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Abstract: A pilot study for mapping the Arctic wetlands was conducted in the Yukon Flats National
Wildlife Refuge (Refuge), Alaska. It included commissioning the HySpex VNIR-1800 and the HySpex
SWIR-384 imaging spectrometers in a single-engine Found Bush Hawk aircraft, planning the flight
times, direction, and speed to minimize the strong bidirectional reflectance distribution function
(BRDF) effects present at high latitudes and establishing improved data processing workflows
for the high-latitude environments. Hyperspectral images were acquired on two clear-sky days
in early September, 2018, over three pilot study areas that together represented a wide variety
of vegetation and wetland environments. Steps to further minimize BRDF effects and achieve a
higher geometric accuracy were added to adapt and improve the Hyspex data processing workflow,
developed by the German Aerospace Center (DLR), for high-latitude environments. One-meter
spatial resolution hyperspectral images, that included a subset of only 120 selected spectral bands,
were used for wetland mapping. A six-category legend was established based on previous U.S.
Geological Survey (USGS) and U.S. Fish and Wildlife Service (USFWS) information and maps, and
three different classification methods—hybrid classification, spectral angle mapper, and maximum
likelihood—were used at two selected sites. The best classification performance occurred when using
the maximum likelihood classifier with an averaged Kappa index of 0.95; followed by the spectral
angle mapper (SAM) classifier with a Kappa index of 0.62; and, lastly, by the hybrid classifier showing
lower performance with a Kappa index of 0.51. Recommendations for improvements of future work
include the concurrent acquisition of LiDAR or RGB photo-derived digital surface models as well as
detailed spectra collection for Alaska wetland cover to improve classification efforts.

Keywords: HySpex; hyperspectral image processing; classification; wetlands mapping; Arctic

1. Introduction

In Alaska, wetlands cover twenty-two percent of the state’s area, according to the
most recent survey carried out by [1]. However, over the past 200 years Alaska has lost
less than one percent of its wetland area compared to an estimated fifty-three percent
loss in other states in the US [2]. Climate change is likely to alter the historic stability of
wetland conditions, particularly in the Arctic [1], as the hydrological inputs necessary for
wetland formation change in response. The many climate destabilizers that Interior Alaska
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is experiencing may cause wetland degradation specifically through thermal erosion, per-
mafrost thaw, changing snow cover amounts and duration, shifting precipitation patterns,
and paludification [3–6]. In addition, the degradation or loss of wetlands may result in
significant changes in weather systems and alter precipitation patterns themselves [7]. Wet-
lands in Alaska represent an important habitat that provide essential ecosystem functions
and many benefits to humans, plants, and animals from local to continental scales. These
benefits include food and habitat for vegetation, wildlife, fish and shellfish species, food
and habitat for human subsistence gathering, flood storage and stormflow modification,
ground-water recharge and discharge, and the maintenance of water quality [7,8].

Monitoring and describing changes to all physical, chemical, and biological param-
eters for the Alaska wetlands is unrealistic due to their scope and complexity. However,
using identified and interpreted proxies to assess the condition of an environment is a
proven ecological monitoring method [9]. Complex interactions between geology; topogra-
phy; climate; and physical, biological, and chemical systems result in various hydrological
regimes and wetland types, each with their own plant and animal species assemblages.
With the increase in the extremity of hydrological regime, the degree of specialization
and fidelity of plant species increases [10]. Therefore, vegetation species assemblages may
be used to infer wetland type and is the basis for the widely utilized Cowardin wetland
classification system [11,12]. This ecological classification system was developed by the U.S.
Fish and Wildlife Service to establish consistent terms and definitions used in inventory
of wetlands and to provide standard measurements for wetland mapping. It is based on
vegetation cover interpreted from aerial photos and is also widely used in Canada for wet-
land mapping [11,12]. Traditionally, vegetation mapping and wetland inventories require
labor-intensive, costly, and time-consuming field work, including taxonomical information,
collateral and ancillary data analysis, and the visual estimation of percentage cover for each
species [13]. This workload is exacerbated in Alaska from the added difficulty of accessing
wetland areas that are far from population centers, road systems, or aircraft landing strips,
and the need to traverse difficult terrain. The national wetland inventory for Alaska is
based almost entirely on 1978–1986, 1:60,000-scale, color-infrared imagery collected as
part of the Alaska High Altitude Photography Acquisition Program (AHAP), with only
42 percent of the state having been mapped as of 2019 [14]. More recent inventories and
studies of Alaskan wetlands [1,3,5,15,16] are often based on medium-resolution multi-
spectral earth observation imagery, such as Landsat. Though orbital hyperspectral sensors
such as Hyperion on board the EO-1 satellite have acquired high latitude imagery, there
are several drawbacks to their use, especially in wetland studies, including inadequate
spatial resolution for upland wetland delineation and mapping [17] and substantial periods
of cloud cover during summer in high latitudes that reduce the chance of quality data
acquisition during satellite overpass.

Prior to 2015, there was no direct access to a research-grade hyperspectral imaging
system in Alaska that could be deployed for airborne hyperspectral remote sensing [18].
It was only in 2017–2018 that National Aeronautics and Space Administration (NASA)
acquired Airborne Visible Infrared Imaging Spectrometer Next Generation (AVIRIS NG)
data over Alaska’s boreal forests [19]. The HySpex airborne data set, such as presented in
this pilot study, complements the NASA AVIRIS NG dataset and has the advantage that
it can be collected locally at targeted sites with a greater and controlled frequency, and at
lower costs than the NASA AVIRIS NG dataset [20]. The campaign also has other general
advantages and disadvantages of airborne remote sensing for wetland mapping [21].

Compared to field-based wetland mapping, remote sensing techniques offer an eco-
nomical and practical alternative to discriminate and estimate biochemical and biophysical
parameters of wetland species [13] and to assist academic researchers and government
agencies in mapping and monitoring wetlands [17,22]. In particular, hyperspectral imag-
ing, also called imaging spectroscopy, has the advantage of capturing the distinct spectral
signatures of land covers associated with wetlands within the 400 to 2500 nm spectral
region [23]. However, hyperspectral imaging in high latitudes does come with challenges
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from low sun angles that introduce pronounced anisotropic effects to images [18]. The
goal of this study was to demonstrate the capability of airborne hyperspectral imaging for
wetland mapping using the Yukon Flats as a test case by means of (a) commissioning a
hyperspectral imaging system, HySpex, in a small aircraft for airborne data acquisition in
high-latitude environments; (b) correcting for geometric and radiometric distortions that
are uniquely inherent in a high-latitude environment; (c) developing image processing pro-
tocols to generate prototypes of seamless mosaics, hypercubes, and thematically classified
image products; and (d) mapping major wetland types in selected sites in the Yukon Flats.

2. Study Area

The Yukon Flats (Figure 1 top panel) is a 25,900 km2 wetland located within the Yukon
Flats National Wildlife Refuge in eastern Interior Alaska. It is of international significance
as a breeding area for migratory birds who use all the major flyways in North America.
Three pilot study areas were selected within the Yukon Flats representing the wide variety
of available wetland habitats.

The Yukon Flats area is bisected by the Yukon River and the Arctic Circle, situated
between the Brooks Range to the north and the White and Crazy mountains to the south,
and extends 360 km east to west (65◦45′ and 67◦30′ north latitude and 142◦30′ and 150◦00′

west longitude). The area has a low relief and is situated upon a broad plain of active and
abandoned poorly drained alluvial floodplain deposits with a high water table [24]. The
Yukon Flats experience a cold continental subarctic climate, with extreme temperatures
and solar radiation between summer and winter. Although the Yukon Flats lack extensive
meteorological data records, the Fairbanks International Airport located roughly 150 km
south of the refuge provides National Climatic Data Center values from 1951 to 2009 [3]
with a mean annual temperature of−3 ◦C, mean January temperature of−23 ◦C, and mean
July temperature of 17 ◦C. The annual precipitation at Fairbanks International Airport is
26.7 cm water equivalent with snow cover from October through to April [3].

Much of the Yukon Flats is underlain by discontinuous permafrost [16], which sub-
stantially affects the surface and subsurface hydrology. Approximately 40,000 shallow
lakes cover an area of 1147 km2, and are mainly oxbow or thermokarst-type lakes [25].
Although the area receives little annual precipitation, permafrost layers inhibit water move-
ment and drainage and permafrost thaw leads to the development of shallow thermokarst
lakes [3,24–26]. In addition, the short ice-free season in the region limits water loss due
to evapotranspiration [27]. There are closed basin lakes (no outlet) and open basin lakes
(with outlets) found within the Yukon Flats, with some lakes having direct contact with
the groundwater table [24]. Due to the shallowness of the lakes and diurnal mixing there
is little stratification within the water column during summer. In the winter, many lakes
freezse to the bottom leaving these waterbodies devoid of permanent fish stock. The shal-
low lakes, developed in the complex carbonate-rich alluvial sediments of the basin, have
highly variable nutrient concentrations, but most water bodies within the Yukon Flats are
rich in nutrients and are either eutrophic or hypereutrophic. The high nutrient levels of
many lakes allow for high populations of phytoplankton and invertebrates. Moreover,
many lakes (~25%) are slightly brackish [24], with the potential of increased salinity con-
centrations and eutrophication as annual temperatures continue to rise and evaporation
and permafrost degradation increase [28].

In addition to the abundant lakes and waterways, the Yukon Flats host a variety of
habitats, with mixed boreal forest dominated by black spruce (Picea mariana) and white
spruce (Picea glauca) covering much of the area. Stands of Alaska birch (Betula neoalaskana),
and quaking aspen (Populus tremuloides) are common, along with willow (Salix ssp.) and
alder (Alnus ssp.) thickets. Graminoid and sedge (Carex spp.) grasslands occupy many
areas, while emergent plants (Equisetum spp., Typha spp., Scirpus spp.) are found within the
wetlands and peripheries of lakes. The abundance and diversity of land cover types, along
with the large amount of shallow, nutrient-rich water bodies has made the Yukon Flats
an important breeding habitat for waterfowl [28], with over 100 different species and an
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estimated 0.5 to 1.5 million ducks, geese, and swans nesting there annually, including lesser
scaup (Aythya affinis), white-winged scoters (Melanitta fusca), and horned grebes (Podiceps
auratus) [29].

Figure 1. Map of the Yukon Flats National Wildlife Refuge, Alaska, showing flight areas labeled A, B, and C. Upper panel in
geographic projection system and lower panels in UTM-6N projection system. All panels are in datum WGS84.

3. HySpex System Commissioning and Data Acquisition
3.1. HySpex Hyperspectral Imaging System

The HySpex hyperspectral imaging system, manufactured by Norsk Elektro Optikk
(NEO), is configured for airborne acquisition using two sensors connected to a data acqui-
sition unit (DAU) and an inertial measurement unit (IMU). The sensors are pushbroom
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(or along-track) scanners. Both sensors have low stray light levels, low polarization sensi-
tivity, and high signal to noise ratios that allow for imaging highly dynamic scenes. The
VNIR-1800 sensor samples spectra in the 400 to 1000 nm region, with 182 spectral channels
sampling 3.26 nm per channel and a 16-bit radiometric resolution. It has a 17◦ field of view,
with 1800 spatial pixels of 0.16 mrad across-track by 0.32 mrad along-track. The SWIR-384
sensor samples spectra in the 950 to 2500 nm region, with 288 spectral channels sampling
5.45 nm per channel, with a 16-bit radiometric resolution. It has 384 spatial pixels with a
resolution of 0.73 mrad along-track by 0.73 mrad cross-track, and a 16-degree field of view.
Both sensors were equipped with a field expander optics that doubled the pixel field of
view (FOV) for the VNIR and SWIR-sensors to 34 degrees and 32 degrees, respectively.

The DAU is a purpose-built Windows 7 machine that runs the HySpex acquisition
and control software, HySpex AIR, and provides power to the HySpex sensors. The DAU
software is monitored and controlled by the system operator in air via a retro-reflective
touch screen. The IMU is an IMAR iTrace RT-F400 IMU/Global Positioning System (GPS).
Coupled with a GPS receiver antenna, the IMU provided all kinematic measurements
during acquisition, such as the acceleration, angular rate and roll, pitch, and yaw of the
aircraft, as well as position and velocity.

3.2. Integration of HySpex into Aircraft

A Found Bush Hawk, owned and operated by the U.S. Fish and Wildlife Service,
served as the acquisition platform for the HySpex system (Figure 2a). The VNIR-1800
and SWIR-384 sensors, along with an IMAR iTrace RT-f400 IMU/GPS, were attached to
a passive vibration dampening mount (Figure 2b) and secured to the aircraft with the
across-track sensor line perpendicular to the aircraft’s flight direction (Figure 2c). A GPS
antenna connected to the IMU by coaxial cable was mounted to the roof of the aircraft and
X and Y offsets between the antenna and IMU were measured and input into the IMU for
the georectification of images during post processing. Field of view expander lenses were
attached to each sensor (Figure 2d), increasing the VNIR-1800 and SWIR-384 across track
field-of-views of 17◦ and 16◦ to 34◦ and 32◦, respectively. This allowed for maintaining a
flight altitude that would capture an approximately one-meter ground pixel resolution in
the SWIR image while reducing the number of flight lines needed to cover a selected flight
area with the required 40 to 75% side-lap for the later mosaicking of the scene. Finally, the
system was controlled in flight by the compact, high-performance DAU, connected with a
1 terabyte solid state hard drive and a compact, touch screen flat-panel monitor for in-flight
operation and system-monitoring (Figure 2e).

A QUINT-UPS 24-volt/3.4 amp-hour uninterruptible power supply provided power
to the HySpex system in flight and was fed by a 12-volt to 24-volt DC converter plugged into
the aircraft’s electrical system. The system was powered and tested prior to flight to ensure
reliable operation and an unobstructed view through the aircraft’s floor aperture. While
performing a ground test acquisition of the HySpex system, a visible and near-infrared
high contrast checkboard was placed below the aircraft aperture and moved perpendicular
to the detector lines of the HySpex sensors to simulate aircraft movement over ground.
The VNIR and SWIR images were then inspected visually to determine if the view angles
of both sensors would be unobstructed by the aircraft fuselage during flight acquisition
(Figure 2e).

During camera integration in the aircraft, the offset between the IMU and GPS an-
tenna receiver and the offset between the two HySpex cameras were measured with
sub-centimeter precision. This information was important to incorporate in the processing
stage to achieve the precise co-registration of the images acquired by both cameras.

3.3. Flight Planning and Data Acquisition

On 2 September and 3 September 2015, three areas at the Yukon Flats Refuge were
flown (see Figure 1). The targeted spatial resolution was 0.5 m for the VNIR-1800 and 1 m
for the SWIR-384 at 2451 feet above ground level at 165 km·hr−1 flight speed. These areas
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were chosen based on the water chemistry and ecological habitat. Two flight areas, A and
B (Figure 1), were identified by Refuge personnel as “high priority” targets due to their
historical knowledge of the plant and waterfowl communities. The camera time frame
period was provided by the system manufacturer NEO and the maximum frame period, to
prevent under-sampling the ground scene, was determined by flight altitude and ground
speed. A 40% side-lap between flight lines was used to adjust for aircraft banking and to
aid in the georectification process. A test acquisition flight line was flown over the target
area with increasing integration times, until at least one spectral band was saturated for
the relevant ground cover. The integration time was then reduced by roughly 10% of the
saturation value to optimize the data quality for the ground cover type, while still having a
margin for variability in reflectance levels throughout the spectral bands.
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Figure 2. Commissioning the HySpex system for airborne acquisition. (a) Refuge Found Bush Hawk;
(b) VNIR-1800, SWIR-384, and IMU/GPS units mounted to vibration dampening plate; (c) field of
view expander optic attached to VNIR-1800 and SWIR-384 sensors; (d) detail of HySpex sensors in
aircraft; (e) overhead view of the system secured and operating in aircraft; (f) testing system visibility
through floor aperture of the aircraft.

Images were acquired within two hours before and after solar noon. Study areas A
and B were flown either east to west or north to south to account for and reduce the BRDF
effects which are pronounced in areas of high latitude. A total of 7, 7, and 2 flight lines
were taken for areas A, B, and C, respectively, with a total area coverage of 14.2, 12.5, and
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3 km2, respectively. Raw image files for the VNIR and SWIR sensors and navigational data
files from the IMU/GPS were recorded and stored on the DAU for processing.

4. Hyperspectral Data Processing

The HySpex data processing chain, originally developed by the German Aerospace
Center (DLR) [30], was adapted for this study to address the challenges of hyperspectral
imaging at high latitudes (see Appendix A for a graphic depiction of the image processing
flow chain). This processing method uses raw imagery from the two HySpex cameras and
positional and navigational data to produce robust, geo-registered surface radiance and
reflectance products. In addition to the standard geometric and radiometric corrections,
processing workflows were also added to minimize the effects of BRDF.

4.1. Raw Images to At-Sensor Radiance Images

Both the VNIR and SWIR cameras were radiometrically calibrated by the manufactur-
ing company, NEO, using an integration sphere. This same calibration was applied prior to
aerial surveys to ensure that the acquired images had high radiometric quality. The 16-bit
raw integer value data acquired per flight line were converted to at-sensor radiance value
imagery according to [31], as summarized below. The first step is image acquisition in raw
VNIR and SWIR file format using image metadata. For each flight line, data were recorded
on the DAU during image acquisition in 16-bit digital number (DN) format as following:

DN[i, j] = Ni[i, j]·QE[i]·RE[i, j]·BG[i, j], (1)

where i is the spectral band number; j is the spatial pixel number; DN are the digital
numbers (0 to 65,535); Ni is the number of incoming photons corresponding to spatial
pixel j and band number i during the integration time t; QE is the quantum efficiency
(photoelectron to photon ratio) of the total system, including optics and detector for band I;
SF is a scaling factor expressing DN per photoelectron (scaling factor is determined during
the radiometric calibration of the instrument); and BG is a background matrix.

Raw data were then converted to real time calibrated data, CN, using the relationship
between real-time calibrated DN values and the incoming light, expressed as:

CN[i, j] =
DN[i, j]− BG[i, j]

RE[i, j]
·dw. (2)

Finally, the at-sensor absolute radiance in W·m−2·sr−1·nm−1 was computed as follows:

LN[, j] =
CN[i, j]·h·c·SL

QE[i]·SF·dw·t·A·W·Dl[i]·l[i] , (3)

where t is the integration time, h is the Planck constant, c is the speed of light, A is the area of
the light entrance aperture, Ω is the solid angle of a single pixel, ∆λ is the spectral sampling
of the camera in nanometers, λ is the wavelength in nanometers, and SL is the Global Land
Survey Digital Elevation Model (GLSDEM) scaling factor determined during calibration.

4.2. Image Orthorectification

The orthorectification model and geocoding of VNIR and SWIR at-sensor radiance
flight line was performed with PARGE (ReSe Applications software) using the navigation
files generated by the IMU/GPS for a flight area. A subset and resampled portion of the
90 m resolution GLSDEM was used for terrain elevation data input and resampled to the
final spatial resolution of the hyperspectral imagery, which was 1 m for both VNIR and
SWIR bands.

To ensure a proper alignment between both the VNIR and SWIR cameras, a boresight
calibration was performed before the orthorectification process by flying over the University
of Alaska Fairbanks campus prior to the image acquisition at the study area. Ground control
points with a high GPS accuracy were identified and then used for aerotriangulation to
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determine the image attitude with respect to a local mapping frame and compared to the
IMU-derived attitude matrix to derive a boresight matrix. This resulted in a boresight
calibration offset that was applied in the georectification process to correct for the angular
misalignment between the frames of reference of the IMU and the VNIR and SWIR cameras.

Orthorectification accuracy was evaluated by performing an automatic image to image
registration between VNIR band 171 (954 nm λ) and SWIR band 2 (954 nm λ) flight line
orthoimages. One hundred tie points were generated between corresponding pixels of
the two images and their root mean square error (RMSE) was evaluated. An RMSE of
less than 0.5 m, indicating sub-pixel accuracy between tie points, was deemed satisfactory
and indicated that both cameras were successfully aligned. Flight lines where then layer
stacked in a single hypercube (see Figure 3).
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Although the VNIR images were collected at a nominal spatial resolution of 0.5 m,
they were resampled using the nearest-neighbor method to a 1m resolution to match the
spatial resolution of the SWIR images.

4.3. Radiometric Correction

After generating an orthorectified hypercube, a radiometric correction was applied
using ATCOR-4 (ReSe Applications), which is specially designed for HySpex hyperspectral
data. ATCOR-4 performs both atmospheric and topographic corrections for airborne sen-
sors for optical regions (0.4 to 2.5 µm) using topography, image geometry, aerosols, water
vapor information, and sensor model information [32]. This procedure was necessary to
correct for the effects of atmospheric water vapor, optical thickness of the atmosphere,
position of the sun, and differences in illumination caused by topography. A brief explana-
tion about ATCOR can be found in [33]. The DEM used in the orthorectification process
also provides information on the elevation, slope, aspect, and scan angle for ATCOR-4
corrections. Aqua MODIS water vapor product (MYD_05), taken about the same time
as the airborne imagery, was used as a proxy for water vapor information. This product
has previously shown good agreement when compared with ground data [34]. Finally,
the flight line navigation files and the sensor model generated during calibration were
also used by ATCOR-4. Images were collected on days with clear skies and with a default
visibility value of 23 km, which was used to account for aerosol load.

An additional consideration when correcting radiometry is to minimize the BRDF
impact from the variation in viewing and solar illumination geometry. Anisotropic re-
flectance can significantly alter the measured radiometry and surface reflectance of the
same land cover type depending on the solar illumination, wavelength, surficial properties,
and viewing angle of the sensor and must be corrected to ensure consistent radiometry
across a scene. High solar zenith angles that are exhibited in high-latitude regions such as
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Alaska [35] further exacerbate this effect. BRDF effects, such as those in our study area, are
apparent in scenes where the view and/or solar zenith angles vary over a large angular
range, causing the normally processed reflectance value for vegetated surfaces to deviate
up to 30% [32]. The influence of the BRDF effects can be split into topographical effects
dependent on the slope and aspect of the terrain and the structural and optical properties
of the vegetation.

The topographic effects were partly accounted for in the topographic correction (image
orthorectification), thus the BRDF effect correction method (BREFCOR) was applied to the
radiometrically corrected hypercube imagery in ATCOR-4 accounting for the vegetation
structure effects. The BREFCOR method corrects observer BRDF effects by applying a
fuzzy classification index that covers all surface types as a unified continuous index, and
then fits the Ross-Li-sparse reciprocal BRDF model to all flight line images within a flight
area and land cover classes to obtain a generic BRDF correction function [32,36].

4.4. Spectral Binning and Final Mosaic

The hypercube output by BREFCOR contained 457 discrete spectral bands. Spectral
binning was applied to the dataset to reduce the significant noise generated by high
instrument sensitivity. After applying spectral binning, the hypercube was reduced to a
total of 229 bands (see Table 1 and Figure 4). Additionally, atmospheric water vapor bands
(from 1340 to 1411 nm and from 1786 to 1829 nm) were masked out of the data, as they
contained no valuable information for the purposes of ground cover classification.
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Figure 4. An example of the effect of spectral binning on the spectral profile of a single pixel of
vegetation. The top panel shows the unbinned profile with 457-bands and the bottom panel shows
the profile from 2x-binned 229-bands. Note the increased noise in the unbinned profile (top panel).

Once all flight lines were orthorectified, radiometrically corrected, and spectrally
binned, they were mosaicked together to produce a single georeferenced hypercube image
of the flight area. It was ensured that at least 25 tie points were found between two adjacent
flight lines, leading to an RMSE for each flight area of less than 0.5 pixels.
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Table 1. Number of bands, spectral range, and spectral resolution before and after the binning process.

Sensor Bands Per
Hypercube

Spectral Range
(nm)

Spectral Resolution
Per Band (nm)

Without Spectral
Binning

VNIR-1800 1–171 416–955 3.26
SWIR-384 172–457 960–2509 5.45

2x Spectral
Binning

VNIR-1800 1–85 418–950 6.33
SWIR-384 86–229 957–2508 10.86

5. Wetland Mapping
5.1. Category Definition

Flight areas A and B were classified following a six-category legend (see Table 2).
These categories included the most relevant and common vegetation found in the study
area and were those that could be detected in at least 1 m resolution pixels. The accessibility
and constraints posed by the remote study sites made it impossible collect field spectra.

Table 2. Wetland mapping classes and description.

Class Attribute Class Description

Water -Areas of open water lacking emergent vegetation.

Equisetum spp. and
emergent vegetation

-Areas where perennial herbaceous vegetation accounts for
75–100% of the cover and the soil or substrate is periodically

saturated with or covered with water.

Bog, grasses, and sedge
-Areas characterized by natural herbaceous vegetation including
grasses and forbs; herbaceous vegetation accounts for 75–100% of

the cover.

White/black spruce

-Areas of open or closed evergreen forest dominated by tree
species (primarily Picea mariana and Picea glauca) that maintain

their leaves all year, with a canopy that is never without
green foliage.

Deciduous vegetation
(including shrubs)

-Areas dominated by trees tree species (primarily Betula
neoalaskana and Populus tremuloides) and shrubs characterized by

natural or semi-natural woody vegetation with aerial stems,
generally less than 6 m tall, with individuals or clumps not

touching to interlocking (including Salix spp., and Alnus spp.)
that shed foliage simultaneously in response to seasonal change.

Bare ground

-Areas characterized by bare rock, gravel, sand, silt, clay, or other
earthen material, with little or no “green” vegetation present
regardless of its inherent ability to support life. Vegetation, if

present, was more widely spaced and scrubby than that in the
“green” vegetated categories.

5.2. Training and Test Areas Selection and Band Selection

Training areas were photointerpreted and digitized using the 30 m spatial resolution
“Vegetation Map and Classification: Northern, Western, and Interior Alaska” [37], which
served as an auxiliary dataset. This map, developed in 2012, was derived from 18 previous
regional maps and is the most recent and best vegetation map available for the study area.
The visual interpretation of a HySpex natural color composite generated from bands 12
(λ = 487 nm), 41 (λ = 671 nm), and 55 (λ = 760 nm) and a HySpex false color composite
generated from bands 41 (λ = 671 nm), 55 (λ = 760 nm), and 62 (λ = 804 nm) further aided
the training area selection for vegetation classification. A total of 70% of total training areas
were used as a training set for supervised classification, with the remaining 30% used in a
post-classification accuracy assessment. The assignment of training and validation samples
was performed randomly for each category.
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Before image classification, a detailed spectral analysis of defined categories was
applied to reduce data redundancy of hyperspectral imagery as well as to derive a subset
of significant bands. For this purpose, the BandMax algorithm in ENVI was used. This
algorithm increases classification accuracy by determining an optimal subset of bands to
help a user separate the user’s targets from known background materials [38]. Using the
training areas in A and B as user-defined target and background materials, the BandMax
algorithm identified a subset of 120 optimal bands for further wetland mapping.

5.3. Image Classification Methods: Hybrid Classification, Maximum Likelihood and Spectral Angle
Mapper (SAM)

Three methods were used for classifying wetlands: (a) maximum likelihood super-
vised classification, (b) a hybrid classification (unsupervised + supervised), and (c) spectral
angle mapper (SAM). All classifications were run with the ENVI software.

For the maximum likelihood classification, probability thresholds were set between
0 and 1 and a single probability threshold value of 0.5 was used for all classes. The
hybrid classification consisted of an IsoData unsupervised classification combined with a
supervised classification [39]. We ran IsoData several times with a minimum number of
classes ranging from 7 to 48, a number of iterations from 20 to 30, a minimum pixels per
class from 25 to 50, a minimum class distances from 5 to 15, and maximum merge pairs
from 2 to 6. Finally, in the supervised step, depending on the fidelity and representativeness
thresholds, resulting clusters from the unsupervised classification class were linked to a
corresponding thematic class or left as unclassified. SAM is a physically based spectral
classification that uses an n-D angle to match pixels to reference spectra [40]. The average
spectra from the training areas were derived and different threshold configurations (ranging
from 0.15 to 1.75) for each category were used to run SAM.

6. Results and Discussion
6.1. Commissioning and Data Acquisition

The HySpex system was successfully commissioned into a Found Bush Hawk aircraft.
The designed flexibility and modular nature of the HySpex system made it relatively
straight forward to test, transport, install, and remove multiple times before the acquisition
flights. This allowed us to perform preflight measurements and test components of the
system at a local hanger. The custom made aluminum mounting plate for the vibration
dampening mount and wooden mounting board for the DAU and power system, with
measured mounting hardpoints for the camera system and aircraft floor plates, ensured
that the HySpex system could be easily mounted and unmounted as needed. This is a
particularly useful feature for aircraft with multiple concurrent missions and for remote
sensing in high latitude regions such as Alaska that witness rapidly changing weather
conditions. This flexible setup also reduced costs by not committing aircraft use solely to
data acquisition. Experience gained in this study will be helpful for commissioning similar
airborne data acquisition systems.

6.2. Image Processing
6.2.1. Systematic VNIR Sensor Response Drop Correction and Systematic Stripping in
VNIR and SWIR Spectral Bands

During initial geometric processing, a systematic drop in the VNIR sensor response
was discovered along the edges of the acquired imagery (Figure 5). To evaluate the sys-
tematic drop, the VNIR camera was tested using a calibrated integration sphere with and
without field of view expander optics attached. The drop was only present when the
expander optics were attached. To maintain a high radiometric fidelity, the low sensor-
response areas along the edges of the raw image files were masked out for all flight lines.
However, this resulted in minor data gap of around 0.14 ha in the final mosaics for area B.
This illustrates the importance of increasing the side-lap in the flight planning to account
for HySpex sensor response drop areas when using the field expander on the VNIR camera.
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6.2.2. Geometric and Radiometric Corrections

The Found Bush Hawk proved to be an excellent acquisition platform for HySpex
imagery that led to a robust geometric correction, with an RMSE of less than 0.5 between
flight lines. However, issues with geometric correction were detected due to the relative
instability that are typical of flight in smaller single-engine aircraft. Image artifacts were due
to the inherent turbulence (high roll, yaw, pitch) associated with small aircraft, which could
not be automatically compensated by the IMU. These errors were corrected through data
post-processing. This is a quality convenience tradeoff. Although larger aircraft platforms
may provide more stability and may need fewer flight attitude corrections while collecting
imagery in a flight line, smaller aircraft provide more flexibility when commissioning
instrumentation and flying over remote areas. Overall, the low RMSE of less than 0.5 m
in geometric correction obtained for the whole dataset collected in this study shows the
configuration robustness for both the platform and geometric correction choice that yielded
high-end hyperspectral orthomosaics for high latitudes (Figure 6).

Real-Time Kinematic (RTK) GPS measurements that provide more accurate GPS
readings can be used for more accurate geometric correction. Subscription to satellite-
based augmentation systems, such as OmniStar that utilizes L1/L2 carrier-phase correction
signals with dual-frequency compatible receivers such as the IMAR iTRACE, or the use of
post-processing differential GPS correction in regions with GPS receiver base stations may
also be used to increase the accuracy of georectification.

Carefully planned flight lines reduced the differential illumination affects due to the
position of the sun relative to flight path (Figure 6). The specific flight plan designed for
high latitude areas for image acquisition (flying north to south and east to west) was
successfully applied and BRDF effects were minimized in the dataset, thus allowing for
seamless mosaics. However, flight lines in area C displayed strong BRDF effects as they
were not collected using the same specific directions as the other areas. This was particularly
visible in the final mosaic (Figure 6 panel C) where the lower flight line was brighter than
the upper one, yielding approximately 32% reflectance difference between the two flight
lines. This strongly suggests that for high latitude hyperspectral image acquisition, flight
plans should be designed in advance flying north-to-south or east-to-west to minimize
BRDF effects. Another factor that impacted the data quality in this study was the presence
of a low cirrus cloud in an otherwise clear sky day that obstructed one of the flight lines in
area B, altering reflectance values. During geometric and atmospheric processing, several
bands within the VNIR and SWIR images were found to exhibit systematic striping across
the image in the along-track (or flight) direction. To ensure high radiometric fidelity, bands
exhibiting systematic striping and spectral noise from water vapor 1 to 3 (416 to 422 nm), 99
to 102 (726 to 736 nm), 122 to 128 (799 to 818 nm), 136 to 150 (843 to 888 nm), 156 (907 nm),
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and 200 to 204 (1112 to 1133 nm) were omitted from the final data set. This was carried out
before spectral binning and classification processing.

Figure 6. True color (red: band 38 (652 nm); green: band 22 (0.550 nm); blue: band 11 (481 nm)) orthomosaics for areas A, B,
and C at a 1 m spatial resolution. A flight area shows a darkened flight line due to a low cirrus undetected when acquiring
the imagery. C flight area shows Bidirectional reflectance distribution function (BRDF) effect between two flight lines flown
northeast to southwest where the flight line at the top of the image is darker for the same ground cover type. The position
of the sun is shown below the north arrow for each image. Coordinates are in UTM-6N and datum is in WGS-84.

After removing these bands, averaged spectra (training and test spectra dataset) for
all land categories displayed a good visual performance except for water, which showed
negative values (Figure 7, negative values for water were excluded for a better spectral
comparison). In the water bodies, ATCOR4 undercorrected the water spectra, giving
negative values beyond 820 nm where water reflectance was supposed to be 0, similar to
those reported by [41]. For image classification purposes, negative values beyond 820 nm
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were set to 0. To compute absolute reflectance, in situ spectra as well as better water vapor
estimates are needed for radiometric correction.
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Note that negative values for water were removed for better visual comparison of the spectra.

Image-derived spectra for spruce and deciduous vegetation were visually compared to
similar spectra taken from available spectral libraries. For the spruce category, 12 samples of
white spruce (Picea glauca) and black spruce (Picea mariana) spectra [42] were averaged. For
the deciduous category, 12 samples of paper birch (Betula neoalaskana) and aspen (Populus
tremuloides) spectra were also averaged [42]. A total of 100 pixels representative of both
categories in study areas A and B were sampled, excluding shadowed areas for better
spectra comparison.

HySpex spruce spectra were similar in shape to published spruce spectra (Figure 8
lower panel) but had a lower overall reflectance, likely due to the differences in phenology.
The spectral libraries included spectra from the peak summer whereas the HySpex images
were collected in early fall. Although more research is needed to fully compare field and
HySpex spectra for wetland characterization, the radiometric correction applied to HySpex
imagery produced appropriate spectra for wetland land categories.

6.3. Image Classification: Results

Best classification performance for A and B flight areas occurred when using the
maximum likelihood classifier with a Kappa agreement coefficient ranging from 0.94 to
0.96, followed by the SAM classifier with a Kappa value ranging from 0.6 to 0.64 and, lastly,
by the hybrid classifier, showing a lower performance with a Kappa value of ranging from
0.46 to 0.56 (Figures 9 and 10 and, Tables 3 and 4 and Appendix B Tables A1–A4). Moreover,
the producer and user accuracy were also higher for the maximum likelihood classifier, with
average values from 72% to 100%. SAM classification relies on external datasets, therefore,
the lack of field spectra or a specific spectral library for high latitude areas for different
types of vegetation, water and soils in this study may have caused this method to perform
poorly. The training areas were used in place of a spectral reference dataset. However, this
approach did not yield better results than the maximum likelihood classification. Pixel-
based classifiers, such as SAM, perform best for hyperspectral imagery when extracting
individual spectra for different plant species [43], which we lacked. Moreover, when
these training areas were used with the SAM classifier, more than 35% of the final image
was not classified due to the lack of proper spectra. To assign non- classified pixels to
categories, a selective mode filter with a 3 by 3 convolution matrix was used. This removed
non-classified pixels and increased image accuracy, but the performance was still poorer
than the maximum likelihood method. In [44], the authors similarly found that maximum
likelihood classification achieved a higher accuracy than SAM based on image-derived
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spectral endmembers utilizing airborne hyperspectral CASI data in an inland wetland
complex near the Grand River, a tributary of Lake Erie in Ontario, Canada. This study also
grouped different wetland vegetation species into broader land cover classes.
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deciduous (upper panel) and spruce (lower panel) categories. Atmospheric water vapor and noisy
bands were removed from the spectral library data for a good visual comparison with the HySpex
spectra. Deciduous spectral library data were only available up to 2300 nm.

Hybrid classification showed the lowest performance, with an averaged Kappa value
of 0.5 for both flight areas. The misclassification between equisetum, spruce (in area A),
bog (in area B) and deciduous classes was the main reason for this lower performance.
Finally, it is interesting to note that the low cirrus cloud that affected the area B bottom
right section caused misclassification in the hybrid and maximum likelihood classifications,
but it did not impact the final map for SAM classification (Figure 9). An advantage of
SAM classification is that because it is dependent on the angle between two vectors in
n-dimensional space, but not the vector magnitude, it is insensitive to varying magnitudes
of illumination for the same cover types [40,45].

For all classifications, there was confusion between spruce and equisetum categories
in areas with emergent vegetation, though this confusion was the least in maximum
likelihood classifications. An increase in the training dataset on these areas a posteriori
contributed to the better results using maximum likelihood. Expanded training datasets
were also used in both hybrid and SAM classification, however the results did not improve.
The mixing of plant and water signals in areas of flooded emergent vegetation results
in a decrease in total reflected radiation, and the intensity of this effect is dependent on
vegetation density, water depth, and canopy structure [46]. Due to the wide range of
reflectance values represented in areas of emergent vegetation, the spectral signature of
this class may overlap the signals from water, terrestrial vegetation, and soil. The lowered
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reflectance values of the equisetum class in some areas were similar to the spruce class
spectral signature, causing misclassification between the two when using spectrally based
methods. Similar misclassifications between conifer species and emergent vegetation when
using a SAM on hyperspectral imagery were also described by [43] and in other wetland
studies [22,44,46]. To solve this issue, a buffer approximating 100 m along the lakes could
be applied to mask out spruce pixels within these areas and reclassify them into equisetum
category. If available, a LIDAR flight or an optical camera used to derive a digital surface
model may also help to discriminate between both categories, as spruce trees are taller
than equisetum.

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 27 
 

 

 

Figure 9. Wetland classification results for A area using a maximum likelihood classifier (right 

panel A), a Spectral Angle Mapper (SAM) classifier (middle panel B), and a hybrid classifier (left 

panel C). 

Figure 9. Wetland classification results for A area using a maximum likelihood classifier (right panel
A), a Spectral Angle Mapper (SAM) classifier (middle panel B), and a hybrid classifier (left panel C).
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Figure 10. Wetland classification results for B area using a maximum likelihood classifier (top panel
A), a Spectral Angle Mapper (SAM) classifier (middle panel B), and a hybrid classifier (bottom
panel C).
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Table 3. Confusion matrix for area A maximum likelihood classification. Results in %.

Wetlands Map to Test

Evaluation dataset

a b c d e f Total Commission error User’s accuracy

Water (a) 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0
Equisetum (b) 0.0 96.0 0.0 4.0 0.0 0.0 100.0 4.0 96.0

Bog (c) 0.0 0.0 97.8 0.3 0.3 1.7 100.0 2.2 97.8
Spruce (d) 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 100.0

Deciduous (e) 0.0 0.0 5.5 6.1 88.3 0.0 100.0 11.7 88.3
Bare ground (f) 0.0 0.0 55.6 0.0 0.0 44.4 100.0 55.6 44.4

Total 100.0 100.0 100.0 100.0 100.0 100.0

Omission error 0.0 0.0 8.4 14.0 0.7 27.3 Kappa: 0.94

Producer’s accuracy 100.0 100.0 91.6 86.0 99.3 72.7

Table 4. Confusion matrix for area B maximum likelihood classification. Results in %.

Wetlands Map to Test

Evaluation dataset

a b c d e f Total Commission error User’s accuracy

Water (a) 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0
Equisetum (b) 100.0 0.0 0.0 0.0 0.0 0.0 100.0 4.3 95.7

Bog (c) 0.0 95.7 4.3 0.0 0.0 0.0 100.0 1.1 98.9
Spruce (d) 0.0 0.0 98.9 0.0 0.0 1.1 100.0 0.0 100.0

Deciduous (e) 0.0 0.0 0.0 100.0 0.0 0.0 100.0 7.9 92.1
Bare ground (f) 0.0 0.0 0.0 6.8 92.1 1.1 100.0 0.0 100.0

Total 100.0 100.0 100.0 100.0 100.0 100.0

Omission error 0.6 0.0 3.1 13.7 0.0 21.4 Kappa: 0.96

Producer’s accuracy 99.4 100.0 96.9 86.3 100.0 78.6
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Timing image acquisition during periods of maximum spectral separability between
plant communities or species of interest may further enhance classification efforts. In [47],
the authors found that spectral reflectance differences were statistically significant between
stands of hydrophytes, with maximum separation of species occurring during flowering or
early seed stages. This, however, requires a detailed characterization of spectral responses
over time between land cover types, which currently does not exist for Alaska in published
spectral libraries.

Deciduous and spruce classes also showed some confusion. Deciduous and spruce
usually form mixed forest, which is not easy to classify in this landscape. Moreover,
due to the low angle of the sun above the horizon, the resulting imagery has self-cast
shadows projected in the same vegetation that could lead to misclassification between both
categories. Spruce and deciduous classes were notably misinterpreted as equisetum in
these shadowed forested areas.

Therefore, resampling the whole imagery at a 5 m spatial resolution could be useful
to increase the accuracy for both categories by integrating the shadowed regions within a
pixel and averaging the spectral response between shadowed and non-shadowed areas
of the same class. The addition of a shadow class could also be useful here, especially for
any spatial statistical analyses that end users might perform on the thematic maps for land
management or other purposes.

Bare ground category showed an intermediate accuracy in area A but a low accuracy
in area B and had the least area representativeness of all other categories. Thus, it was not
an easy category to classify and needs to be better defined. Bare ground showed spectra
similar to dead vegetation, and the spectral endmember of this category may not be static.

Finally, water, bog, and equisetum categories yielded a high averaged accuracy of
more than 90% in the user and producer accuracy for the maximum likelihood classifier.
These categories each covered broad land cover types and incorporated different vegetation
types with similar spectral, spatial, and canopy characteristics. The further segmentation
of these classes into narrower categories would require more in situ knowledge of and data
for the imaged areas, as well as detailed spectral characterization, and possibly alternate
classification techniques to accurately identify and assign narrower classes.

7. Conclusions

In this study, the viability of airborne hyperspectral imaging for wetland mapping in
the high latitudes of Alaska is demonstrated. High-resolution, orthorectified imagery with
a good radiometry was produced for selected areas where only low-resolution and decades-
old imagery existed. The classified vegetation maps derived from airborne hyperspectral
images are an important contribution that help to further the understanding of how
vegetation is responding to the rapidly changing climate in Interior Alaska.

A hyperspectral imaging system (HySpex) was configured in a Found Bush Hawk
aircraft and used to acquire data over selected sites in the Yukon Flats. Custom designed
mounting provided the flexibility needed for the system to be installed in different aircraft
and ensured fast setup and break down before and after each flight, freeing the aircraft for
other flights. This flexible yet robust mounting system helped with reducing commissioning
costs and ensures the long-term viability of airborne data acquisition. Data were acquired
with optimized flight configuration over three study areas that together represented the
variety of wetland vegetation cover and water chemistry.

The hyperspectral data processing chain developed by the German Aerospace Center
(DLR) was adapted for high latitudes by including a step for BRDF removal. Boresight
calibration helped in geometrically correcting both the VNIR and SWIR images with an
RMSE of less than 0.5 m at a 1 m spatial resolution. Data were successfully corrected
radiometrically using ATCOR4 and ancillary water vapor data from the MODIS water
vapor product. Although field spectra were not collected during image acquisition due to
logistic constrains, visual comparison with available spectral libraries suggested a good
radiometric correction.
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For wetlands mapping, a 6-category legend was established based on previous USGS
and USFWS information and previously available maps. Three different classification
methods were applied in the two targeted areas using a spectral subset of selected 120
bands: hybrid classification, spectral angle mapper, and maximum likelihood. Final
wetland maps were successfully classified using a maximum likelihood method with
Kappa values higher than 0.94, and the average user and producer accuracy more than
90% for almost all categories. The best classification performance occurred when using
the maximum likelihood classifier, followed by the SAM classifier and lastly the hybrid
classifier, which showed a lower performance, with averaged Kappa indices of around
0.95, 0.62, and 0.5, respectively, for the two study areas. Although the SAM methodology
is specifically suited for hyperspectral mapping, the lack of field spectra hampered the
final outcome. It is important to note that the spruce and equisetum spectra in emergent
areas were quite similar due to the decrease in reflectance caused by the integration of
water in pixels covering areas of emergent vegetation. This led to the misclassification
of pixels, especially when using the SAM and hybrid classifiers. Misclassification also
occurred between spruce and deciduous categories, although it was minor.

In order to improve these results, future work should focus on the integration of
LIDAR data or a digital surface model derived from standard RGB data to distinguish
between equisetum and spruce categories. In addition, building a spectral library for
Alaska wetlands vegetation will improve classification efforts and allow for the application
of other hyperspectral classification techniques.
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Appendix A. Hyperspectral Data Processing Workflow

The hyperspectral data processing workflow, adapted from the DLR data processing
workflow (Habermeyer et al., 2012), consists of three steps: raw image processing and
image orthorectification (Figure A1), radiometric and BRDF corrections (Figure A2), and
mosaicking and spectral binning (Figure A3). The specific methods used in each step are
described in Section 4. “Hyperspectral data processing”.

Step 1: Raw image processing and image orthorectification: For quality control general
sensor characteristics (e.g., spectral smile), sensor calibration and performance issues (e.g.,
striping, data drops), and external conditions during overflight (e.g., cloud cover) are
assessed. Using the HySpex RAD module (software provided by the manufacturer), the
laboratory derived calibration coefficients to convert brightness values (DN values) to
at-sensor radiance are applied. The IMU/GPS data are then input in the HySpex NAV
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module. Later, images are orthorectified in the PARGE software using the NAV data, the
HySpex sensor model, and a digital elevation model (DEM). Additionally, offset angles
from a boresight calibration are applied. The outputs from Step 1 are VNIR and SWIR
orthorectified images, scan angle files, and DEMs stacked into a hyperspectral supercube
(see Figure A1).
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Step 2: Complete radiometric corrections including atmospheric, topographic, and BRDF
corrections: This step brings together several input parameters measured or derived in
the Step 1 into the SPECTRA module (Figure A2). Atmospheric correction is performed
using a radiative transfer-based approach with ATCOR software to convert at-sensor
radiance to surface reflectance values. Reliable atmospheric correction of the hyperspectral
data requires a DEM and the robust parameterization of atmospheric column properties
including atmospheric gases (water vapor and oxygen) and aerosol optical thickness (AOT).
The DEM products are also used to apply BRDF corrections at this stage. Similarly, the
user can provide atmospheric parameters based on atmospheric profiles of the study site
(if available), or the processing chain will use a modeled standard atmosphere for the
specific geographic region. The output from this step is a data cube corrected for geometric,
atmospheric, and BRDF effects.

Step 3: Mosaicking and spectral binning: After the radiometric correction step, the
individual corrected flight lines are mosaicked. Finally, to further increase the signal to
noise ratio, spectral binning is applied (Figure A3).
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Appendix B.

Classification results for the hybrid and SAM classifiers for both A and B flight areas.
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Table A1. Confusion matrix for area A hybrid classification. Results in %.

Wetlands Map to Test

Evaluation dataset

a b c d e f Total Commission error User’s accuracy

Water (a) 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0
Equisetum (b) 0.0 48.9 0.0 12.2 38.9 0.0 100.0 51.1 48.9

Bog (c) 0.0 5.8 66.2 0.5 26.1 1.4 100.0 33.8 66.2
Spruce (d) 0.0 30.7 18.4 44.7 6.1 0.0 100.0 55.3 44.7

Deciduous (e) 0.0 16.5 45.6 2.5 35.4 0.0 100.0 64.6 35.4
Bare ground (f) 0.0 0.0 82.9 0.0 0.6 16.6 100.0 83.4 16.6

Total 100.0 100.0 100.0 100.0 100.0 100.0

Omission error 0.0 73.8 65.6 9.7 80.7 9.4 Kappa: 0.46

Producer’s accuracy 100.0 26.2 34.4 90.3 19.3 90.6

Table A2. Confusion matrix for area B hybrid classification. Results in %.

Wetlands Map to Test

Evaluation dataset

a b c d e f Total Commission error User’s accuracy

Water (a) 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0
Equisetum (b) 0.0 53.4 0.0 5.4 41.2 0.0 100.0 46.6 53.4

Bog (c) 0.0 0.0 85.9 0.0 7.7 6.4 100.0 14.1 85.9
Spruce (d) 0.0 0.0 0.0 79.5 20.5 0.0 100.0 20.5 79.5

Deciduous (e) 0.0 9.1 17.8 1.7 71.4 0.0 100.0 28.6 71.4
Bare ground (f) 0.0 0.0 88.1 0.0 0.0 11.9 100.0 88.1 11.9

Total 100.0 100.0 100.0 100.0 100.0 100.0

Omission error 0.6 8.2 82.6 12.8 59.0 11.9 Kappa: 0.56

Producer’s accuracy 99.4 91.8 17.4 87.2 41.1 88.1
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Table A3. Confusion matrix for area A SAM classification. Results in %.

Wetlands Map to Test

Evaluation dataset

a b c d e f Total Commission error User’s accuracy

Water (a) 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0
Equisetum (b) 0.0 40.5 16.9 24.9 17.6 0.0 100.0 59.5 40.5

Bog (c) 0.0 2.0 90.7 1.7 5.6 0.0 100.0 9.3 90.7
Spruce (d) 0.0 36.1 0.0 57.4 6.5 0.0 100.0 42.6 57.4

Deciduous (e) 0.0 1.4 0.0 4.3 94.2 0.0 100.0 5.8 94.2
Bare ground (f) 0.0 0.0 67.9 0.0 2.8 29.4 100.0 70.6 29.4

Total 100.0 100.0 100.0 100.0 100.0 100.0

Omission error 0.0 27.4 31.4 57.2 55.2 0.0 Kappa: 0.64

Producer’s accuracy 100.0 72.6 68.6 42.8 44.8 100.0

Table A4. Confusion matrix for area B SAM classification. Results in %.

Wetlands Map to Test

Evaluation dataset

a b c d e f Total Commission error User’s accuracy

Water (a) 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0
Equisetum (b) 0.0 48.8 0.0 18.8 32.4 0.0 100.0 59.5 40.5

Bog (c) 0.0 0.0 73.5 3.1 19.7 3.7 100.0 9.3 90.7
Spruce (d) 0.0 1.6 0.0 63.4 35.0 0.0 100.0 42.6 57.4

Deciduous (e) 0.0 44.1 7.3 3.2 45.1 0.3 100.0 5.8 94.2
Bare ground (f) 0.0 0.0 0.0 0.0 0.0 100.0 100.0 70.6 29.4

Total 100.0 100.0 100.0 100.0 100.0 100.0

Omission error 0.0 27.4 31.4 57.2 55.2 0.0 Kappa: 0.64

Producer’s accuracy 100.0 72.6 68.6 42.8 44.8 100.0
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