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Abstract 16 

The future success of rice farming will lie in developing productive, sustainable, and 17 

resilient farming systems in relation to coexistent ecosystems. Thus, accurate information 18 

on agricultural practices and grain yield at optimum temporal and spatial scales is crucial. 19 

This study evaluates the potential application of Sentinel-2 (S2) to monitor the dynamics of 20 

rice fields in two consecutive seasons (2018 and 2019) in the Ebro Delta growing area. For 21 

this purpose, time series of four different spectral indexes (NDVI, NDWIMF, NDWIGAO, 22 

and BSI), derived from smoothed S2 data at 20 m spatial resolution, were generated. Then, 23 

a combination of the first and second derivative analysis on the temporal profiles of spectral 24 

indexes was used to automatically identify key phenology and management features from 25 

regional to field scale; and for estimating crop yield at fields.  Features extracted from 26 

NDVI and NDWIGAO were used for identifying significant phenological stage dates (i.e. 27 

Tillering, Heading Date, and Maturity), and field status (i.e. hydroperiod), although the 28 

performance of the proposed method at field-scale was limited by S2 data gaps. The 29 

absolute minimum of NDWIMF showed great potential for estimating rice yield, including 30 

different cultivars (r = - 0.8), and less sensibility to the number of valid images. Sentinel-2 31 

alone cannot assure a consistent phenology monitoring at all fields but demonstrated strong 32 

capabilities for studying the performance of rice fields, thus must be considered in the 33 

development of new strategies for the management of rice-growing areas.  34 

 35 

Keywords: Remote sensing, Agriculture; Time series; Smoothing; Rice phases; Ebro Delta  36 
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1. Introduction 37 

Rice provides food for more than half of the world’s population, occupying more than 12 % 38 

of the world crop area, providing important ecosystems services such as habitat for fauna, 39 

prevention of saline intrusion and soil erosion, subsidence mitigation, and nutrient cycling 40 

(Tornos et al., 2015). Accurate information on crop practices (e.g. water management, 41 

hydroperiod, crop performance) along space and time is crucial for planning agricultural 42 

and environmental policies (Mosleh et al., 2015). However, vegetation dynamics and hence 43 

rice yield, vary temporally and spatially due to several factors such as differences in soil 44 

properties, climatology, and management practices (Casanova, 1998; Bradley et al., 2007). 45 

Thus increasing the difficulty to assess the spatial variability of the agricultural practices 46 

through field surveys, which is also costly and time-consuming. Sometimes, the only 47 

available information comes from farmer’s declarations (Courault et al., 2020). With the 48 

rapid development of geospatial technology in the last years, the acquisition of high-quality 49 

spatial and temporal data has become cost-effective and efficient, offering opportunities for 50 

land monitoring and management. In particular, multispectral satellite remote sensing has 51 

proved its usefulness in monitoring rice crops, water regime, and in estimating yield 52 

production (Mosleh et al., 2015; Dong and Xiao, 2016). Usually, spectral indices (SI) are 53 

used as a proxy for vegetation, flooding regime, and crop efficiency because they integrate 54 

the information of two or more spectral bands which are sensitive to different plant or soil 55 

characteristics (e.g. plant pigments or water content) (Zeng et al., 2020). Coarse-resolution 56 

sensors such as MODIS, AVHRR, SPOT-VEGETATION, and MERIS have been widely 57 

used since high-quality datasets are readily available and easier to process (Bolton et al., 58 

2020, Zhu et al., 2019). However, because their coarse spatial resolutions (from 250 m) is 59 

difficult to differentiate management practices at single-field level (Liu et al., 2020). 60 
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Therefore, remote sensing data with better spatial resolution is preferred; for instance, 61 

Landsat is able to provide images up to 30 m but at low temporal resolution (16 days) 62 

which is still an important constraint (Fernández-Beltrán et al., 2021). 63 

The Sentinel-2 (S2) satellite constellation is an Earth observation mission launched by the 64 

European Spatial Agency (ESA) under the Copernicus programme to provide accurate, 65 

timely, and easily accessible information of the land surface, with improved capabilities for 66 

vegetation mapping and monitoring, and phenology estimation (reviewed in Misra et al., 67 

2020). The S2 senses at 13 different spectral bands (ranging from 443 nm to 2190 nm), 68 

including visible (VIS), near-infrared (NIR), and shortwave infrared (SWIR), at spatial 69 

resolutions of 10 m, 20 m, and 60 m (depending on the band), with a revisiting time of 5 to 70 

10 days. However, the use of S2 still presents some limitations related to time series 71 

development, including noise and data gaps (e.g. atmospheric correction errors, decreased 72 

reflectance by shadows, cloud presence). In this sense, a common practice with multispectral 73 

remote sensing data is the usage of multi-temporal images composites derived from the 74 

combination of best quality pixels from images within a defined period (Sakamoto et al., 75 

2005; Wang et al., 2012; Tornos et al., 2015). Nevertheless, finding noise-free values may 76 

be complicated for short periods of time, and increasing the compositing period may lead to 77 

the loss of information (Zeng et al., 2020). In some cases, there is insufficient cloud-free 78 

information present in the multi-temporal data to compose a cloud-free image (Schmitt et al., 79 

2019), and it is necessary to smooth data by filter-based methods or function fitting methods 80 

to fill temporal gaps and minimize the residual noise (Bradley et al., 2007; Geng et al., 2014). 81 

A complementary approach is the integration of data from different platforms (e.g. Landsat, 82 

Sentinel-2), to reduce temporal gaps in multi-temporal composites (Liu et al., 2020). 83 
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However, data-fusion complexities (i.e. temporal gaps, spectral harmonization, heterogeneity 84 

in cloud-masking methods, and spatial registration) make the possibility of using single-85 

platform remote sensing data very attractive.  86 

After completing the spectral index (SI) time series, the analysis of vegetation phenology, 87 

irrigation regime, and crop yield estimation will depend on the ability to characterize intra- 88 

and inter-annual dynamics at optimal scales. For the monitoring of rice-growing areas, it is 89 

crucial to differentiate key phenological stages (e.g. heading date, maturity) and management 90 

practices (e.g. flooding, harvest), both in space and time, particularly at small spatial scales. 91 

The main aim of this study is to assess the capability of Sentinel-2 to monitor rice crops in a 92 

Mediterranean growing area. Specific objectives are (i) to generate cloud-free spatiotemporal 93 

time series of four SI (NDVI, NDWIMF, NDWIGAO, and BSI) along two consecutive crop 94 

seasons (2018 and 2019), (ii) to automatically identify the main phenological stages and 95 

management practices at different scales (from regional to field), and (iii) to provide 96 

estimates of rice yield. 97 

 98 

2. Materials and methods 99 

2.1. Study area 100 

The Ebro River (NE Iberian Peninsula) is one of the most important tributaries of the 101 

Mediterranean Sea, it is 910 km long, has a drainage area of 85,362 km2, and a mean 102 

annual flow of 426 m3·s-1 (Genua-Olmedo et al., 2016). The Ebro Delta (Fig. 1), with an 103 

extension of ca. 32,500 ha, contains a number of ecosystems with high ecological value 104 

(e.g. wetlands, coastal lagoons, and fresh water springs) included in the Natura 2000 105 

network of the European Union and protected as Natural Park and UNESCO Biosphere 106 

Reserve. The 65 % of the delta area (21,125 ha) is devoted to rice farming (Fig. 1), 107 
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constituting the main economic activity in the region and providing important ecosystems 108 

services. The climate is typically Mediterranean with a mean annual precipitation of about 109 

500 mm, mostly distributed during spring and autumn, and a mean annual temperature of 110 

18 ˚C with mild winters (mean temperature in January is 9 ˚C) and hot summers (mean 111 

temperature in July is 24 ˚C). 112 

In the Ebro Delta, rice is grown from late April to September and left fallow during the rest 113 

of the year (Fig. 2). In the growing season, water management consists of permanent 114 

flooding from sowing time (late April-early May) to two weeks before harvest (September), 115 

the water layer is ca. 5-15 cm deep. During the vegetative and early reproductive stages, 116 

short draining periods can occur for either facilitating early crop establishment, or for 117 

herbicide and fertilizer applications. After harvest, fields are re-inundated for the 118 

incorporation of rice straw into the soil. Thereafter fields are either flooded from October to 119 

December (Re-flooding) or left to progressively drain according to farmers’ practices. From 120 

January to March rice fields are left dry for soil labor operations (harrowing and fertilizer 121 

application) and flooded in Mid-April, at the beginning of the next cultivation period 122 

(Martínez-Eixarch et al., 2018). The cultivars grown in the Ebro Delta, are japonica-type 123 

with medium grain size and growth cycle of ca. 120 to 140 days from sowing to maturity. 124 

In general, the variability of cultivars grown in the area within a year is low, ca. 5 different 125 

rice cultivars cover most of the cultivation area. 126 

 127 



7 
 

 128 

Figure 1. Location of the Ebro Delta and coverage of rice paddies under study. Fields I and 129 

II are used in support of sections 3 and 4. 130 

 131 

2.2. Study design  132 

The study was carried out over two consecutive years (2018-2019). Annual cadastral data 133 

of all rice parcels were obtained from the Department of Agriculture, Livestock, fisheries, 134 

and food of the regional government (http://agricultura.gencat.cat). Four scenarios, 135 

considering different spatial scales, were analyzed:  Scenario ‘A’ included all rice fields in 136 

the Ebro Delta; Scenario ‘B’ and ‘C’ considered all paddies in the northern and southern 137 

hemidelta, respectively; and in Scenario ‘D’ 67 subsets of rice fields were analyzed (Fig. 1) 138 

for which field and crop information, including at least cultivar, agricultural practices (i.e. 139 

sowing, harvesting dates), or yield (kg·ha-1), were obtained from the owner. In Scenario 140 

http://agricultura.gencat.cat/
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‘D’, Field I and Field II (Fig. 1) were chosen as an example to facilitate results 141 

interpretation. Field I (10.8 ha) is close to the Ebro River (Fig. 1) and seeded with Mare 142 

cultivar in both 2018 and 2019. Field II is the largest field in scenario ‘D’ (37.4 ha), Bomba 143 

and Sirio cultivars were grown in 2018 and 2019, respectively. 144 

 145 

 146 

Figure 2. Rice farming calendar in the Ebro Delta. Adapted from (Martínez-Eixarch et al., 147 

2018) 148 

 149 

2.3. Satellite data 150 

Google Earth Engine (GEE), a cloud-based platform for long-term geospatial analysis 151 

(Gorelick et al., 2017), was used for data access, clouds and clouds shadows detection, 152 

image pre-processing (i.e. image subset, mosaicking of tiles and image resampling), and 153 

spectral index calculation. In GEE, image collections of both Sentinel-2 A/B (S2) top of 154 

atmosphere (L1C, TOA) and atmospherically corrected for surface reflectance (L2A, BOA) 155 

from 1st of January 2018 to the 31st of December 2019 were used. All images were obtained 156 

from the same orbit (051) and tiles (TCF31 and TBF31) to homogenize remote sensing 157 

measurements and ensure the full coverage of the study area. First, all available BOA 158 

images within the study period were loaded (Nimages = 138); then, TOA images were 159 

selected based on the available BOA dates. TOA images were needed as the base of the 160 
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method used for masking clouds and cloud shadows (adapted from Schmitt et al., 2019).  161 

Water masking was not applied to avoid interferences with flooded rice paddies and, only 162 

the second module of the Schmitt et al. (2019) method was used (i.e. image quality score 163 

module). This generates a pixel scoring for each independent TOA image and date by 164 

combining the probabilities of cloud presence given different assumptions about brightness, 165 

moisture, and snow. Cloud masks were derived with a threshold of 0.3 on the pixel score. 166 

Then, the cloud masks, in conjunction with the TOA images metadata (sun azimuth and 167 

zenith) and a range of possible cloud heights (from 200 m to 10000 m) were used to 168 

generate shadow scores images and shadow masks. The threshold on the sum of infrared 169 

bands to include as possible shadows was lowered from 0.3 (default) to 0.1 for reducing the 170 

miss-classification of flooded paddies. For more detailed information on the cloud and 171 

shadow masking method see Schmitt el al. (2019). 172 

The computed masks for TOA images were applied to the BOA collection, and after clouds 173 

and clouds shadows masking, S2 BOA images were cropped to the region of interest (Fig. 174 

1), daily mosaicked (merging of same-date tiles), and resampled to 20 m spatial resolution. 175 

For each scenario images were filtered according to cloud and shadow mask percent 176 

coverage over rice fields. Only those images with at least 80 % of valid pixels per scenario 177 

were included in the posterior analysis and, for each valid S2 image (Fig. 3) SI were 178 

computed (see section 2.4) at pixel level (i.e. 20 m x 20 m) and then averaged at different 179 

scenarios scales.  180 

 181 
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 182 

Figure 3. Valid and rejected S2 images 183 

 184 

2.4. Spectral indices 185 

Four SI were calculated according to their utility in estimating rice development, water 186 

management, or production (Table 1). These two and three-band normalized difference 187 

indices are dimensionless, range between -1 and 1, and exploit the VIS, NIR, and SWIR 188 

regions of the spectrum (Table 1). The Normalized Difference Vegetation Index (NDVI) 189 

exploits the chlorophyll light absorption in the VIS-red region of the spectrum and the high 190 

reflectance of vegetation in the NIR (Rouse et al., 1974). The Normalized Difference Water 191 

Index proposed by McFeeters (1996), here referred to as NDWIMF, was developed for 192 

delineating open water bodies by making use of the NIR and VIS-green light. The 193 

Normalized Difference Water Index by Gao (1996), here referred to as NDWIGAO, was 194 

developed for the remote sensing of vegetation liquid water by using the NIR and SWIR 195 

channels. The Bare Soil Index (BSI) is used to identify bare soil areas and fallow lands, by 196 

combining information from the VIS-blue, VIS-red, NIR, and SWIR channels (Rikimaru et 197 

al., 2002). 198 

 199 

Table 1. SI used in this study. The R(λ) in equations stands for Surface Reflectance at S2 band with 200 

centered wavelength λ in nm*. 201 

Spectral Index Equation 
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Normalized Difference Vegetation Index - NDVI                

(Rouse et al. 1974) 

𝑅𝑅(842) − 𝑅𝑅(665)
𝑅𝑅(842) + 𝑅𝑅(665) 

Normalized Difference Water Index - NDWIGAO       

(Gao et al., 1996) 

𝑅𝑅(842) − 𝑅𝑅(1610)
𝑅𝑅(842) + 𝑅𝑅(1610) 

Normalized Difference Water Index – NDWIMF                                       

(McFeeters et al., 1996) 

R(560) − R(842)
R(560) + R(842) 

Bare soil index - BSI (Rikimaru et al., 2002) 
�R(1610) + R(665)� − (R(842) + R(490))
�R(1610) + R(665)�+ ((842) + R(490))

 

*  R(λ) – S2 bands: R(490) - B2, R(560) – B3, R(665) – B4, R(842) – B8, R(1610) – B11 and R(2190) – B12. 202 

 203 

2.5.  Data smoothing 204 

For each S2 valid image and considered scenario, SI data were smoothed with a cubic 205 

spline fitting method, thus estimating daily data at different scenario scales, and reducing 206 

multi-factorial noise in the original data (e.g. atmospheric correction or cloud/shadows 207 

miss-detection derived errors). Cubic spline fitting is based on the minimization of 208 

quadratic errors with curvature type regularization by joining piecewise polynomials 209 

smoothly at selected knots from the original data points (Wang, 2011). Thus, the fit is not 210 

limited by any method-constrained shape, but phenological shape is driven entirely by the 211 

data (Bradley et al., 2007). The cubic spline smoothing was done in R version 3.6 (R Core 212 

Team, 2017) by using the smooth.spline function; all data were included as possible knots 213 

and the spar smoothing parameter was fixed to 0.65. 214 

 215 
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2.6.  Rice phenology, hydroperiod and yield 216 

Smoothed NDVI and NDWIGAO time series were combined to assess rice phenology, crop 217 

evolution, and flooding practices. The BSI was computed as an additional state indicator 218 

complementing the analysis of NDVI and NDWIGAO, but it was not included in the feature 219 

extraction system. The NDWIMF was only used for crop yield estimates. The method for 220 

automatic extraction of key features consisted on the assumption that the presence of local 221 

maximums, minimums, and critical points (inflection points) in spectral index trends is 222 

related to changes in soil, flooding, or vegetation stages (Zheng et al., 2016 and Liu et al., 223 

2017).   For the different scenarios considered, SI time series were smoothed, and all 224 

minimums and maximums were identified from the first derivative analysis; and all 225 

possible inflection points were identified for NDVI, NDWIGAO and BSI. Then, local and 226 

critical points of interest were selected (Table 2).  227 

First, the absolute maximum NDVI was associated with the middle heading date (HD) of 228 

each growing season as proposed in (Wang et al., 2014; Tornos et al., 2015; Zhang et al., 229 

2019). From the HD, other key features were derived for each year following the 230 

identification steps and order presented (Table 2 and Fig. 4). The order was based on the 231 

expected occurrence of events (e.g. Active tillering occurs before HD; End of flooding of 232 

one growing season occurs before flooding of the following one), allowing to automatize 233 

the process by avoiding unwanted minimum/maximum and inflection points. Key features 234 

related with rice status were extracted first from NDVI, and then NDWIGAO was used to 235 

assess water management (Table 2 and Fig. 4). 236 

 237 

Table 2. Key phenological and field-status features identified in this study.  238 



13 
 

For scenario ‘D’, Pearson’s correlation coefficient (r) was used for assessing the 239 

relationship with available ground truth data of i) Sowing date and NDWIGAO-derived 240 

Acronym Key feature Description Identification 

HD Heading Date Phenology: Vegetative development of 

rice is maximum.   

Absolute maximum NDVI  

T Tillering Phenology: Active tillering. The number 

of leaves increases rapidly 

First inflection point of NDVI before HD 

M Maturity Phenology and Management: Close to 

end of maturation stage 

First inflection point of NDVI after HD 

F Flooding Management: Flooding of rice fields 

have started 

First inflection point of NDWIGAO before 

T. It must be after minimum NDWIGAO 

EF End of Flooding Management: Water in fields is emptied 

before the land preparation  

First inflection point of NDWIGAO before 

minimum NDWIGAO of 2nd year 

RF Re-Flooding Management: Optional re-flooding of 

fields during the fallow season.  

Inflection point of   NDWIGAO after M and 

before EF.  

VP Vegetative Phase Phenological phase: From germination 

to panicle initiation 

Period between F and T 

RP Reproductive 

Phase 

Phenological phase: From panicle 

initiation, till flowering 

Period between T and HD 

MRP Maturity-Ripening 

Phase 

Phenological phase: From flowering and 

ripening till M 

Period between HD and M 

PF Permanent 

Flooding 

Management: Fields are always flooded 

but level of water may vary due to 

punctual drainages. 

Period between F and EF. 

DLP Dry Land 

Preparation 

Management: rice fields are dry and 

land is being prepared 

Period between EF and F. Related to  

minimum NDWIGAO and maximum BSI 
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flooding (F), ii) Harvest date and NDVI-derived maturity (M) and, iii) Annual rice 241 

production (kg·ha-1) and the value of the four SI at all dates within the study period. 242 

 243 

 244 

Figure 4. Extraction scheme of phenology and irrigation management practices from 245 

combined NDVI and NDWIGAO dynamics. Numbers stand for the order of identification of 246 

key features, × Inflection Points, ● Local Points. . List of acronyms in Table 2. 247 

 248 

3. Results  249 

3.1. Cloud and shadow masking 250 

We did not conduct a systematic validation of cloud and shadows masking, but it was 251 

visually observed that the adaptation of the Schmitt et al. (2019) method improved the 252 

default Quality Assessment (QA) cloud mask of S2 L2A imagery (QA60 band), 253 

particularly in the presence of disperse or patched clouds (Fig. 5). However, in this 254 

situation, problems related to the detection of smallest, thinner clouds and shadows were 255 

also observed. These limitations were not addressed from an image processing perspective. 256 

In such cases (e.g. Fig. 5), the study relied on second filtering (80% of valid pixels within 257 

each scenario which include only pixels covering rice paddies), the averaging of pixels and 258 
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the smoothing of the time series to decrease the impact from the misclassification of clouds 259 

and shadows.  Overall, 53 of 138 images (ca. 38.5 %) had more than 20 % of pixels 260 

affected by clouds or shadows and were discarded; most of them within the period October-261 

December, after the rice growing cycle (Fig. 3).  262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

Figure 5. The S2 BOA Image clipped to the area of study 272 

on 30th July 2019 as viewed in GEE. A) RGB, B) QA60 273 

band-based method, C) Adapted method. Black pixels 274 

correspond to not-masked areas. Red squares: Examples of 275 

possible overestimation of shadows over water.   276 

3.2. Spectral indices time series 277 

The cubic spline smoothing filled gaps for fitting time series with daily information of each 278 

spectral index derived from S2 imagery at different scenarios scales. The metrics of the 279 

spline fitting (i.e. Pearson’s r and Root Mean Squared Error, RMSE), and thus the 280 

relationship between observed (i.e. satellite-derived) and predicted values, differed among 281 

SI. Considering all the scenarios, the weaker correlations were found for NDWIGAO (0.77 < 282 
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r < 0.94, 0.12 > RMSE > 0.05), and the strongest correlations were for BSI (0.84 < r < 0.98, 283 

0.073 > RMSE > 0.032), NDWIMF (0.93 < r < 0.99, 0.08 > RMSE > 0.04), and NDVI (0.95 284 

< r < 0.99, 0.09 > RMSE > 0.04).  These differences were particularly evident during the 285 

rice-growing season, and particularly, the variability of NDWIGAO at the beginning of the 286 

growing season was not totally retained by the smoothing (Fig. 6C).  287 

At spatial scale, the number of valid images was lower for smaller scenarios (i.e. scenario 288 

‘D’), and at temporal scale, the number of available images was lower during the post-289 

harvest season, in the autumn-winter period (Fig. 3 and Fig. 6), thus affecting the accuracy 290 

of the smoothing. To reduce the uncertainty in these extremes of the smoothed time series, 291 

the phenology and hydroperiod phases (see section 3.3) were only classified from the 2018 292 

flooding to the 2019 mature-ripening stage, excluding the initial pre-flooding and final 293 

post-harvest periods (Fig. 7). SI showed common patterns among the different scenarios 294 

considered, and significant differences were not observed among Scenarios ‘A’, ‘B’ and 295 

‘C’. Scenario ‘D’ showed higher variability, mainly due to differences among individual 296 

paddy fields, but with common characteristics among them (Fig. 7). 297 
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 298 

 299 

 300 

 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

Figure 6. Spline smoothing of SI at different spatial scales. A) Mean NDVI in Scenario 318 

‘A’; B) Mean NDVI in Field I of Scenario ‘D’; C) Mean NDWIGAO in Scenario ‘A’. Root 319 

Mean Squared Error (RMSE), number of data points (N) and Pearson’s r are provided.    320 
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Overall, both NDVI and NDWIGAO minimum values were observed between the winter and 321 

the middle-spring period, coinciding with maximum BSI. The maximum rate of increase of 322 

NDWIGAO, associated with flooding, occurred around April-May. Along the growing 323 

season, the NDVI reached its maximum in July-August, with the BSI showing an inverse 324 

pattern (Fig. 7). After the growing season (autumn and winter) the differences among fields 325 

(Scenario ‘D’) were more evident, and three main SI trends were found: NDVI stabilization 326 

with an increase in NDWIGAO and a decrease in BSI; a reduction in both NDVI and 327 

NDWIGAO (Field I) with BSI increasing (Fig. 7A); and an increase in both NDVI and 328 

NDWIGAO (Field II) associated to a marked decrease in BSI (Fig. 7B). 329 

 330 

3.3.  Phenology and hydroperiod detection 331 

A selection of maximum/minimum and inflection points in NDVI and NDWIGAO time 332 

series were used to extract phenology and hydroperiod dynamics for the different scenarios 333 

considered (Table 2 and Fig. 4). Flooding (F), active Tillering (T), Heading Date (HD), 334 

Maturity (M), End of Flooding (EF), Vegetative Phase (VP), Reproductive Phase (RP), 335 

Mature-Ripening Phase (MRP), Permanent Flooding (PF), Re-Flooding (RF), Dry Land 336 

and Land Preparation (DLP) crop phases were identified. Comparing the global trends in 337 

2018 and 2019 at different scenarios scales, HD was delayed in 2019 and MRP was shorter 338 

in 2019. The temporal variation of NDVI and NDWIGAO indexes were more related to 339 

factors such as water management, type of sowing, field characteristics or climate, than to 340 

rice cultivar. See for instance Field II (Fig. 7B), where different rice cultivars were sowed 341 

in 2018 and 2019.  342 
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 343 

 344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

Figure 7. Rice phenology and hydroperiod at two different sub-scenarios in the Ebro Delta 360 

derived from NDVI and NDWIGAO. The BSI trend is shown as supporting information. A) 361 

Field I; B) Field II (Fig.1). 362 

 363 

The consistency of the results was achieved when only fields with more than 40 valid 364 

Sentinel-2 images (during the two years) were included in the analysis (Table 3). On 365 

average, Flooding was detected 9 and 12 days before the ground truth sowing date (late 366 
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April to late May), and Maturity was observed 6 and 8 days before the ground truth harvest 367 

date (late August to early October), in 2018 and 2019 respectively. Despite the larger 368 

variability observed between flooding and sowing occurrence, the relationship was > 0.6 369 

(Pearson’s r) for all evaluated fields with more than 40 Sentinel-2 images (Table 3). 370 

 371 

Table 3. Relationship between estimated flooding date (F) and ground truth sowing and 372 

between estimated maturity date (M) and ground truth harvest data by year. Only fields 373 

with more than 40 valid Sentinel-2 images were included. 374 

 375 

 376 

3.4. Rice yield estimates 377 

In Scenario ‘D’, SI were correlated (Pearson’s r) with yield production (kg·ha-1). The 378 

strongest correlations were found in the growing season, mainly between July and middle-379 

August (Fig. 8), with rice yield significantly correlated with all SI. The best correlations 380 

observed in 2018 and 2019, respectively, were r = 0.69 and r = 0.74 with NDVI, 0.82 and 381 

0.66 with NDWIGAO, -0.84 and -0.86 with NDWIMF, and -0.81 and -0.71 with BSI. Along 382 

the summer season, the most consistent relationships with yield production were obtained 383 

with NDWIMF and NDVI (Fig. 8).  384 

Year Nimages                     
(min-max) Key feature Ground data Nfields Mean difference     

(days) 
Standard 

deviation (days) r 

2018 60 - 82 Flooding Sowing 19 -12.26 3.57 0.79 

2018 60 - 82 Maturity Harvest 19 -8.37 7.75 0.61 

2019 41 - 82 Flooding Sowing 23 -9.04 11.68 0.66 

2019 41 - 82 Maturity Harvest 23 -6.57 3.42 0.93 



21 
 

 385 

Figure 8. Absolute Pearson’s correlation (r) between parcels production (Kg·ha-1) and SI 386 

daily values along the period studied. 387 

 388 

For this reason, the study focused on the relationships between rice yield and the annual 389 

NDVI maximum (at the HD), and the annual NDWIMF minimum (closest local point to 390 

HD).  Best results (Fig. 9) were obtained when considering only rice fields with mean 391 

NDVI > 0.4 (r = 0.72) or NDWIMF < -0.4 (r = -0.80). 392 
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 393 

Figure 9. Scatter plot and Pearson’s correlation (r) between yearly production by sub-394 

scenarios in ‘D’ and; A) Maximum yearly NDVI for the corresponding parcels; B) 395 

Minimum yearly NDWIMF for the corresponding parcels. 396 

 397 

4. Discussion 398 

4.1. Methodological requirements and limitations 399 

The study has been conducted on a small homogeneous area were rice is the dominant crop. 400 

Cadastral information is annually updated from farmers’ official declarations. Furthermore, 401 

for the assessment on individual fields (Scenario ‘D’), ground truth data included yearly 402 

information of rice parcels, with single cultivar and crop management in each one. These 403 
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information were used to conduct a retrospective analysis based on a ‘unit’ approach 404 

(pixels averaged within fields under the same conditions) in a single-season and low-405 

yielding system. The proposed methodology has not been tested in other types of rice 406 

systems and it is not intended for near real-time monitoring.  Additional land cover 407 

classification is needed in absence of ancillary data, with particular importance under 408 

mixed crops scenarios, thus moving from ‘unit-field’ to ‘pixel-based’ approach and using, 409 

for instance,  classification methods based on the detection of the particular practice of field 410 

flooding, for differentiating rice-growing areas/pixels (Boschetti et al., 2014 and Boschetti 411 

et al., 2017). These, may be later aggregated by means of different criteria such as 412 

proximity (distance between pixels) or spectral trends’ similarity.   413 

In this study, the main limitation were satellite data gaps since 40 % of the available S2 414 

images for the selected orbit and period had less than 80 % of valid pixels. The number of 415 

rejected images increased in smaller scenarios. Although the selection criterion discarded a 416 

large number of S2 images, it was necessary for reducing the uncertainty related to cloud 417 

and cloud shadow miss-detection and reducing the noise of final mean SI values. Cloud 418 

presence and cloud shadow masking is a key issue in optical remote sensing, and the 419 

default operational Sentinel-2 QA60 has been shown to commit high errors in presence of 420 

thin or patched clouds (Coluzzi et al., 2018). Thus, we preferred the adapted masking 421 

method of Schmitt et al. (2019), which has the advantage that can be easily tuned, making it 422 

suitable for a wide range of scenarios. The mean gap between consecutive images was 9 423 

days, usually ranging between 5 (S2 temporal resolution) and 10 days, thus improving other 424 

similar platforms such as Landsat, with a best temporal resolution of 16 days.  The largest 425 

gaps due to cloud presence were of 25 days (November 2019), 30 days (November 2018), 426 

and 40 days (December 2019), but in these months a lower variability in rice fields is 427 
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expected (the growing season is from mid-April to early September) and a reduced 428 

temporal resolution during this period did not affect the results significantly. Increasing 429 

temporal resolution is more important in the growing season when changes occur within 430 

days or weeks. In this case, further research should consider improving the methodology 431 

for thin cloud and clouds shadows masking for reducing data gaps, particularly, at field 432 

scale. Although it can provide valuable information, our results indicate that Sentinel-2 433 

alone is not enough for an accurate phenology monitoring for crop management. In this 434 

sense, it is suggested the use of multi-platform data. In the optical domain, the fusion of 435 

Sentinel-2 and Landsat-8 is recommended (Liu et al., 2020, Boschetti et al., 2018), since 436 

both platforms’ pixel sizes are smaller than individual rice fields. A complementary 437 

approach is generating cloud-free time series of synthetic high-resolution images (e.g. 438 

Sentinel-2, Landsat-7/8) from moderate resolution data such as MODIS imagery (Wu et al., 439 

2018, Gao et al., 2015). However, image processing of data from multiple satellites/sensors 440 

is challenging, for instance, due to differences in their orbital, spatial, spectral response 441 

functions, and image processing chains (Campos-Taberner et al., 2017). 442 

 443 

4.2. Application of spectral indices 444 

The NDVI and NDWIGAO were combined to estimate key cropping phases (i.e. Flooding, 445 

Tillering, Harvest, Maturity, and Re-Flooding), and NDWIMF was related to crop yield.  446 

NDVI was limited to the rice-growing season for assessing rice phenology, mainly 447 

Tillering, Heading Date, and Maturity. In previous studies, NDVI has been used for 448 

showing the transition from bare flooded soil to rice emergence (Tornos et al., 2015). In 449 

this study, this transition was not clearly identified since the canopy cover is scarce at the 450 

beginning of the cropping and soil-related factors may affect NDVI values (Zhang et al., 451 
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2019). In relation to the identification of the Tillering stage, the temporal gap between 452 

Flooding and Tillering agreed with the common rice farming calendar in the Ebro Delta 453 

(Fig. 2). Although the proposed method differentiated small variability between nearby 454 

fields’ dynamics (Scenario ‘D’), no phenological field data were available for validating its 455 

accuracy. We used the NDVI inflection point before the Heading Date for defining the start 456 

of the active Tillering stage as previous works have reported that active Tillering is 457 

associated with the maximum increase rate of NDVI, related to the fast growth of rice 458 

plants during this stage (Zheng et al., 2016). The Heading Date has been related to the 459 

maximum in NDVI, which is associated to a peak in Leaf Area Index (LAI), showing an 460 

increase in plant biomass (Wang et al., 2014). The maturity date (M) is associated with a 461 

rapid decrease of NDVI at the end of this stage (Zheng et al., 2016) and it was significantly 462 

related to the harvest date (r > 0.6). The delay observed between the maturity date (S2-463 

derived) and the harvest date (reference data) could be related to farmers’ harvest practices, 464 

since harvest is mediated not only because the ripening state of rice but also considers other 465 

external factors (e.g. weather, machinery availability).  However, more ground truth data 466 

including also additional information (e.g. HD, T) and covering a larger extension (ground 467 

truth data in this study was limited to a subset of spatially aggregated fields) is further 468 

needed for deeply assessing the accuracy on the identification of key phenology features 469 

through the proposed extraction scheme. NDWIGAO variations were associated with 470 

hydroperiod and can be applied as an indicator of flooding management in rice paddies (i.e. 471 

Flooding, End of Flooding and Re-Flooding). Our results were similar to those reported in 472 

Tornos et al. (2015) in the Ebro Delta and Boschetti et al. (2014) in rice fields from Italy, 473 

both using data derived from MODIS. The NDWIGAO responds to water level fluctuations 474 

from flooding to rice tillering, and after the rice is harvested. However, with the increase in 475 
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leaf coverage during the reproductive and rice ripening phases, NDWIGAO could be more 476 

associated with the canopy structure and mediated by plant water content and metabolic 477 

activity (Zhang et al., 2019; Serrano et al., 2019). For the same reason, the identified Re-478 

flooding (RF) should be carefully considered in presence of a second NDVI peak after 479 

harvest (e.g. Fig.7B). This peak may be related to the presence of weed or rice regrowth 480 

(Tornos et al. 2015) with an expected impact on the NDWIGAO dynamics.  Consequently, 481 

NDWIGAO is useful for complementing NDVI-derived phenology and vegetation status in 482 

rice fields, but the index variability increases in the presence of vegetation, highlighting the 483 

need to improve data frequency. The NDWIGAO derived flooding results are a promising 484 

estimator of the sowing date (r > 0.6), with sowing occurring, on average, 9 to 12 days after 485 

flooding (Table 3). Despite these differences are in agreement with the general rice farming 486 

calendar in the Ebro Delta (Fig. 2), high variability was observed (up to ±11 days). This 487 

variability may be explained by different types of sowing (e.g. direct seeding, transplanting, 488 

dry-seeding) and farmer’s decisions on sowing time, which increase the uncertainty in their 489 

relationship. These issues must be further tackled, but ground truth data regarding water 490 

management practices and sowing management are needed.  491 

The BSI was mainly used as a reference for complementing the analysis on NDVI and 492 

NDWIGAO results, under the assumption that maximum BSI occurs when a rice field has no 493 

water and no vegetation. Applying the first and second derivatives analysis on BSI showed 494 

that minimum and maximum were related with HD and dry land, respectively; while 495 

inflection points in BSI were closer to the identified flooding and maturity-harvest (Fig. 7). 496 

A further assessment of BSI capabilities within the proposed extraction scheme is planned, 497 

since it may combine important key features of both NDVI and NDWIGAO for the 498 

management of rice-growing areas.   499 
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Finally, NDWIMF temporal pattern was similar but inverse to NDVI, thus no additional 500 

information on crop cycle was obtained. However, minimum NDWIMF was highly 501 

correlated to crop yield in the Ebro Delta (r = -0.80), showing good agreement between 502 

fields with different yields and cultivars (Fig. 9). NDWIMF includes the same spectral bands 503 

as the Green NDVI (Gitelson et al., 1996) which has been used before for crop yield 504 

estimates (Moreno-García et al., 2018). In low-yielding rice s (< 9000 Kg·ha-1), such as the 505 

Ebro Delta, two spectral bands SI are not affected by the saturation phenomenon due to low 506 

crop biomass (Xue et al., 2014), thus explaining the strong relationship observed between 507 

NDWIMF and yield. Different from the relationship achieved for sowing and harvest, crop 508 

yield estimates were not strictly related to the number of valid satellite images of the study 509 

period. It is explained because the minimum NDWIMF used occurs close to the HD, in 510 

summer, when smaller data gaps are expected. Nevertheless, previous studies have n that 511 

from tillering to harvest, different stages of rice are suitable for crop yield estimation (Xue 512 

et al., 2014; Cao et al., 2016; Moreno-García et al., 2018), but these stages can be more 513 

complex to identify. 514 

 515 

4.3.  Ebro Delta Rice Development (2018-2019) and Management Implications 516 

In terms of rice paddies dynamics, similar results were obtained in Scenarios ‘A’, ‘B’, ‘C’, 517 

and in most of the fields in Scenario ‘D’, thus showing the homogeneity of agricultural 518 

practices in the Ebro Delta along the study period (2018-2019). Those results are similar to 519 

those reported by Tornos et al. (2015) from 2001 to 2012, which suggested not only spatial 520 

but also temporal homogeneity in rice management in the Ebro Delta. Considering 521 

Scenarios ‘A’, ‘B’ and ‘C’, the main differences between both years related to rice 522 

development were a delay in heading date and a larger ripening phase in 2019, which might 523 
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be mediated by climatologic factors. For instance, before the start of the growing season, 524 

the total precipitation in April varied between 40.5 mm in 2018 to 8.9 mm in 2019 525 

(Meteorological Service of Catalonia, https://www.meteo.cat/wpweb/climatologia). 526 

Although different meteorological factors (e.g. air, solar radiation) or soil features may 527 

affect the crop (Sánchez et al., 2013; Zhao et al., 2016), heavy rains increase fields’ water 528 

level, which mitigates heat and salinity stress to the crop (Martínez-Eixarch et al., 2018), 529 

contributing to modulate the length of the different phenological phases of the crop.  530 

At small spatial scales, our study provides an insight into the potential of S2-derived SI for 531 

the characterization and assessment of the dynamics of rice fields and crop yield estimates 532 

in low-yielding rice farming systems. The proposed method allowed to capture small 533 

dynamics variations among fields (Scenario ‘D’), automatically, with importance from a 534 

management/planning sight. For instance, yearly crop yield estimates at field-level or 535 

different field management practices after harvest (e.g. re-flooding, progressive drying or 536 

rice regrowth) are key aspects for the development of agro-environmental policies and 537 

productive and sustainable wetlands. Further research will focus on increasing both satellite 538 

and ground truth data for addressing the main limitations found and being able to provide 539 

relevant information for authorities at a regional scale. 540 

 541 

5. CONCLUSIONS 542 

Atmospheric conditions (e.g. cloud presence) and differences in rice fields characteristics 543 

(e.g. area, soil properties, management practices) increase the difficulty of using coarse 544 

resolution or low-frequency multispectral satellite data (e.g MODIS, Landsat) for the 545 

effective monitoring of agricultural practices and crop efficiency. For these purposes, in 546 

this study, we used three different spectral indexes (NDVI, NDWIMF, NDWIGAO) from 547 

https://www.meteo.cat/wpweb/climatologia
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Sentinel-2 (temporal frequency of 5 days). At different spatial scales, key rice farming 548 

features were identified (i.e. Flooding, Tillering, Heading Date, Maturity, End of Flooding 549 

and Re-Flooding after harvest), thus defining the main phenological phases of the crops 550 

(i.e. Vegetative Phase, Reproductive Phase, Maturity-Ripening Phase), identifying flooding 551 

regimes (flooded or dry), and producing accurate estimates of rice yield. However, few 552 

ground truth data were available and, satellite data gaps due to cloud cover limited 553 

significantly the applicability of the method at smaller spatial scales, restricting its 554 

capabilities in several fields. Further research must address these issues by increasing the 555 

density of satellite data (e.g. multi-platform data, enhanced cloud and shadows masking) 556 

and reference data for fully assessing the accuracy of the proposed key features’ extraction 557 

scheme and its extended applicability to all the Ebro Delta region and other similar areas 558 

(deltaic low-yielding rice systems).  559 
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