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Dietary strategies can potentially help to reduce nitrogen (N) emissions and decrease the environmental
impact of beef production. This study aimed to evaluate the effects of dietary crude protein (CP) concen-
tration on animal performance, N excretion, and manure N volatilisation of finishing Holstein animals. In
a first study, 105 Holstein bulls (BW 344 ± 2.6 kg; age 252 ± 0.9 days) were allocated to eight pens to
evaluate the effect of two treatments (medium (M) and low (L), which contained CP 14.5% and 12% on
a DM basis, respectively) on performance, and results confirmed that dietary CP decrease did not impair
animal growth. In a second study, N excretion study, 24 Holstein heifers (BW 310 ± 5.3 kg; age 251 ± 1.4
days) were distributed randomly depending on the initial BW to three treatments (high (H), M, and L,
which contained CP 17%, 14.5% and 12% on a DM basis, respectively). Based on N excretion, urinary N
excretion was greater (P < 0.001) in H than in M and L diets, but no differences in faecal N excretion were
observed among treatments. A third study with in vitro assays under aerobic and anaerobic conditions
was designed to analyse gaseous emissions (volatilisation of N and carbon, C) during the storage stage
of manure. Manure, faecal and urine samples, mixed at a ratio of 1:1 (wet weight), were collected during
the N excretion study (manure-H, manure-M, manure-L). Under aerobic conditions, manure-M and
manure-L showed a delay of 4–5 days in manure ammonia emission compared with manure-H
(P < 0.01). Total N content was lower (P < 0.01) in manure-L compared with manure-M and manure-H,
but N volatilisation (percentage relative to initial N) in manure-L and manure-M was greater (P < 0.01)
than in manure-H. In contrast, the anaerobic N volatilisation was 20 times greater in manure-M and
10 times greater in manure-H compared with manure-L. Under aerobic and anaerobic conditions, the
emission of C, as C-CO2 and C-CH4, was greater in manure-L than in manure-H and manure-M.
Therefore, the decrease of dietary CP concentration from 17% to 14.5% and 12% is an efficient strategy
to reduce urinary N excretion by 40%, without impairing performance, and also to reduce manure N
losses through ammonia volatilisation under anaerobic conditions. However, a dietary CP content of
14.5% resulted in less environmental impact than a CP content of 12.8% when also considering manure
emissions under aerobic or anaerobic conditions.
� 2022 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Implications

The decrease of the environmental impact of beef production is
a societal demand. The present study reinforces that there is still
room for improvement and that dietary strategies such as dietary
protein decrease can reduce nitrogen urinary excretion by 40%
and the greenhouse emissions during manure storage without
impairing animal performance. When considering the two main
storage processes applied to manure (aerobic and anaerobic condi-
tions) of beef cattle fed with high-concentrate diets, the optimum
dietary crude protein concentration to reduce the undesirable car-
bon losses together with nitrogen losses is 14.5%.
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Table 1
Ingredient and chemical composition of the feed concentrates with high (H), medium
(M) or low (L) CP concentration fed to the Holstein bulls.

Ingredients and components Concentrate

H M L

Ingredient (g/kg, as fed)
Corn 400 399 399
Barley 81 81 81
Wheat 120 110 100
Wheat middling 137 160 182
Beet pulp 101 124 145
Soybean meal, 47% CP 108 75 42
Palm oil 26 28 31
Calcium carbonate 11.5 10.5 10.5
Salt 2 2 2
Urea 6 3 -
Sodium bicarbonate 4 4 4
Magnesium oxide 1.5 1.5 1.5
Premix (1) 2 2 2
Theoretical nutrients
DM, g/kg 883 883 883
ME, Mcal/kg DM 3.27 3.27 3.27
CP, g/kg DM 170 145 120
Ether extract, g/kg 59 60 62
Starch, g/kg 486 486 486
NDF, g/kg 180 195 203
Ash, g/kg 53 53 52

Analysed Performance study
DM, g/kg as fed 863 868
CP, g/kg DM 145 122
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Introduction

The environmental impact of beef production is becoming
increasingly important to producers and consumers. The nitrogen
(N) loss at the farm is related to proper animal feeding and manure
management. The dietary composition of animal rations affects the
content of N and carbon (C) in the ration itself, but also the excre-
tion of N and C in faeces and urine, and, thereby, the losses of N and
C to the environment. Emissions of greenhouse gases (GHG) from
manure, such as carbon dioxyde (CO2), methane (CH4), and nitrous
oxide (N2O), are a major environmental concern. The N volatilisa-
tion through ammonia (NH3) contributes to the formation of par-
ticulate matter that negatively affects human health, to the
acidification and eutrophication of natural ecosystems when N is
deposited from air to the ground and/or water bodies, and to the
generation and leaching of nitrates into groundwaters (Erickson
and Klopfenstein, 2010; Hristov et al., 2011). Moreover, although
NH3 is not a GHG, the N loss from animal manures may indirectly
contribute to agricultural emissions of N2O, a potent GHG with a
global warming potential of 273 ± 130 times greater than CO2

(Masson-Delmotte et al., 2021). Soil fertilisation and animal man-
ure management contributed to about two-thirds of the 80% N2O
emission increase due to anthropogenic sources during the
1980–2016 period. These N2O emissions are primarily released
upon nitrification and partial denitrification of ammonia, which
is a microbial process commonly encountered under partial aero-
bic/anaerobic conditions.

Animal feeding strategies are one of the first steps in reducing N
loss from the farm. Reynolds and Kristensen (2008) summarised
the most important nutritional strategies in ruminants to reduce
N emissions, concluding that the decrease of the dietary crude pro-
tein (CP) concentration was one of the most effective methods
because it improved the urea utilisation by microbes in the rumen.
Also, as urine N is more prone to volatilise than faecal N, diminish-
ing the N content in urine rather than in faeces is a better strategy
to minimise N volatilisation (Bussink and Oenema, 1998). As far as
the dietary N concentration does not affect the DM intake (DMI),
Huhtanen et al. (2008) showed that a low N intake resulted in
decreased urinary N excretion. However, these interventions must
be balanced with the risk of production loss; therefore, reducing
dietary CP might be particularly promising during the finishing
phase where the animal N requirements are low and feed intake
is high. However, few studies have evaluated the impact of dietary
N content with an overall view on the impact of animal N excretion
along with N and C manure emissions (James et al., 1999; Burgos
et al., 2010; Koenig et al., 2018). The novelty of the present study
is the evaluation of dietary CP concentrations below the common
commercial concentrations on N excretion and animal perfor-
mance, and also its impact on N and C manure potential emissions,
in Holstein beef animals fed with high-concentrate diets during the
finishing phase.
Ether extract, g/kg 60 62
Starch, g/kg 484 487
NDF, g/kg 196 200
Ash, g/kg 53 52

Analysed N excretion study
DM, g/kg as fed 862 863
CP, g/kg DM 170 145 128
Ether extract, g/kg 58 62 62
Starch, g/kg 486 484 487
NDF, g/kg 180 195 204
Ash, g/kg 53 53 52
Material and methods

All experimental protocols were approved by the Institutional
Animal Care Committee of the Institut de Recerca i Tecnologia
Agroalimentàries (Barcelona, Spain, number FUE-2018-00702882-
9970), and the study was conducted in accordance with the Span-
ish guidelines for experimental animal protection (Royal Decree
53/2013).
Abbreviation: ME: metabolisable energy.
1Composition: 3.54 106 IU/kg of vitamin A; 850 000 IU/kg of vitamin D3; 12 500 mg/
kg of vitamin E; 2 500 mg/kg of vitamin B1; 29% of magnesium; 0.11% of sodium;
3% of sulphate; 150 mg/kg of selenium; 240 mg/kg of cobalt; 250 mg/kg of iodine;
15 500 mg/kg of manganese; 20 300 mg/kg of zinc; 2 500 mg/kg of copper; 7 150
mg/kg of iron.
Experimental design

The present study was based on animal dietary trials that con-
sisted of three different CP concentrations in the finishing concen-
2

trate: H (high, CP of 17.0% DM), above the reference CP commercial
values; M or reference commercial (medium, CP values of 14.5%
DM); L (low, CP of 12.0%DM), below the reference commercial val-
ues. Commercial reference CP values (from 15 to 13.5%) were the
common values used in the finishing concentrate and were pro-
vided by the different companies involved in this project (Corpo-
ración Alimentaria Guissona S.A, Nutrición Animal S.L., and Nanta
S.A). To achieve the different CP concentrations, soybean meal
and urea inclusion rates were modified, and the soybean meal
was replaced with wheat middling, beet pulp, and palm oil
(Table 1). In consequence, the theoretical protein degradability
(based on NRC 1996 tabular values) was modified: 67%, 65%, and
62% for H, M, and L treatments, respectively. Assuming a ratio bar-
ley straw to concentrate of 10:90 (Devant et al., 2000; Marti et al.,
2010), the ingredient composition of the concentrate was formu-
lated to meet FEDNA (2008) recommendations except for CP. All
concentrate ingredients were grounded within a hammer mill
(screen openings of 2.75 mm); in the case of the N excretion study,
the concentrate was thoroughly mixed with chromic oxide (1 g/kg
DM), which is an external marker to estimate total tract apparent
digestibility, and then pelletised (pellets of 3.5 mm of uniform
diameter and 10 mm of length), manufactured in one batch as
Verdú et al. (2017).
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Based on these dietary treatments, three separate experiments
were carried out. The first study was a performance experiment
with bull calves on a farm where calves were fed with two different
concentrations of protein. The second study was an N excretion
study with heifers fed with three different concentrations of pro-
tein. The third study was an in vitro manure storage test with fae-
ces and urine from the N excretion study.

Experiment 1. Performance study
A total of 105 Holstein bulls (344 ± 2.6 kg of BW and 252 ± 0.9

days of age) were used in a randomised balanced complete design
to evaluate the effect of dietary CP concentration for 70 days. Only
treatments M and L were tested (14.5 and 12.2% on a DM basis,
respectively; Table 1), since the main objective of the present study
was to reduce the N excretion under commercial conditions. Before
the start of the study, animals were weighed and allocated to eight
pens, so that the average BW was similar across pens. Treatments
were randomly distributed to each pen. Bulls were fed ad libitum
with concentrate and unprocessed long barley straw (CP 3.5%,
ether extract 1.6%, NDF 76.9%, and ash 6.1% on a DM basis), in sep-
arate troughs until day 70, when the target final BW was 450–470
kg.

Pens were deep bedded with straw (12 m � 6 m = 72 m2 per
pen): the space availability was 4–4.5 m2 per animal. The feeding
area consisted of one concentrate feeder (1.50 m � 0.40
m � 0.35 m), one separate straw feeder (3.60 m � 1.10 m � 0.32
m), and one water bowl (0.30 m � 0.30 m � 0.18 m). The concen-
trate feeders had three feeding spaces, equipped with a scale that
consisted of four loading cells (Utilcell, Barcelona, Spain), where
the feeder was suspended. The contained concentrate was contin-
uously weighed and the weight was displayed in a digital screen
reader, similarly to Verdú et al. (2017). The amount of straw
offered to each pen was recorded weekly to estimate the total
amount of straw consumed. However, these data were only an
approximation of the straw intake because the straw was also used
for bedding. Animals were weighed every 14 days throughout the
study to calculate full BW data. From each concentrate manufac-
ture (every 10–14 days), one sample of concentrate and one sam-
ple of straw were collected to be analysed (see Analyses section;
DM, CP, ash, fat, NDF, and starch). Daily health incidences were
recorded with special emphasis on issues related to digestive dis-
turbances (laminitis, bloat, etc.). Faecal scoring was recorded every
2 weeks, based on Heinrichs et al. (2003). Bloat scoring was deter-
mined according to the scale defined by Johnson et al. (1958).

After 70 days, bulls were transported to a commercial slaugh-
terhouse (La Closa, Guissona, Spain) by truck. The transport dis-
tance was less than 15 km, and animals were slaughtered upon
arrival. Animal transport was organised in four different loads
without mixing animals from different treatments or pens. Before
each loading, each animal’s BW was recorded (final BW). The hot
carcass weight was recorded, and the dressing percentage was cal-
culated from hot carcass weight. The carcass backfat and confor-
mation were graded according to the EU classification system
into 1.2.3.4.5 (EU Regulation no. 1208/81) and into (S)EUROP cate-
gories (EU Regulation no. 1208/81, 1026/91), respectively.

Experiment 2. Nitrogen excretion and total tract apparent digestibility
study

That study used heifers instead of intact bulls (target animal of
the production system studied) as urine sampling in 300 kg intact
bulls is complicated and unsafe. A total of 24 Holstein heifers (310
± 5.3 kg of BW and 251 ± 1.4 days of age at the start of the study)
were housed in individual partially slatted pens (1.9 � 3.4 m) in a
randomised balanced complete block with covariance adjustment
design, at the experimental station of the Cooperativa Agrària de
Guissona (Guissona, Spain). Heifers were weighed on day 0, strat-
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ified by mean BW, and randomly allocated to three treatments (H,
M, L) to equalise initial BW among treatments. During a 28-day
adaptation period, heifers were fed with their corresponding treat-
ment diets; thereafter, the sample collection started. Concentrates
and barley straw (long unprocessed strawwith particle size around
20–30 cm and CP 3.5%, ether extract 1.6%, NDF 76.9%, and ash 6.1%
on a DM basis) were both fed in separate troughs (0.6 � 1.2� 0.3 m)
ad libitum until day 67. Heifers were transported to the abattoir after
68 days of study. The transport distance was less than 1 km (La
Closa, Guissona, Spain). As animals were fed ad libitum, they had
concentrate and straw available during the whole day except the
time needed to weigh the concentrate and straw offer and refusal
(usually 10–15 min per animal); the intake was recorded daily and
started at 08:00 am. The BW was recorded every 14 days. Faecal
and bloat scoring were recorded every 2 weeks similarly to Experi-
ment 1. Once every 2 weeks, one sample of concentrate and one
sample of straw were collected to analyse their DM content, as well
as for concentrate and straw intakes calculation.

To estimate the N excretion and the total tract apparent
digestibility, two identical sampling periods were conducted on
days 30 and 58 to reduce animal variability. In each sampling per-
iod, offered feed and refusals were collected during 7 consecutive
days; these samples were later composited by animal to determine
their nutrient (see Analyses section; CP, ash, ether extract, NDF,
starch) and chromium content. Between days 34–36 and days
62–64, three faecal grab samples (1 h before, as well as 3 and 5
h after feeding) were collected from the rectum and dried at 55
�C for 48 h; these samples were later composited by the animal
on an equal DM basis. In parallel with each faecal grab sample col-
lection, a urine spot sample (100 mL) was obtained by perivaginal
massage and frozen at �20 �C to determine creatinine and N con-
tents. The total tract apparent digestibility was calculated by esti-
mating total faecal output as the ratio of chromium concentration
in the feed and faecal samples. The total urine volume was esti-
mated assuming 883 mmol-creatinine/kg-metabolic BW/d (Chen
et al., 1992).

On day 57, blood samples were collected by jugular venepunc-
ture at 1, 5, 9, 13, and 24 h after feeding, and frozen to determine
serum urea concentration. A 10 mL blood sample was collected
within BD vacutainer serum tubes (Franklin Lakes, NJ) containing
a spray-dried clot activator. Samples were centrifuged at 1 500g
at 4 �C for 15 min to obtain a decanted serum that was stored at
�20 �C until urea concentration analysis.

Experiment 3. Volatilisation study during in vitro manure storage
Additional faecal and urine samples were collected on day 58 of

Experiment 2 (N excretion study) and pooled by treatment (H, M,
L) on equal fresh basis, and frozen at �20 �C. Then, separately pre-
served faecal and urine samples were mixed with a ratio of 1:1
(fresh basis) to produce three mixtures named H, M, and L, corre-
sponding to each CP treatment of Experiment 2. These three man-
ure mixtures were subjected to in vitro incubation assays by
triplicate (60 g of manure per replicate), under aerobic and under
anaerobic conditions, for 58 days to simulate extreme in-farm stor-
age conditions (the removal of manure, stored inside calve pens, is
done at 0.5–2.0 months). No inoculum was added, and therefore,
the manure endogenous microorganisms were responsible for
any biological process. No bedding materials were added to avoid
the interference of these materials with the gaseous emission pro-
file (Misselbrook & Powell, 2005). During storage under aerobic
conditions, PVC buckets (30 L of total volume) were used as
Külling et al. (2001), where manures were located into a tray
(emission surface of 30 cm2) to facilitate their handling. Each
bucket headspace was periodically aerated with fresh air with an
average flow rate of 3.5 L/d. For the anaerobic storage, sealed glass
flasks (6.14 L of total volume) were used; once filled, all were



Fig. 1. N-NH3 emission from beef manure stored under aerobic conditions,
obtained after the mathematical fitting (see Supplementary Material S1) (Volatil-
isation study). (a) Cumulative N-NH3 emission, expressed as percentage of initial
TN of manure. (b) Emission flux (mgN-NH3 m2/s). Symbols: triangles: manure-L;
asterisks: manure-M; circles: manure-H. Abbreviations: N-NH3 = ammonia nitro-
gen, TN= total nitrogen, manure-L= manure from calves fed low dietary CP
concentration, manure-M= manure from calves fed medium dietary CP concentra-
tion, manure-H = manure from calves fed high dietary CP concentration
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flushed with N2 gas to ensure that no oxygen remained inside. The
initial and final manures (days 0 and 58, respectively) were charac-
terised for total carbon (TC), total nitrogen (TN), and DM. During
the manure storage, headspace composition (CH4, CO2) was moni-
tored once a week. The NH3 concentration in the headspace was
only measured under aerobic conditions, every 1–7 days depend-
ing on its evolution. However, the storage tests were done under
room temperature (ranging from 18 to 25 �C).

Analytical methods

Samples of concentrate and straw were analysed for DM,
organic matter (OM) and ash, CP (Kjeldahl method; AOAC, 1995),
NDF (Van Soest et al., 1991), using sodium sulphite and heat-
stable amylase, ether extract (Soxhlet with previous acid hydroly-
sis; AOAC, 1995) and starch (polarimetry method; EU Regulation
for Feed Analyses no. 152/2009). The chromium concentrations
of feed and faecal samples were determined as Devant et al.
(2019). Urine samples were analysed for urinary creatinine (HPLC;
Balcells et al., 1992) and N content (Kjeldahl method; AOAC, 1990).
The measurement of urea N was performed by a Beckman Coulter�

AU 480 analyser, using urea N OSR reagent (Olympus System
Reagent�, Beckman Coulter�, Ireland), based on the enzymatic
method of urease/glutamate dehydrogenase.

Samples from initial and final manures of the storage experi-
ment were analysed for TC and TN content (TruSpec CN Analyser;
LECO Corporation, St. Joseph, MI, USA), as well as total ammonia
nitrogen, DM and volatile solid content (Standard Methods;
APHA, AWA, WEF, 2005). Headspace samples from buckets and
glass flasks were taken for CH4 and CO2 content determination
using a gas-tight syringe and analysed with the aid of a gas chro-
matograph equipped with a thermal conductivity detector
(Palatsi et al., 2010). The NH3 concentration in the bucketś head-
space was measured in situ using a multi-gas portable detector
(model PGM 7840, RAE Systems Inc.) equipped with an ammonia
sensor for a 0–150 mg/m concentration range. The CH4, CO2, and
NH3 concentrations in the headspace were standardised at 1 atm
and 25 �C.

Calculations and statistical analysis

The normality of the data before the statistical analyses was
evaluated by the frequency histogram distribution and the
Shapiro-Wilk test. In the present paper, no data needed to be trans-
formed to achieve normality of the data.

Data of Experiment 1 were analysed using a mixed-effects
model with repeated measures (SAS Inst. Inc., Cary, NC). The model
included initial BW as covariate, treatment, time (a 14-day period),
and the interaction between treatment and time as fixed effects,
and pen as random effect. Time was considered a repeated factor,
and for each analysed variable, animal nested within treatment
(the error term) was subjected to three variance–covariance struc-
tures: compound symmetry, autoregressive order one, and
unstructured. The covariance structure that minimised Schwarz’s
Bayesian information criterion was considered the most desirable
analysis. A chi-square test was conducted to evaluate the effects
of treatment on carcass classification data (categorical variables).

In Experiment 2, intake and serum urea concentration data
were analysed using a mixed-effects model with repeated mea-
sures (SAS Inst. Inc., Cary, NC). The model included initial BW as
covariate, treatment, time (14-day period or sampling min), and
the interaction between treatment and time as fixed effects, and
animal as random effect. Time was considered a repeated factor,
and for each analysed variable, animal nested within treatment
(the error term) was subjected to three variance-covariance struc-
tures and analysed as described in Experiment 1.
4

Nitriogen excretion and digestibility data were analysed using a
mixed-effects model (SAS Inst. Inc., Cary, NC). No interaction
between time and treatment was analysed, as we were not expect-
ing any changes within one month and the only reason to run to
periods was to increase the amount of data. Therefore, the sam-
pling periods were considered independent blocks. The model
included initial BW as covariate, treatment and sampling period
(block) as fixed effects, and animal as random effect.

For Experiment 3, three replicates per storage condition (aero-
bic, anaerobic) and manure (H, M, L) were prepared. The initial
and final weights (wet and dry mass) and concentrations (total C,
total N, total solids) per replicate (storage, manure) were registered
(weights) or determined (concentrations). Individual (or per repli-
cate) losses of wet and dry weight, total C, and total N were calcu-
lated as the difference between initial and final values and
expressed as percentage with respect to the initial corresponding
value [100 � ((in � fin)/in)]. Then, the average value of losses per
manure and storage condition was calculated. Based on the com-
position of the headspace, the emitted C was calculated as the
sum of C-CH4 and C-CO2 and expressed as percentage with respect
to the initial TC (%in-TC) of the corresponding manure. The cumu-
lative emitted N-NH3 was expressed as percentage with respect to
the initial TN (%in-TN) of the corresponding manure. The experi-
mental emitted N-NH3 was adjusted to a logistic equation (see
Supplementary Material S1, Supplementary Fig. S1, and Supple-
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mentary Fig. S2). Once adjusted, this model was employed to cal-
culate the N-NH3 emission flux (emission flux; mN-NH3 m/s), both
represented in Fig. 1A and B.

Statistical analysis of the data was carried out using a mixed-
effects model with repeated measures (SAS Inst. Inc., Cary, NC)
for a randomised balanced complete design. The model included
treatment as fixed effect and sampling bottle as random effect.
The same model was used for the evolution of ammonia emissions
in the aerobic assay, but it included treatment, time (in days), and
the interaction between treatment and time as fixed effects and
replicate as random effect. Time was considered a repeated factor
and analysed as described in previous studies.

For all statistical analyses, significance was declared at P � 0.05
and tendencies were discussed at 0.05 < P � 0.10.
Results

Performance experiment

Two animals were removed from the study: one bull from the M
treatment was removed on day 21 because of a leg injury; one bull
from the L treatment was removed on day 55 because it had fallen
down with splayed legs. The only bloat score recorded throughout
the study was ‘‘0” (no bloat, data not shown). Faecal scores did not
differ among treatments, and the most commonly registered val-
ues were ‘‘1” (normal; data not shown).

The effects of dietary treatments on the final BW, ADG, concen-
trate and straw intakes, total DMI, and total efficiency are sum-
marised in Table 2. No interaction between treatment and time
(14-day periods) was statistically significant, and no treatment
effect on performance or concentrate intake was observed. Daily
straw intake was 1.1 ± 0.08 kg per bull, which is within the range
of the data observed in the previous N excretion study, and there-
fore, it is not affected by treatment. The final BW, carcass weight,
and carcass conformation were not affected by the CP concentra-
Table 2
Performance of Holstein bulls fed concentrate with medium (M) or low (L) CP concentrat

Treatment

Parameter M L

Initial age, d 252 251
Initial BW, kg 343 344
Final BW at 70 d of study, kg 462 460
ADG, kg/d 1.68 1.65
Concentrate DMI, kg/d 7.1 7.1
Straw DMI, kg/d 1.2 1.1
Total DMI, kg/d 8.3 8.2
Concentrate to total DMI ratio, % 85.4 86.7
Efficiency, kg/kg2 0.20 0.20
Carcass
Days in study 90 91
Slaughter age, d 342 342
Slaughter BW, kg 494 490
Carcass weight, kg 259 256
Dressing percentage, % 52.4 52.2

Conformation3

R 5.3 4.7
O 58.7 54.0
P 36.0 41.2

Fatness4 0.10
2 13.33 5.48
3 86.67 94.52

Abbreviation: ADG = average daily gain, DMI = DM intake.
1 T = treatment effect; P = period effect (14 days); T � P = treatment by period intera
2 kg of ADG divided by kg of DM intake.
3 Carcass conformation classification: ‘‘E” (excellent), ‘‘U” (very good), ‘‘R” (good), ‘‘O”
4 Fatness classification: ‘‘1” (low) to ‘‘5” (high).
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tion decrease, whereas L carcasses tended (P = 0.10) to have greater
carcass fatness score compared with M carcasses (94.52% vs 86.67%
scored ‘‘3”, respectively).
Nitrogen excretion and digestibility study

The target CP content was not achieved in the L treatment,
being 6% greater than expected (experimental and theoretical val-
ues of 12.8% vs 12.0% DM, respectively). The CP content of raw
materials was analysed before the manufacture in order to avoid
these deviations in the CP concentrations; however, the CP content
of wheat middling may vary significantly. The nitrogen excretion
and digestibility experiment showed that concentrate, straw, and
total DMI were not affected by the CP decrease (Tables 3 and 4),
while DM and OM total apparent digestibility decreased
(P < 0.05) in heifers fed with L compared with heifers fed H and
M concentrates (Table 4). Starch total apparent digestibility was
lower in L fed heifers compared with M fed heifers, being the val-
ues in H fed heifers at the intermediate range (P < 0.05). The reduc-
tion of CP concentration decreased the total CP apparent
digestibility (P < 0.001): H heifers had the highest CP digestibility,
followed by M and L fed heifers. The volume (kg DM per day) of
faeces tended (P = 0.06) to be lower in M fed heifers. Moreover,
the reduction of CP decreased (P < 0.001) the starch content of M
faeces, compared with H and L faeces, and reduced (P < 0.001)
the CP content of L faeces when compared with H and M
treatments.

Despite the numerical differences in the N intake among L and
M heifers, these values were not statistically significant (169.6 and
185.2 g/d, respectively), probably as a consequence of the unex-
pected greater CP concentration in the L concentrate (Table 4), as
mentioned above. However, the N intake was greater (P < 0.001)
in H heifers compared with M and L heifers. Whereas the CP con-
centration did not affect the faecal N content, urinary N excretion
was reduced (P < 0.001) by 40% when lowering the CP concentra-
ion (Performance study).

P-value1

SEM T P T � P

0.16 0.12
0.15 0.10
3.5 0.77
0.041 0.63 < 0.001 0.12
0.05 0.95 < 0.001 0.69
0.08 0.32 0.57 0.95
0.12 0.50 < 0.05 0.74
0.81 0.29 0.43 0.96
0.005 0.87 < 0.001 0.46

0.47 0.29
1.12 0.96
2.4 0.21
1.7 0.23
0.30 0.65

0.42

ction.

(fair), ‘‘P” (poor).



Table 3
Intake of Holstein heifers fed concentrate with high (H), medium (M) or low (L) CP concentration (N excretion study).

Treatment P-value1

Parameter H M L SEM T P T � P

Initial age, days 250 249 252 1.1 0.22
Initial BW, kg 311 310 310 4.1 0.97
Final BW after 67 days, kg 411 417 410 6.1 0.65
Concentrate DMI, kg/d 7.3 7.3 7.3 0.30 0.98 < 0.001 0.85
Straw DMI, kg/d 0.52 0.51 0.52 0.025 0.92 < 0.001 0.89
Total DMI, kg/d 7.8 7.8 7.8 0.30 0.98 < 0.001 0.82
Concentrate to straw ratio, % 93.3 93.3 93.3 0.40 0.98 < 0.001 0.73

Abbreviation: DMI = DM intake.
1 T = treatment effect; P = period effect (14 days); T � P = treatment by period interaction.

Table 4
Total tract apparent digestibility and nitrogen excretion of Holstein heifers fed concentrate with high (H), medium (M) or low (L) CP concentration (nitrogen excretion study).

Treatment P-value1

Parameter H M L SEM T B

Intake, kg/d
Concentrate DMI 7.9 7.6 7.9 0.28 0.59 0.85
Straw DMI 0.71 0.70 0.70 0.040 0.96 0.01
Total DMI 8.6 8.3 8.6 0.28 0.61 0.56
Faeces, kg/d as fed 13.0 12.0 14.0 0.07 0.06 0.57
Faeces, kg DM/d 2.6 2.4 2.8 0.14 0.06 0.57
Urine, l/d 9.8 10.2 10.4 2.10 0.96 0.81

Total tract apparent digestibility, %
DM 70.3a 71.4a 66.6b 1.34 < 0.05 0.93
OM 72.3a 73.5a 68.9b 1.27 < 0.05 0.33
Starch 94.8ab 96.4a 93.8b 0.72 < 0.05 0.84
CP 69.3a 64.0b 58.3c 1.23 < 0.001 0.97
NDF 38.6 43.5 35.0 3.95 0.28 0.33
EE 70.9 70.6 70.9 2.07 0.98 0.95

Faeces analyses, %DM
OM 88.1 87.3 88.1 0.35 0.07 0.35
Starch 7.5a 5.6b 7.9a 0.75 < 0.05 0.40
CP 16.8a 17.5a 15.4b 0.43 < 0.05 0.13
NDF 47.1 47.7 48.2 1.30 0.79 0.39
EE 5.3 5.9 5.1 0.49 0.42 0.60

N excretion
N intake, g/d 224.9a 185.2b 169.6b 6.83 < 0.001 0.71
Faecal N excretion, g/d 69.2 66.6 70.5 2.87 0.54 0.91
Urinary N excretion, g/d 91.5a 63.1b 50.4b 5.72 < 0.001 0.69

Abbreviation: DMI = DM intake, OM = organic matter, EE = ether extract.
1 T = treatment effect; B = sampling period (block) effect.

a,b,c Means within a row with different superscripts are statistically different (P < 0.05).

Fig. 2. Serum urea concentration evolution after feed offer in Holstein heifers fed
concentrate with high (H), medium (M) or low (L) dietary CP concentration
(Nitrogen excretion study).
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tion from H to M or L. Serum urea concentration varied with time
during postfeeding (Fig. 2), and the lowest concentrations were
found after 12 h postfeeding (P < 0.001). Moreover, the serum urea
concentration was greater (P < 0.001) in H heifers than in M heifers
and in L heifers. No treatment by time interaction was observed in
this parameter.

Finally, there were no bloat incidences, all records were ‘‘0”
scores. The faecal score did not differ among treatments, and the
most common register was ‘‘1” (normal), except for one heifer at
H and another one at M, which scored ‘‘2” (soft to lose) on days
14 and 35, respectively (data not shown).

Manure storage in vitro experiment

The DM content of initial manures ranged from 10.5 to 9.6%
(Table 5). The TN content was affected by the treatment:
manure-L had the lowest (P < 0.05) initial TN and tended to have
the lowest TC content (P = 0.07) as well when compared with H
and M manures.

After 8.3 weeks of storage in aerobic conditions, the TN content
decreased due to biological transformation and volatilisation.



Table 5
Nitrogen and carbon emissions of manure from Holstein bulls fed concentrate with high (H), medium (M) or low (L) CP concentration during the in vitro aerobic and anaerobic
storage. Results obtained before and after 8.3 weeks of storage (Volatilisation study).

Treatment P-value1

Item H M L SEM T

Wet weight
Initial manure, g 60.0 60.0 60.0
Final manure, g
Aerobic 55.1 55.4 53.1
Anaerobic 58.7 59.5 59.2

Wet weight loss after storage, % initial wet weight
Aerobic 8.1a 7.6b 11.4a 0.59 < 0.05
Anaerobic 2.2 0.9 1.3 0.79 0.52

DM concentration
Initial manure, g/kg 105.3 97.7 96.5 4.33 0.41
Final manure, g/kg
Aerobic 84.7 82.0 86.3 1.27 0.12
Anaerobic 84.3a 79.0b 77.7b 1.32 0.03

DM
Initial dry mass, g 6.3 5.9 5.8
Final dry mass, g
Aerobic 4.7 4.5 4.6
Anaerobic 4.9 4.7 4.6

Dry weight loss after storage, % initial dry weight
Aerobic 26.1a 22.5ab 20.8a 1.10 < 0.05
Anaerobic 21.7 19.8 20.5 1.48 0.69

Total nitrogen (TN)
Initial manure, g/kg 8.6b 9.5a 7.5c 0.08 < 0.01
Final manure, g/kg
Aerobic 5.7a 5.4a 4.2b 0.16 < 0.05
Anaerobic 7.8a 7.7a 7.6b 0.03 < 0.01

TN Loss after storage, % initial TN
Aerobic 39.7b 47.9a 50.1a 2.00 < 0.05
Anaerobic 11.6b 19.2a 0.6c 0.10 < 0.001

N-NH3 emitted, % initial TN
Aerobic 15.7 14.2 20.0 0.07 0.09
N-NH3 emitted, % TN loss
Aerobic 39.6 29.7 39.9

Total carbon (TC)
Initial manure, g/kg 39.2 37.1 30.8 1.71 0.07
Final manure, g/kg
Aerobic 24.0 27.7 21.3 2.27 0.22
Anaerobic 35.7 34.3 32.0 1.51 0.09

TC Loss after storage, % initial TC
Aerobic 43.8 31.1 38.7 5.9 0.37
Anaerobic 11.0 6.2 2.2 4.7 0.17

Emitted C-CH4+C-CO2, % initial TC
Aerobic 14.7b 15.0b 21.3a 0.75 < 0.05
Anaerobic 8.4b 8.3b 9.1a 1.59 < 0.05

Carbon/Nitrogen ratio
Initial manure, g/g 4.5 3.9 4.1 0.17 0.15
Final manure, g/g
Aerobic 4.2 5.2 5.0 0.57 0.50
Anaerobic 4.6 4.4 4.2 0.19 0.14

1 T = treatment effect.
a,b,c Means within a row with different superscripts are statistically different (P < 0.05).
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Manure-L still had the lowest (P < 0.05) TN content at the end of
the assay, compared with H andMmanures. However, the percent-
age of aerobic N loss was greater (P < 0.05) in L and M manures
(50.1% and 47.9% initial TN, respectively) than in manure-H
(39.7% initial TN). The total aerobic emitted N-NH3 tended
(P = 0.09) to comprise the total N loss, and was 15.7%, 14.2%, and
20.0% initial TN for manures H, M, and L, respectively (Table 5,
Fig. 1A). Regarding the emission rate, the greatest cumulative N-
NH3 volatilisation was recorded for manure-L (Fig. 1B) and
occurred primarily during the first 7 days of the aerobic assay, with
a maximum peak near 43 mgN-NH3/m2/s. This emission was
greater during the first 60 days of storage of manure-H; however,
the greatest N loss was recorded in manure-L and this value was
slightly greater than in manure-M (Fig. 1B). This different beha-
viour was also registered as a time delay in ammonia emission of
7

4.0–4.5 days in manure-M and manure-L. The TN losses during
storage were inversely correlated with the TC to TN ratio of the
manure (Fig. 3A) and increased with urine N (Fig. 3B).

The overall TC losses under aerobic conditions were caused by
the biodegradation of organic matter and by the emission of CO2

(no CH4 was detected). After 8.3 weeks of storage under anaerobic
conditions, the TN loss was lesser than when incubated under aer-
obic conditions. This phenomenon was exemplified in manure-L,
where there were almost no N losses. The decrease of the initial
TN in this in vitro anaerobic assay must be regarded primarily as
the result of the biological activity rather than a volatilisation pro-
cess, since manure samples were incubated in airtight vials. In this
anaerobic assay, the initial TC was converted to CH4 and CO2,
which indicates that methanogenic microbial communities were
active. In this regard, manure-H losses were numerically greater



Fig. 3. Total N loss expressed per kg of beef manure, at the end of storage
(Volatilisation study). (a) Relationship with total C to total N ratio of the manure. (b)
Relationship with the N-urine content of the manure. Symbols: diamonds, average
value of triplicates; circles, value per replicate. Abbreviations: C = carbon, N=
nitrogen, N-urine= urine nitrogen.
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when expressed as percentage with respect to the initial TC (11%
initial TC). Yet, the TC to TN ratio was not affected, neither by treat-
ment nor by storage conditions (Table 5).

The initial DM did not differ among treatments (Table 5), but
the percentage of wet weight loss after the aerobic storage was
around 10%, being significantly greater (P < 0.05) in manure-L than
in H and Mmanures. However, dry weight loss during aerobic stor-
age was significantly lesser (P < 0.05) in manure-L, followed by M
and H manures. The percentage of wet weight loss after the anaer-
obic storage was lesser than that of aerobic storage because of the
confinement of the former. The total solids after 8.3 weeks of
anaerobic storage were also lesser (P < 0.05) in L and M manures
than in H-manure.
8

Discussion

Performance and nitrogen excretion study

Based on results from the performance study (Table 2) and the
N excretion study (Table 4), the decrease of dietary CP concentra-
tion did not affect concentrate, straw, or total DMI. This agrees
with previous studies conducted with Holstein heifers with high-
concentrate diets and similar N dietary sources (Devant et al.,
2000 and 2001). When feeding the lowest dietary CP concentra-
tion, the DM, OM, and starch apparent total digestibility decreased.
However, the magnitude of the decrease in starch digestibility was
rather low (4 to 1 points); in these diets, starch digestibility was
high (above 92%) and therefore, it may not have had an impact
on performance as it was supported by the absence of differences
in growth in the performance study. Other feeding strategies rather
than dietary CP concentration, such as a concentrate presentation
form (Secrist et al., 1995; Devant et al., 2018) or the addition of
enzymes (Salem et al., 2013), have a greater impact on apparent
total tract starch digestibility and, consequently, on performance.
Moreover, the mechanisms whereby the decrease in dietary CP
intake may have decreased starch total apparent digestibility are
unknown. Generally, the literature describes how starch digestibil-
ity may limit microbial growth and, in turn, N use in the rumen
(Theurer, 1986; Huntington, 1997), rather than how N availability
may limit starch digestibility. In the present study, a relatively low
N availability in the rumen (less N intake and no urea intake in L
treatment) may have limited rumen microbial growth, which is
essential to lyse the protein structures that protect starch granules
(Svihus et al., 2005). Moreover, the different ingredient composi-
tion among treatments (wheat, wheat middling, beet pulp, and
palm oil) may have also caused the differences observed in starch
digestibility among treatments. As mentioned above, the effect of
dietary CP on starch digestibility was small compared with the
great impact that the decrease of dietary CP had on CP digestibility
reduction (from 69.3% in H diet to 64.0% and 58.3% in M and L diets,
respectively) and this effect has been previously described (Devant
et al., 2000).

The N urinary excretion diminished as CP was reduced,
although there were no statistical differences in excreted N urinary
between M and L treatments, probably because N intake did not
differ that much. Nitrogen intake did not differ as dietary CP con-
tent in the concentrates in these two treatments was more similar
than expected, and during the N excretion, the DMI of M and L hei-
fers was numerically close. Moreover, when analysing all study
data together (linear regression, data not shown), N intake
explained 66% of the variation of the urinary N excretion
(P < 0.001). As shown in Fig. 3B, as urinary N content in manure
increased, the manure N loss (emission) also increased; so, the
reduction of urinary N excretion when decreasing dietary CP is a
successful strategy to reduce the N pollution in beef production.
In summary, analysing experimental results 1 and 2 together, the
present study results indicate that reducing dietary CP concentra-
tion from 14.0% to 12.0% (when modifying soybean meal and urea
inclusion levels), CP digestion, serum urea concentration, and N
urinary excretion decrease without having detrimental effects on
the major economic performance indicators and carcass quality.
So, the results of the present study demonstrate that there are still
opportunities to reduce N excretion in beef cattle. Our data might
provide further evidence on the fact that current feeding systems
for ruminants in the United States (NRC, 1996 and 2000) and in
Spain (FEDNA, 2008) should review their recommendations. These
systems probably overestimate the dietary CP requirements of the



M. Devant, A. Pérez, C. Medinyà et al. Animal 16 (2022) 100471
animals as they do not consider urea recycling, and the presented
serum urea and N excretion data support this hypothesis.

Manure greenhouse gas emissions

In a recent review, Sajeev et al. (2018) performed a meta-
analysis of scientific literature on NH3 reductions following a diet-
ary CP decrease in cattle and pigs. These authors concluded that
mean NH3 emissions in cattle can be reduced by 17% for each 1%
of dietary CP decrease. In their estimation, the nutritional factors
N source and dietary concentration, among other aspects, such as
manure management systems, which may differ greatly from farm
to farm, are considered. The present study supports Sajeev et al.
(2018) results if only animal excretion data are analysed (Table 3).
However, when considering the effect of manure storage (Table 5)
and depending on the type of biological degradation (aerobic or
anaerobic), the decrease of dietary CP does not always have a pos-
itive effect on preventing N loss (emissions), as indicated by the
storage experiment.

In Spanish beef commercial farms, the manure management
practice usually begins with the bedding removal, under aerobic
conditions, followed by outdoors manure storage, under intermin-
gled aerobic and anaerobic conditions, usually with no further han-
dling until the field application. In vitro storage tests from the
present study simulated aerobic and anaerobic processes that take
place during the first 8.3 weeks of manure storage. The results of
the present study indicate that N and C losses are significantly
greater under aerobic conditions than under anaerobic conditions.

Surprisingly, the percentage of aerobic N loss was greater in
manure from heifers fed with a relatively low CP concentration
(manure-L) than with a medium and high CP diet (M and H man-
ures). This result is explained by the rate of NH3 loss (Fig. 1B),
which was greater in manure-L than in manure-H and manure-M
during the first 20 days. Moreover, at the end of the aerobic storage
process, the N content in manure decreased along with constraints
in the CP dietary content. Interestingly, there was a delay of 4 days
in the emission of NH3 in M and L manures compared with
manure-H (Fig. 1A). Burgos et al. (2010) found that urea N was
almost completely lost within 24 h at 22.5 �C and that initial TN
in urine in manure slurry was directly proportional to the final
N-NH3, which is consistent with the hydrolysis of urea as the
determining factor for N-NH3 concentration. Maeda and Matsuda
(1997) related N losses to initial manure N-NH3, and the urine N
was hydrolysed to N-NH3 within 1 week of manure storage at 20
�C. Therefore, decreasing dietary CP may be a good strategy to
reduce the NH3 emissions during the first days of a composting
process. Burgos et al. (2010) found that daily cow NH3 emissions
from manure slurries ranged from 57 to 149 g of N and, in dis-
agreement to the present study, NH3 emissions were proportional
to the dietary CP content.

Moreover, as mentioned above, the total N loss during the stor-
age was greater under aerobic than under anaerobic conditions
(Table 5). Manure volatile solid is a key driver of N transformations
and losses (Petersen and Sommer, 2011). Readily biodegradable
organic components serve as an O2 sink, as well as a C and energy
source for heterotrophic denitrification under aerobic-anaerobic
environmental gradients, while particulate volatile solid adds
structure to manure. The manure type (solid or liquid) may thus
affect the storage conditions (aerobic or anaerobic). Solid manure
rich in high fibre bedding material has relatively high porosity that
promotes aerobic biodegradation and the generation of metabolic
heat, which may result in NH3 and N2O emissions. In contrast, liq-
uid manure (slurry) contains buoyant particulate matter that
might constitute a physical barrier to gas exchange if a surface
crust is formed. Therefore, if possible, the anaerobic processing of
manure should be encouraged to reduce N losses.
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However, slight differences in total aerobic or anaerobic C losses
were observed among treatments, and the emitted carbon as CH4

and CO2 was always greater in manure-L than in M and Hmanures.
Studies that describe the effects of varying the dietary CP levels on
C emissions from manures are still scarce and inconsistent. In
agreement with the present study, Külling et al. (2001) found that
methane emissions from cow manure were not reduced and even
slightly increased by dietary protein decrease. Yet, further research
is needed to understand such an apparent inverse correlation
between dietary CP and C emissions from manures. Perhaps not
only the C content is important, and the C nature may influence
C emissions as well and so, the rather large content of starch in
manure-L may have enhanced C emissions. Microbial consortia of
autotrophic and heterotrophic bacteria and archaea utilise the
energy and N contained in urine and faeces as substrate, thereby
transforming the original compounds into various chemical spe-
cies, including CO2, CH4, NH4

+, NO3
�, N2O and N2, in varying amounts

(Dijkstra et al., 2013). Moreover, in urine-rich slurry, where almost
no fibre is present, CH4 formation can be inhibited by NH4

+ (Hansen
et al., 1998). Thus, the considerable decrease of N-NH3 content in
manures originated from low CP diets might explain the observed
increase in CH4 emissions.

The present study provides a broader view beyond the effect of
nutrition on animal excretions and analyses possible scenarios of
the effect of nutrition at farm level including also manure emis-
sions. Reducing N and C losses from the farm must begin with
proper animal feeding and, subsequently, by implementing effi-
cient manure management practices to reduce N and C emissions.
The loss of volatile compounds starts soon after the excretion and
continues through all manure handling processes until the manure
nutrients are incorporated into the soil. This volatilisation is linked
to biological processes evolving under aerobic or anaerobic condi-
tions, depending on the manure management practices.

In summary, the decrease of dietary CP concentration from 17%
to 14.5% and 12% was an efficient strategy to reduce urinary N
excretion up to 40%, without impairing performance or carcass
quality. Manure storage under anaerobic conditions was highly
efficient in preventing N losses. Under such anaerobic conditions,
N volatilisation was 20 times greater in manure from animals fed
14.5% CP and 10 times greater in animals fed 17% CP, compared
to the N losses of manure from animals fed 12% CP. However, a
dietary CP content of 14.5% resulted in less environmental impact
than a dietary CP content of 12.8% when also considering manure
emissions under aerobic or anaerobic conditions. But if CH4 is col-
lected and valorised through the anaerobic digestion process (bio-
gas production), then dietary protein can still be reduced down to
12% CP for obtaining additional environmental benefits.
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