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Significance and impact of the study: The interaction between environmental factors that are 

expected to occur in response to climate change (CC) will have a significant impact on food security 

and availability. Little information exists on how elevated temperature, drought stress and increased 

CO2 will have on the efficacy of biocontrol agents. The impact of these factors on the viability of 

different formulations of the biocontrol yeast Candida sake on the surface of grapes berries was 

evaluated for the first time. Such knowledge is critical for projecting the efficacy of biocontrol under 

climate change conditions and to identify formulations that have the necessary resilience to perform 

under CC conditions. 

 

Abstract  

Biocontrol agents have become components of integrated crop protection systems for controlling 

economically important fungal pathogens. Candida sake CPA-1 is a biocontrol agent of fungal 

pathogens of fruits, both pre- and post-harvest. While the efficacy of different formulations have 

been examined previously, few studies have considered the resilience of different formulations 

under changing climatic conditions of elevated temperature, drought stress and increased 

atmospheric CO2. This study examined the effect of (a) temperature × RH × elevated CO2 (400 vs 

1000 ppm) on the temporal establishment and viability of two dry and one liquid C. sake CPA-1 

formulations on grape berry surfaces; (b) temperature stress (25 vs 35 ºC); and (c) elevated CO2 

levels. Results indicated that temperature, RH and CO2 concentration influenced the establishment 

and viability of the formulations but there was no significant difference between formulations. For 

the combined three-component factors, increased temperature (35 ºC) and lower RH (40%) reduced 

the viable populations on grapes. The interaction with elevated CO2 improved the establishment of 

viable populations of the formulations tested. Viable populations greater  than Log 4 CFUs g-1 were 

recovered from the grape surfaces suggesting that these had conserved resilience for control of 

Botrytis rot in grapes.   
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Keywords: yeast formulations, global warming, climate change, resilience, elevated CO2, biocontrol, 

Botrytis cinerea. 

 

Introduction 

Climate change is expected to have profound impacts on agroecosystems and thus food security 

(Medina et al. 2017). Maximising food production under climate change (CC) conditions will require 

effective crop protection systems, including biocontrol of fungal pathogens and pests. The 

Intergovernmental Panel on Climate Change (2014) has suggested that temperature will increase by 

2-5 ºC and that more extreme fluctuations in wet and drought periods will occur, coupled with a 

doubling or tripling of the atmospheric CO2 levels from 400 to 800-1200 ppm. Indeed, the EU Green 

paper has suggested that parts of southern Europe will be hotspots for CC impacts (European 

Commission 2013). The regions designated in the report are important for the production of many 

important agricultural and horticultural crops. It is thus important that biological control agents 

(BCAs) have the necessary resilience under such environmental stresses. For example, Borisade and 

Magan (2015) reported that entomogenous fungi used for pest control were less effective under CC 

scenarios than under existing environmental conditions.  

The yeast Candida sake CPA-1 is a well-known BCA and its efficacy has been demonstrated against 

blue mould, grey mould, and Rhizopus rot on pome fruits (Viñas et al. 1998). CPA-1 is also effective 

against B. cinerea (Cañamás et al. 2011; Calvo-Garrido et al. 2013; Calvo-Garrido et al. 2014) and 

sour rot (Calvo-Garrido et al. 2013) in grapes. Laboratory-scale production of CPA-1 has been 

optimised (Arévalo 1998; Abadias et al. 2003) and both liquid (Torres et al. 2003; Abadias et al. 

2003b) and solid formulations have been developed (Abadias et al. 2001, 2005; Cañamás et al. 2008; 

Carbó et al. 2017a; Carbó et al. 2017b). Two improved formulations of C. sake have been recently 

developed by the addition of biodegradable coatings using a fluidised-bed spray-drying system. This 

resulted in the production of film forming formulations that have better viability than liquid-based 

formulations on grapes (Carbó et al. 2017b).  
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No attempts have been made to examine the impact of the environmental factors predicted to 

occur during CC on the viability of formulations of BCAs for fungal pathogen control. Some studies 

have examined the effects of CC factors on BCAs for pest control (Johns et al. 2003; Diaz et al. 2012; 

Wang et al. 2014; Reeves et al. 2015). However, these studies have predominantly examined 

individual factors, such as elevated CO2 or temperature. The interaction between three 

environmental factors (temperature, drought, and elevated CO2) have been suggested to be critical 

in examining the effects of CC on fungal plant pathogens and insect pests (Medina et al. 2014; 

Borisade and Magan 2015; Medina et al. 2015a; Medina et al. 2015b). 

There is thus a dearth of studies on the resilience of BCA formulations to CC environmental 

parameters. Recently, Carbó et al. (2017b) examined the population dynamics of two fluidised-bed 

spray-dried formulations on grapes. However, the potential resilience of different BCA formulations 

under extreme interacting environmental parameters has not been previously examined. Therefore, 

the present study examined the effect of the interaction between different environmental factors 

(25 vs 35 ºC; 85 vs 40% RH; and 400 vs 1000 ppm CO2) on the resilience of one liquid and two dry 

formulations of C. sake CPA-1 by examining the population dynamics of C. sake on the surface of 

grapes.    

Results and discussion 

Combined effect of multiple climate change environmental factors on the population dynamics of 

C. sake formulations  

Figure 1 shows the combined effect of interacting CC factors (temperature, RH. And CO2) on the 

viability of C. sake CPA-1 formulations isolated from grape surfaces over a 96 h time period after 

application.  

Under simulated conditions of 25 ºC, 400 ppm, and either 40 or 85% RH) all the formulations 

allowed C. sake to became readily established on the surface of grape berries (Figure 1a). All three 

formulations showed an increase in the number of viable cells after 48 and 96 h at both 40 and 85% 

RH. Previous ecophysiological studies of C. sake have indicated that 25 ºC is optimum for growth 
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(Teixidó et al. 1998). Overall, more than Log 6 CFUs g-1 of C. sake was established under conditions 

that represented the control treatment. 

Figure 1b shows the impact of increasing the temperature to 35 ºC and maintaining the CO2 

concentrations at 400 ppm at both 40 and 85% RH. The elevated temperature (35ºC) generally 

reduced the number of recovered cells for all of the applied formulations, indicating that C. sake had 

a lower resilience at this temperature regardless of the formulation. There was a significant 

difference in cell survival between the different formulations after 48 h. The conditions under which 

all formulations had the least resilience was after 96 h at 35 ºC and 40% RH when the number of 

viable cells had been reduced by Log 0.52- Log1.12 from the number of cells originally applied. After 

96 h at 85% RH, the number of viable cells was between Log 4.5-5 CFUs g-1. At 40% RH this was 

between Log 4-4.5 CFUs g-1 in all the formulations. It has been previously shown that C. sake cells 

cannot survive at 37 ºC but is able to grow at 30 ºC, although not as well as at 20-25 ºC (Teixidó et al. 

1998). Calvo-Garrido et al. (2014a) previously applied C. sake cells plus Fungicover® (a commercial 

coating) to grape berries and observed a decline of Log 5.6 units at extreme temperatures of 40 ºC 

and 100% RH after 72 h and a reduction of Log 2.7 units at 40 ºC and 30% RH after 48 h.  

The resilience of the three formulated cell treatments was improved at 35ºC when the cells were 

exposed to elevated CO2 (1000 ppm) at both RH levels with a similar trend for all the formulations 

(Figure 1c). Approximately Log 5 CFUs g-1 of viable cells were recovered from the surface of grape 

berries for all the formulations of C. sake CPA-1, with the exception of the liquid formulation at 40% 

RH. The population of viable cells in all the formulations increased after 96 h. This suggests that 

exposure to combined conditions of elevated temperature, RH, and increased CO2 resulted in better 

resilience of the formulated cells on the surface of grape berries than under elevated temperature 

and RH stress alone. Thus, the colonisations and survival of CPA-1 formulated yeast cells at 35 ºC 

differed depending on the concentration of CO2, with better resilience at 1000 ppm of CO2 than at 

400 ppm.  
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Effect of temperature on C. sake population dynamics on grape berries (after 96h) 

Overall, an analysis of the relative effect of 25 vs 35 ºC indicated that no significant differences were 

observed in the number of viable C. sake cells recovered from grapes between the three different 

formulations (Table 1). This suggests that the drying temperatures used to make the solid 

formulations did not influence the resilience of the rehydrated cells on grapes. This also indicates 

that the fluidised-bed spray-dried formulations are more user-friendly to utilise than the liquid 

formulation, mainly because of the easier downstream handling of the biological product. 

The interaction between temperature and RH (25 or 35 ºC; 40 or 85% RH) had a significant impact 

on the number of viable cells recovered from the surface of grape berries. The three-way interaction 

(temperature × RH × formulation) was not significant (see Table 1). The number of viable cells 

recovered from the grape berries was significantly better at 25 ºC than 35 ºC, regardless of 

treatment, and also higher at 85% RH than 40% RH. However, the formulations provided a measure 

of resilience to the C. sake cells exposed to the CC conditions examined. Previously, Calvo-Garrido et 

al. (2014) found that formulations of C. sake CPA-1 allowed the yeast to become established and 

survived under relatively dry Mediterranean climatic conditions when the maximal daily 

temperature reached 31 ºC, and the average minimum daily RH value was 39%.  

In the present study, the highest number of C. sake cells recovered from grapes was achieved from 

the 25 ºC treatment. Previously, Teixidó et al. (1998) in ecological studies demonstrated that 20-25 

ºC was optimum for the growth of unformulated cells of C. sake. With regard to the effect of RH on 

viability of cells from the formulations, the dry formulations gave better results than the liquid one 

at 85% RH. However, no differences were observed between the formulations at 40% RH (see Table 

1). 

Effect of CO2 concentration on C. sake population dynamics on grapes berries (after 96h) 

Little difference was observed between the formulations in the viability of C. sake cells in the 

different CO2 treatments (400 vs 1000 ppm; Table 2). Due to the significant impact of the high 

temperature (35oC) on cell viability of CPA-1 formulations, the effect of CO2 at this temperature was 
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also examined. Results indicated that the drying process did not influence the resilience of the 

rehydrated C. sake CPA-1 cells on the surface of grape berries.  

Regardless of the formulation, the viability of CPA-1 was significantly better at 1000 ppm CO2 than at 

400 ppm of CO2 treatment; and also higher at 85% RH than at 40% RH. No significant differences 

were observed in the interaction between formulation and RH (Candifruit, Potato starch or 

Maltodextrin; 40 or 85% RH), or in the interaction between formulation and CO2 (Candifruit, Potato 

starch or Maltodextrin; 400 or 1000 ppm CO2). However, the interaction between RH and CO2 (40 or 

85%; 400 or 1000 ppm CO2) resulted in a significant decrease in the populations of cells recovered 

from the surface of grape berries. Regardless of the RH, the resilience of C. sake in the different 

formulations was better under elevated CO2 conditions. Also, the three-way interaction among 

formulation × RH × CO2 was significant (see Table 2).  

Previously, other fungal BCAs such as Puccinia aprupta var. partheniicola was shown to perform 

more effectively under elevated CO2 levels than under existing atmospheric levels (Shabbir et al. 

2014). However, this may vary with BCAs, as CC factors were shown to have a negative impact on 

the efficacy of some entomopathogenic fungi for pest control (Borisade and Magan 2015).  

Estimated capacity of C. sake to control Botrytis rot under climate change scenarios 

Previously, it was shown that populations of at least Log 3 to 5 CFUs g-1 of C. sake cells had to be 

recovered from grape surfaces after the BCA application for effective control of Botrytis bunch rot 

on grapes (Calvo-Garrido et al. 2013a). In the present study, the three formulations tested would 

result in the establishment of Log 4.87 to 5.49 CFUs g-1 under CC conditions. This is a range at which 

Botrytis rot would be expected to be effectively controlled (Cañamás et al. 2011); Calvo-Garrido et 

al. 2014).  

Indeed, even in the high temperature scenario (35oC), which represented the most stressed 

condition, the recovered population levels after 96 h were almost Log 4 CFUs g-1. Therefore, the 

three formulations could be effective against B. cinerea on grapes under any tested climate scenario. 
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Thus, the resilience and viability of the yeast cells is maintained above the necessary threshold on 

the surface of grape berries to effectively control of Botrytis.   

In summary, the present study demonstrated that the formulations of C. sake CPA-1 provided a 

sufficient level of resilience to the BCA under the CC conditions that allowed to yeast cells to retain a 

level of viability and population size within the range necessary for the control of Botrytis rot on 

grapes. Additionally, elevated levels of CO2 boosted cell viability in the different formulations, even 

at the elevated temperature of 35ºC, regardless of RH. The fluidised-bed spray-drying process used 

to produce dry formulations of CPA-1 did not significantly affect the resilience and viability of C. sake 

cells on the surface of grape berries. It may be prudent to examine the relative resilience provided 

by of different formulations of BCAs to ensure that control levels achieved under existing 

environmental conditions can be maintained under future CC scenarios. In addition, the 

ecophysiology and pathogenicity of the pathogen may also change under CC scenarios and this may 

affect the relative efficacy of formulations of BCAs in the future (Váry et al. 2015).   

Material and methods 

Biocontrol agent and formulations 

The yeast strain CPA-1 of Candida sake used in this study was obtained from University of Lleida-

IRTA, Catalonia, Spain, and it was deposited at the Colección Española de Cultivos Tipo (CECT-10817) 

at the University of Valencia, Burjassot. C. sake stock cultures were stored at 4 ºC on nutrient yeast 

dextrose agar plates (NYDA: nutrient broth, 8 g l-1; yeast extract, 5 g l-1; dextrose, 10 g l-1; and agar, 

15 g l-1).  

All assays were carried on with three different formulations of the BCA: (i) a liquid formulation 

registered in Spain under de name Candifruit™; (ii) a dry formulation based on potato starch; and (iii) 

a dry formulation based on maltodextrin. Both dry formulations were dried using a fluidised-bed 

spray-drying system by the addition of biodegradable coatings to enhance the survival under 

environmental stress conditions. The formulation process was done using the protocol described by 

Carbó et al. (2017b). 
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The number of CFUs ml-1 was determined by plating 100 µl of serial dilutions on NYDA and 

incubating at 25 ºC for 48 h. The viability of formulations was also checked by serial dilutions to 

calculate the required amount of product to achieve the final concentration of 2.5×107 CFUs ml-1. 

The applied concentration of each treatment was also checked by serial dilutions on NYDA plates.  

Inoculation and incubation conditions 

The study was conducted using white seedless grapes washed with tap water to remove possible 

residues. Afterwards, grape bunches were left to dry in a flow bench and then cut into three-berry 

clusters leaving the pedicel attached. Three clusters formed one replicate and each treatment 

consisted of three replicates.  

For each treatment, the required amount of formulation was dissolved in 200 ml of water to obtain 

a concentration of 2.5×107 CFUs ml-1. To inhibit bacterial growth, 500 mg l-1 of ampicillin was added 

to each treatment. Each formulation was placed into a glass beaker and clusters immersed three 

times into the treatment using sterile forceps, then the clusters were hung on glass rods and allowed 

to dry at room temperature. When the grape surfaces were dry, each replicate was placed into a 

glass container and they were all placed in a plastic box and incubated in each climate 

environmental condition.  

Environmental chamber conditions 

Treated grapes were exposed to three different climatic scenarios: (i) the current conditions of 25 ºC 

and 400 ppm CO2; (ii) elevated temperature of 35 ºC and existing CO2 conditions of 400 ppm and (iii) 

interacting future climate change scenario of 35 ºC and 1000 ppm CO2. In addition, two relative 

humidity (RH) conditions were tested for each scenario: (i) 40% and (ii) 85% RH.  

When CO2 concentrations of atmospheric air (400 ppm) were tested, the RH was controlled by 

introducing 2×500 ml beakers of glycerol/water solution with the same water activity (aw) as the 

treatment condition to maintain the equilibrium relative humidity during incubation.  
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An incubator flushed with the required CO2 concentration (1000 ppm) was used to simulate the 

possible climate change scenario. In this situation, the air moisture was controlled by inserting a 

container with 2 l glycerol/water solution with the same aw as the treatment condition. 

Evaluation of C. sake populations growth on grapes surface 

Populations on grape berry surface were recovered after 0, 48 and 72 h. At the recovering time, the 

three berries of each cluster were separated cutting the pedicels with sterile scissors. The nine 

berries of each replicate were weighed and then placed into a sterile plastic bag containing 50 ml of 

sterile distilled water amended with Tween 80 (one drop per litre). Then, the bags were 

homogenised in a Stomacher 400 (Seward Ltd, Worthing, West Sussex, U.K.) for 10 min. Torres et al. 

(2012) recommended the use of the Stomacher as a consistent and rapid method for recovering the 

BCA populations from the fruit surface. Serial dilutions were then prepared as described previously 

to determine the CFUs ml-1, with the results presented as CFUs g-1. All tests were carried out with 

three replicates and repeated.  

Statistical analyses 

The results of CFUs g-1 data were transformed to logarithmic values prior to analyses to improve the 

homogeneity of variances. Data were analysed by multiple-factor ANOVA using JMP8 software (SAS 

Institute Inc., NC, U.S.A.). When the analysis was statistically significant (P<0.05), Student’s test was 

used for means separation.  
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Tables 

 

Table 1 Analysis of variance of effect of formulations, temperature, RH (relative humidity) and two- 

and three-way interactions on growth of C. sake over grapes. Significant sources were itemised and 

different letters indicate significant differences (P<0.05) according to Student’s test.  

 

Source DF SS F Ratio Prob > F 

Formulation 2 0.119262 1.1055 NS 0.3480 

Temperature 1 31.464600 583.3040 ** <.0001 

      25 ºC A     
      35 ºC B     

Formulation × Temperature 2 0.003171 0.0294 NS 0.9711 

RH 1 1.236696 22.9264 ** <.0001 

      85% A     
      40% B     

Formulation × RH 2 0.399328 3.7015 * 0.0404 

      Potato starch, 85% RH A     
      Maltodextrin, 85% RH AB     
      Candifruit, 85% RH BC     
      Candifruit, 40% RH BCD     
      Potato starch, 40% RH CD     
      Maltodextrin, 40% RH D     

Temperature × RH 1 0.712771 13.2136 * 0.0014 

      25 ºC, 85% RH A     
      25 ºC, 40% RH A     
      35 ºC, 85% RH B     
      35 ºC, 40% RH C     

Formulation × Temperature × RH 2 0.289837 2.6866 NS 0.0894 

 

Note: SS, sum of square; * significant P<0.05; ** significant P<0.001; NS, not significant 
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Table 2 Analysis of variance of effect of formulations, CO2, RH (relative humidity) and two- and 

three-way interactions on growth of C. sake over grapes. Significant sources and two-way 

interactions were itemised and different letters indicate significant differences (P<0.05) according to 

Student’s test. 

 

Source DF SS F Ratio Prob > F 

Formulation 2 0.2024381 1.5088 NS 0.2432 

RH 1 1.0437026 15.5572 * 0.0007 

      85% A     
      40% B     

Formulation × RH 2 0.1516857 1.1305 NS 0.3409 

CO2 1 5.3613231 79.9149 ** <.0001 

      1000 ppm of CO2 A     
      400 ppm of CO2 B     

Formulation × CO2 2 0.0973929 0.7259 NS 0.4951 

RH × CO2 1 0.8041026 11.9858 * 0.0022 

      85% RH, 1000 ppm of CO2 
A     

      40% RH, 1000 ppm of CO2 
A     

      85% RH, 400 ppm of CO2 
B     

      40% RH, 400 ppm of CO2 
C     

Formulation × RH × CO2 2 1.1582690 8.6325 * 0.0017 

 

Note: SS, sum of square; * significant P<0.05; ** significant P<0.001; NS, not significant 

 

Figure caption 

Figure 1 Dynamics of populations of C. sake under the different treatment conditions: (a) current 

environmental conditions of 25 ºC and 400 ppm of CO2; (b) elevated temperature scenario at 35 ºC 

and 400 ppm CO2; and (c) interacting climate change environmental conditions of 35 ºC and 1000 

ppm of CO2. Key to treatments: Candifruit (); potato starch formulation (), and maltodextrin 

formulation () are represented as histograms for the 40% RH (solid colours) and 85% RH (striped 

bars) conditions. Mean values of three replicates are represented and vertical bars indicated 

standard error of the means.   
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