaning.
Breeding gilt vaccination is recommended in endemically infected herds to avoid destabilization of the breeding stock immunity (Bargen 2004).

Constant effort is being directed towards the investigation of new vaccines that may offer a better protection against *M. hyopneumoniae* infections. In one study (Villarreal et al., 2009), infection with a low virulent *M. hyopneumoniae* isolate did not protect piglets against infection with a highly virulent *M. hyopneumoniae* isolate one month apart, suggesting that low virulent strains might not be suitable as such to be used as vaccines. Further research however is needed.

Several studies have evaluated recombinant proteins of *M. hyopneumoniae* in various forms of administration and formulations. Table 2 summarizes the antigens, adjuvants, vectors and routes of immunization used in the studies on experimental *M. hyopneumoniae* vaccines. Most of the recombinant proteins were evaluated only in mice, and only a few of them were tested in challenge experiments in pigs. Some of the vaccines conferred protection, and may represent a promising tool for controlling *M. hyopneumoniae* infections in pigs. However, validation in pigs under experimental and practical circumstances is needed.

**Elimination**

Successful elimination of *M. hyopneumoniae* from swine herds has been reported over decades (reviewed by Holst et al., 2015) and several protocols have been developed. Besides depopulation and repopulation, initial efforts for disease elimination were based on the Swiss method (Zimmerman et al., 1989). This method includes partial depopulation (i.e. culling of all animals younger than 10 months of age) and whole herd medication, along with a two-week farrowing pause towards the end of the protocol. While this method has proven highly successful, its application in large herds is difficult. Thus, other protocols such as herd closure and medication, and whole herd medication, keeping young animals at the farms and piglet
production undisturbed, have been developed (Holst et al., 2015). The herd closure and
medication strategy allows for the introduction of replacement gilts at the beginning of the
process, relies on early exposure of the incoming females, and calls for no further introduction
of susceptible animals for a period of at least 240 days, or when pathogen persistence has no
longer been observed after initial infection (Pieters et al., 2009). In addition, quarterly mass
vaccination is included as part of herd closure for disease elimination. On the other hand, the
whole herd medication protocol is usually applied after clinical outbreaks of the disease, and
does not require the culling of animals or pause in farrowing. However, the reported success of
disease elimination is lower for this protocol compared to herd closure (Holst et al., 2015).
Although elimination of *M. hyopneumoniae* is becoming increasingly common in the USA,
several aspects of the protocols and the potential success could be questioned. For example,
conscerns exist on the likelihood to eliminate *M. hyopneumoniae* in high pig dense areas due to
potential lateral infection of the herd, although this does not seem to occur frequently. Scientific
information on lateral transmission of *M. hyopneumoniae* infections is largely missing, and
previous evidence of pathogen airborne transmission can make a difficult case otherwise
(Goodwin, 1985; Otake et al., 2010). Also, refinement of the elimination protocols is necessary
for practicality and application in combination with other disease elimination programs.
Nevertheless, elimination of *M. hyopneumoniae* from commercial herds, whether alone or in
combination with the elimination of other pathogens, appears to be justified from the ethical
and economical points of view (Yeske, 2016).
Conclusion

*M. hyopneumoniae* is a very important pathogen that causes major losses to the pig industry. Research has focused on the epidemiology and transmission in different production systems, partly elucidated the very complex interaction of the pathogen with the respiratory tract, and has developed and tested many commercial and experimental vaccines. However, important knowledge gaps remain and, therefore, further research is needed to achieve a better control and possible elimination of the pathogen. The focus should be on better understanding of the virulence mechanisms and the interaction of the pathogen with the host and with other pathogens, and the development of vaccines that confer better protection and can be administered easily. Finally, research on how to successfully eliminate the pathogen from pig herds should also be stimulated.
References


30


31


containing Mycoplasma hyopneumoniae antigens and LTB against experimental M. hyopneumoniae infection in pigs. Vaccine 32, 4689-4694.


33


Table 1: Most commonly used commercially available *M. hyopneumoniae* bacterin vaccines (2017) – Bacterin vaccines available in only one or a few countries are not included the table.

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Antigen / Strain</th>
<th>Adjuvant</th>
<th>Route of administration</th>
<th>Age of administration (days)</th>
<th>Boosts needed after …weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyogen (Ceva)</td>
<td>Ceva strain BA 2940-99</td>
<td>Imuvant (W/O J5 LPS)</td>
<td>IM</td>
<td>≥21</td>
<td>-</td>
</tr>
<tr>
<td>HYORESP (Merial)</td>
<td>NI a</td>
<td>Aluminium hydroxide</td>
<td>IM</td>
<td>≥5</td>
<td>3-4</td>
</tr>
<tr>
<td>INGELVAC MYCOFLEX (Boehringer Ingelheim)</td>
<td>J strain isolate B-3745</td>
<td>Impran (water-in-oil adjuvant emulsion)</td>
<td>IM</td>
<td>≥21</td>
<td>-</td>
</tr>
<tr>
<td>M+Pac (Intervet Int.) b</td>
<td>NI a</td>
<td>Mineral oil and Aluminium hydroxide</td>
<td>IM</td>
<td>≥7</td>
<td>3-4</td>
</tr>
<tr>
<td>MYPRAVAC SUIS (Hipra Lab)</td>
<td>J strain</td>
<td>Levamisole and carbomer</td>
<td>IM</td>
<td>≥7-10</td>
<td>3</td>
</tr>
<tr>
<td>PORCILIS M. HYO (Intervet)</td>
<td>Strain 11</td>
<td>dl-α-tocopherol acetate</td>
<td>IM</td>
<td>≥7</td>
<td>3</td>
</tr>
<tr>
<td>Porcilis PCV M. HYO (MSD-Intervet Int) c</td>
<td>J Strain</td>
<td>Mineral oil and Aluminium hydroxide</td>
<td>IM</td>
<td>≥21</td>
<td>-</td>
</tr>
<tr>
<td>Porcilis MHYO ID Once (MSD-Intervet Int.)</td>
<td>Strain 11</td>
<td>Paraffin oil and dl-α-tocoferylacetaat</td>
<td>ID</td>
<td>≥14</td>
<td>-</td>
</tr>
<tr>
<td>STELLAMUNE MYCOPLASMA (Eli Lilly)</td>
<td>NL 1042</td>
<td>Mineral oil and lecithin</td>
<td>IM</td>
<td>≥3</td>
<td>2-4</td>
</tr>
<tr>
<td>STELLAMUNE ONE (Eli Lilly)</td>
<td>NL 1042</td>
<td>Amphigen Base, and Drakeol 5 (mineral oil)</td>
<td>IM</td>
<td>≥3</td>
<td>-</td>
</tr>
<tr>
<td>SUVAXYN M.HYO d (Zoetis)</td>
<td>P-5722-3</td>
<td>Carbopol</td>
<td>IM</td>
<td>≥7</td>
<td>2</td>
</tr>
<tr>
<td>SUVAXYN MH-ONE e (Zoetis)</td>
<td>P-5722-3</td>
<td>Carbopol and squalane</td>
<td>IM</td>
<td>≥7</td>
<td>-</td>
</tr>
<tr>
<td>SUVAXYN M.HYO – PARASUIS f (Zoetis)</td>
<td>P-5722-3</td>
<td>Carbopol and squalane</td>
<td>IM</td>
<td>≥7</td>
<td>2</td>
</tr>
</tbody>
</table>
No information available

Vaccination scheme when one ml is used for each administration. No boost vaccination needed if a 2 ml dose is used the first time.

Combination vaccine with Porcine Circovirus type 2

Named Suvaxyn RespiFend MH in USA

Same name is used in the USA, but Amphigen is used as adjuvant in the USA, and vaccine can be administered from day one of age onwards

Combination vaccine with Haemophilus parasuis - Named Suvaxyn RespiFend MH HPS in USA
Table 2: Overview of experimental vaccines against *M. hyopneumoniae*

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Vaccine type</th>
<th>Vector/Adjuvant</th>
<th>Species</th>
<th>Route</th>
<th>Challenge infection</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>P97</td>
<td>Recombinant Subunit</td>
<td>Complete Freund’s adjuvant</td>
<td>pig</td>
<td>IM**</td>
<td>yes</td>
<td>King et al. 1997</td>
</tr>
<tr>
<td>NrdF (R2)</td>
<td>Recombinant Vector</td>
<td><em>Salmonella</em> Typhimurium aroA SL3261</td>
<td>mice</td>
<td>Oral</td>
<td>no</td>
<td>Fagan et al. 1997</td>
</tr>
<tr>
<td>P97 (R1)</td>
<td>Recombinant Vector</td>
<td>Pseudomonas aeruginosa exotoxin A</td>
<td>mice and pig</td>
<td>SC*** and IM</td>
<td>no</td>
<td>Chen et al. 2001</td>
</tr>
<tr>
<td>NrdF (R2)</td>
<td>Recombinant Vector</td>
<td><em>Salmonella</em> Typhimurium aroA SL3261</td>
<td>pig</td>
<td>Oral</td>
<td>yes</td>
<td>Fagan et al. 2001</td>
</tr>
<tr>
<td>Strain PRIT-5</td>
<td>Inactivated whole cell</td>
<td>Spray dried microspheres</td>
<td>pig</td>
<td>Oral</td>
<td>yes</td>
<td>Lin et al. 2003</td>
</tr>
<tr>
<td>P42</td>
<td>DNA</td>
<td>pcDNA3</td>
<td>mice</td>
<td>IM</td>
<td>no</td>
<td>Chen et al. 2003</td>
</tr>
<tr>
<td>P97 (R1R2)</td>
<td>Recombinant Vector</td>
<td><em>Erysipelothrix rhusiopathiae</em> YS-1</td>
<td>mice and pig</td>
<td>SC and IN****</td>
<td>no</td>
<td>Shimoji et al. 2003</td>
</tr>
<tr>
<td>P97 (R1)</td>
<td>Recombinant Vector</td>
<td><em>Salmonella</em> Typhimurium aroA CS332</td>
<td>mice</td>
<td>Oral</td>
<td>no</td>
<td>Chen et al. 2006a</td>
</tr>
<tr>
<td>NrdF (R2)</td>
<td>Recombinant Vector</td>
<td><em>Salmonella</em> Typhimurium aroA CS332</td>
<td>mice</td>
<td>Oral</td>
<td>no</td>
<td>Chen et al. 2006b</td>
</tr>
<tr>
<td>P97 (R1)</td>
<td>Recombinant Subunit</td>
<td>LTB</td>
<td>mice</td>
<td>IM and IN</td>
<td>no</td>
<td>Conceição et al. 2006</td>
</tr>
<tr>
<td>P97 (R1)</td>
<td>Recombinant Vector</td>
<td>Adenovirus</td>
<td>mice</td>
<td>IM and IN</td>
<td>no</td>
<td>Okamba et al. 2007</td>
</tr>
<tr>
<td>P97 (R1R2)</td>
<td>Recombinant Vector</td>
<td><em>Erysipelothrix rhusiopathiae</em> Koganei</td>
<td>pig</td>
<td>Oral</td>
<td>yes</td>
<td>Ogawa et al. 2009</td>
</tr>
<tr>
<td>P97 (R1)</td>
<td>Recombinant Vector</td>
<td>Adenovirus</td>
<td>pig</td>
<td>IN</td>
<td>yes</td>
<td>Okamba et al. 2010</td>
</tr>
<tr>
<td>P36</td>
<td>Recombinant Vector</td>
<td><em>Actinobacillus pleuropneumoniae</em> SLW36</td>
<td>mice</td>
<td>IM</td>
<td>no</td>
<td>Zou et al. 2011</td>
</tr>
<tr>
<td>34*</td>
<td>Recombinant Subunit</td>
<td>Aluminun</td>
<td>mice</td>
<td>IM</td>
<td>no</td>
<td>Simionatto et al. 2012</td>
</tr>
<tr>
<td>P37, P42, P46, P95, P97</td>
<td>Recombinant Subunit and DNA</td>
<td>Aluminium and pcDNA3</td>
<td>mice</td>
<td>IM</td>
<td>no</td>
<td>Galli et al. 2012</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>------------------</td>
</tr>
<tr>
<td>P97 (R1,R2)</td>
<td>Recombinant chimeric Subunit</td>
<td>Heat-labile enterotoxin E. coli (LTB) and Montanide IMS</td>
<td>mice</td>
<td>IM</td>
<td>no</td>
<td>Barate et al. 2014</td>
</tr>
<tr>
<td>P46, HSP70,MnuA</td>
<td>Recombinant Subunit and DNA</td>
<td>Complete Freund’s adjuvant</td>
<td>mice</td>
<td>Intra-peritoneal</td>
<td>no</td>
<td>Virginio et al. 2014</td>
</tr>
<tr>
<td>P97, P42, NrdF</td>
<td>Recombinant chimeric Subunit</td>
<td>Heat-labile enterotoxin E. coli (LTB)</td>
<td>pig</td>
<td>IM and IN</td>
<td>no</td>
<td>Marchioro et al. 2014</td>
</tr>
<tr>
<td>HSP70</td>
<td>Recombinant Subunit</td>
<td>Mesoporous silica nanoparticles SBa-15 and SBa-16, Aluminium</td>
<td>mice</td>
<td>Intra-peritoneal</td>
<td>no</td>
<td>Virginio et al. 2017</td>
</tr>
</tbody>
</table>