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Abstract 74 

Current demand of consumers for healthy, and sustainable food products has led the 75 

industry to search for different sources of plant protein isolates and concentrates. 76 

Legumes represent an excellent non-animal protein source with high protein content. 77 

Legume species are distributed in a wide range of ecological conditions, including 78 

regions with drought conditions, making them a sustainable crop in a context of global 79 

warming. However, their use as human food is limited by the presence of anti-80 

nutritional factors, such as protease inhibitors, lectins, phytates, and alkaloids, which 81 

have adverse nutritional effects. Anti-technological factors, such as fiber, tannins, and 82 

lipids, can affect the purity and protein extraction yield. Although most are removed or 83 

reduced during alkaline solubilization and isoelectric precipitation processes, some 84 

remain in the resulting protein isolates. Selection of appropriate legume genotypes and 85 

different emerging and sustainable facilitating technologies, such as high-power 86 

ultrasound, pulsed electric fields, high hydrostatic pressure, microwave and supercritical 87 

fluids, can be applied to increase the removal of undesirable compounds. Some 88 

technologies can be used to increase protein yield. The technologies can also modify 89 

protein structure to improve digestibility, reduce allergenicity, and tune technological 90 

properties. This review summarizes recent findings regarding the use of emerging 91 

technologies to obtain high-purity protein isolates and the effects on techno-functional 92 

properties and health.  93 

 94 
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 98 

1. Importance of legumes in human diet as a sustainable protein source 99 

 100 

Legumes belong to the Fabaceae family, with approximately 20,000 species divided 101 

into 700 genera (Smýkal et al., 2015). Within legumes, those with dry edible seeds are 102 

known as pulses, while others harvested green are classified as vegetables. Legumes for 103 

human consumption include soybean (Glycine max (L.) Merr.), beans (Phaseolus spp.), 104 

peas (Pisum sativum L.), fava beans (Vicia faba L.), chickpea (Cicer arietinum L.), 105 

lentil (Lens culinaris) and lupine (Lupinus albus L.), among other crops (FAO, 1994). 106 

Legumes are the second family in agronomic importance, representing approximately 107 

15% of arable land worldwide (Watson et al., 2017). Moreover, legumes are key crops 108 

for sustainable agriculture, mostly because of their ability to adapt to a wide range of 109 

ecological conditions and their capacity to fix atmospheric nitrogen in symbiosis with 110 

soil bacteria, in a process known as biological nitrogen fixation (BNF).  111 

Proteins are macronutrients of high nutritional and health importance, which are 112 

essential in human and animal diets. Legumes have historically been one of the main 113 

sources of proteins in the human diet because of their high-protein content and other 114 

agronomic advantages that have led to their cultivation since the Neolithic period 115 

(Huebbe & Rimbach, 2020). Indeed, legumes are the most suitable plants for use as an 116 

alternative to animal protein, providing approximately 33% of the protein requirements 117 

in the human diet (Bessada et al., 2019). However, since the middle of the 19th century, 118 

meat has displaced legumes in diets historically based on legume proteins, such as the 119 

Mediterranean diet. Hence, consumption and cultivation of legumes have decreased in 120 

recent decades in many countries (Varela-Moreiras et al., 2013; Zander et al., 2016). 121 

The shift in the habit of protein consumption has consequences for human health, 122 

because there is an increasing risk of cancer, diabetes, cardiovascular disorders, and 123 
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premature death associated with animal protein intake (Arnett et al., 2019; De Oliveira 124 

Mota et al., 2019).  125 

The growing consumer interest in vegan and vegetarian products can be in part 126 

attributed to the awareness of healthy dietary habits and an increasing concern for 127 

animal rights and welfare (Norman & Klaus, 2020). Additionally, given that an average 128 

of 4.9 kg of vegetable protein is needed to obtain 1 kg of meat, livestock farming has 129 

put additional pressure on natural resources (Chéreau et al., 2016). Moreover, intensive 130 

livestock farming is in part responsible for the increase in greenhouse gas (GHG) 131 

emissions making the production of animal protein unsustainable (Kumar et al., 2017). 132 

Consequently, it has been predicted that a 50% reduction in meat production could 133 

reduce GHG emissions from agriculture by 25% to 40% (Zander et al., 2016). 134 

Furthermore, BNF is directly related to other beneficial environmental effects of 135 

legumes because this process reduces the need for synthetic fertilizers, which reduces 136 

the GHG emissions required for their production and transport (El Mujtar et al., 2019), 137 

and contributes to the increase in nitrogen use efficiency in agricultural systems (Anas 138 

et al., 2020).  139 

Regardless of the motivations, the increasing interest in plant-based products has led 140 

to an increased production of legume protein concentrates (PCs, 40-70% protein) and 141 

protein isolates (PIs, 80-90% protein) because of their functional and nutritional 142 

properties (Klupšaitė & Juodeikienė, 2015; Khazaei et al., 2019). Indeed, the global 143 

plant-based meat market was valued at approximately USD 11.92 billion in 2018 and it 144 

is expected to generate approximately USD 21.23 billion by 2025 (Zion Market 145 

Research, 2019). However, the development of plant-based protein-rich products should 146 

consider different aspects, including i) selection of appropriate species, ii) design of 147 

efficient, safe, and environmentally friendly protein extraction processes to obtain PCs 148 
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and PIs, and iii) improvement of sensory, technological, and nutritional properties of 149 

plant-based foods. Herein, we review the potential of different emerging technologies 150 

that could be applied to obtain PCs and PIs from legumes. This review focuses on the 151 

most relevant findings during the past 5 years regarding safety, nutritional value, 152 

sensory quality, and technological properties of legume PIs as affected by emerging 153 

technologies. 154 

 155 

1.1. Nutritional characteristics of legumes 156 

 157 

Legumes are now emerging as an excellent source of nutrients. For this reason, FAO 158 

declared 2016 as the International Year of Pulses, to heighten their inclusion in a 159 

sustainable food production strategy designed to achieve food security and adequate 160 

nutrition (FAO, 2016). Remarkably, the amount of protein in legumes is one of the 161 

highest in the plant kingdom, ranging from 20% in peas to 40% in lupines, with most 162 

being storage proteins globulins (legumin and vicilin), albumins, and glutelins (Bessada 163 

et al., 2019). With regards to their amino acid profile, legumes have high lysine, leucine, 164 

aspartic acid, and arginine content but are usually poor in sulfur-containing amino acids 165 

(methionine and cysteine) and tryptophan (Bessada et al., 2019). Furthermore, 166 

digestibility or other health-related properties of legume proteins can be reduced by the 167 

presence of other seed compounds, the so-called anti-nutritional factors (ANFs), which 168 

can be classified as protein and non-protein compounds. Proteinaceous ANFs include 169 

lectins and protease inhibitors (trypsin and chymotrypsin) that prevent protein digestion 170 

in the gastrointestinal tract and reduce amino acid intake. Non-protein ANFs include 171 

phenolic compounds (e.g., tannins), saponins, and alkaloids, which play important roles 172 

in plant protective mechanisms, and phytates that reduce the bioavailability of essential 173 
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minerals, such as iron. However, depending on their chemical structure, effects of 174 

concentration, exposure time, and interaction with other dietary components, ANFs can 175 

also be considered pro-nutrients with multiple health benefits, such as anti-176 

inflammatory, anti-cholesterol, antioxidant, and anticarcinogenic activities (Cabezudo et 177 

al., 2021).  178 

Some studies have shown that the amount of ANFs, such as tannins and protease 179 

inhibitors, decrease during seed germination, improving protein quality, and 180 

consequently, the digestibility of legume proteins (Ohanenye et al., 2020). Additionally, 181 

postharvest seeds treatments such as dehulling, fermentation, cooking, soaking and 182 

roasting affect their nutritional composition (James et al., 2020; Besada 2019). Thus, the 183 

exploration of seed germination and postharvest treatments could contribute to the 184 

increased utilization of legumes as an alternative to animal protein for the human diet. 185 

Additionally, the reduction of iron bioavailability by the presence of phytate should be 186 

considered to prevent iron deficiency in a legume protein-based diet. In this regard, 187 

legumes can also provide a heme-iron pigment, leghemoglobin, which is synthesized in 188 

the root nodules where nitrogen fixation takes place. This pigment can be exploited as 189 

an additive to legume PIs to overcome the presence of certain ANFs (phytate and 190 

polyphenols) that reduce the bioavailability of iron. Moreover, leghemoglobin has been 191 

used as a color additive mimicking the organoleptic properties of meat heme proteins 192 

(Sha & Xiong, 2020; FDA, 2019).  193 

 194 

1.2. Genomic resources in plant breeding for legume selection 195 

Protein quality and levels of ANFs differed significantly among cultivars of the 196 

same legume species. In fact, the different protein composition in yellow peas cultivars 197 

has been shown of great importance in obtaining pea protein isolates with desirable 198 
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functionality (Cui et al., 2020). Additionally, agricultural properties and adaptability to 199 

different climates and soil types should be considered when selecting optimal cultivars 200 

for human consumption, such as obtaining low alkaloid lupine (sweet lupine) varieties 201 

that humans can consume. Moreover, the high protein levels, together with the diversity 202 

of lupine species and their capacity to grow under diverse soil and climatic conditions, 203 

make these legumes an interesting alternative for the sustainable production of plant-204 

based foods (Swiecicki et al., 2000). The use of legume genotypes adapted to local soil 205 

and climatic conditions will contribute to the development of sustainable food systems, 206 

with special attention given to necessary adaptations to climate change. 207 

Genomics-assisted breeding (GAB) has been successfully used to combat biotic and 208 

abiotic stress in both cereals and legumes (Kole et al., 2015) and to improve the 209 

nutritional quality traits in agricultural crops (Chandra et al., 2020). Additionally, other 210 

genomic resources, such as genome assemblies and germplasm sequencing, have been 211 

reviewed for six major legumes (soybeans, groundnuts, cowpeas, common beans, 212 

chickpeas, and pigeon peas) (Thudi et al., 2021). Consequently, advances in next-213 

generation sequencing (NGS), in addition to precision phenotyping technologies, are 214 

important for the selection of varieties with specific traits to make legumes a real 215 

alternative to animal protein (Giovanni & Murray, 2018; Yang et al., 2020). Therefore, 216 

great effort must be made to optimize the production and processing technologies to 217 

satisfy the food protein demand, from the selection of legume varieties with high-218 

protein content and quality to the development of technologies to improve the 219 

production of healthy and sustainable food.  220 

 221 

2. Facilitating emerging technologies for the removal of unwanted compounds 222 

and extraction of protein in legumes  223 
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Optimal protein isolation and purification procedures are vital for achieving high-224 

quality PIs. However, several compounds such as ANF, located inside the cell-matrix, 225 

and the presence and characteristics of the legume cell walls, limit protein extraction 226 

(Byanju et al., 2020). Therefore, ANF should be removed to improve the protein 227 

digestibility and bioavailability of amino acids and iron. Furthermore, certain 228 

compounds that are typically present in legumes, such as triacylglycerides or 229 

carotenoids, must also be removed since they could affect the techno-functional 230 

properties, purity, and yield of PCs and PIs. In this regard, those compounds affecting 231 

techno-functional properties, yield or purity can be denominated anti-technological 232 

factors (ATFs). Some ANFs, such as tannins, could also be classified as ATFs because 233 

they may negatively affect various techno-functional properties, such as color, and 234 

affect the purity and yield of the PIs (Alu’Datt et al., 2014; Chéreau et al., 2016; Rahate 235 

et al., 2021). Table 1 summarizes chemical compounds present in legumes and their 236 

categorization based on ATF and ANF classifications. 237 

The most important processes for obtaining legume PC and PI include dry-238 

fractionation and wet-extraction processes. Dry-fractionation involve two processes, 239 

pin-milling and air-classification, where the different legume fractions are classified 240 

according to their size, density, and electrostatic properties (Klupšaitė & Juodeikienė, 241 

2015; Assatory et al., 2019; Chéreau et al., 2016). This is a common, simple and 242 

sustainable method to produce PC; however, the purity of the protein fraction (fine and 243 

light fraction) is normally low (about 50% protein) and requires further processing for 244 

concentration (Khazaei et al., 2019; Klupšaitė & Juodeikienė, 2015). Moreover, high 245 

content of undesirable compounds (lipids, fibers, or ANFs) could be present in the 246 

enriched protein fraction (Schutyser et al., 2015). In contrast, wet-extraction processes 247 

are more convenient because of the higher purity, digestibility, and quality of the PIs 248 
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obtained (Khazaei et al., 2019; Boye et al., 2010). This can be attributed to the more 249 

efficient removal of ANFs and ATFs in wet-extraction processes compared to dry-250 

fractionation (Vogelsang-O’Dwyer et al., 2020). The commonly applied method of wet-251 

extraction for obtaining PCs and PIs involves different steps: (i) pretreatment of the 252 

seeds for cell wall disruption (altering chemical composition and structure of cellulose 253 

and hemicellulose), (ii) solubilization of proteins in an alkaline solution (pH>8), and 254 

(iii) selective protein precipitation by adjusting pH to the isoelectric point 255 

(approximately pH of 4.5) (Klupšaitė & Juodeikienė, 2015; Perović et al., 2020). 256 

Additional steps to separate the insoluble fractions (centrifugation or filtration) and 257 

prepare the final protein concentration (spray-drying or freeze-drying) are also required 258 

(Figure 2) (Khazaei et al., 2019). However, other procedures, such as reverse micelles 259 

prepared with hexane, surfactants, and water (Zhao et al., 2018), the salt-extraction 260 

method, using an appropriate salt solution at desired ionic strength for protein 261 

solubilization, and precipitation by dilution or ultrafiltration, have also been proposed 262 

(Klupšaitė & Juodeikienė, 2015). Protein yields are essential for industrial viability. 263 

However, several factors (cultivar, particle size, temperature, protein composition, lipid 264 

content, pH, and solubilizing agent) may influence the protein yield and the quality of 265 

the PIs (Aguilar-Acosta et al., 2020; Khazaei et al., 2019; Cui et al., 2020). 266 

Additionally, it is important to highlight that protein extraction is a complex process 267 

that includes important steps, such as the penetration of the solvent into the cells, 268 

redistribution of solvent into different cell compartments, and correct solubilization of 269 

the protein (Aguilar-Acosta et al., 2020). 270 

The use of water-based solvents in wet-extraction processes allows the reduction 271 

and/or withdrawal of water-soluble ATFs and ANFs, such as α-galactosides 272 

(Vogelsang-O’Dwyer et al., 2020). However, not all compounds can be removed, and 273 
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other relevant ANFs and ATFs, such as phytic acid, remain in certain amounts (Mondor 274 

et al., 2009). Moreover, further processing of PIs, including baking, cooking, or 275 

extrusion, has been demonstrated to have a mild effect on the reduction of various 276 

ANFs and ATFs (Sánchez-Velázquez et al., 2021). Therefore, a multidisciplinary 277 

approach for minimizing and extracting ANFs and ATFs before the solubilization of the 278 

protein is a necessary step for obtaining PIs with high technological and nutritional 279 

properties (Figure 1). Additionally, further use of the separated fractions can be 280 

considered because of the functional-related properties of most of these compounds 281 

(Table 1). 282 

Emerging technologies seek to intensify conventional extraction processes or 283 

provide new extraction procedures to enhance the process kinetics with less energy 284 

consumption and minimum use of solvents while maintaining or improving the 285 

functional properties of the extracted molecules (Bessada et al., 2019; Maroun et al., 286 

2018). Mechanisms controlling solid-liquid extraction can be separated into those 287 

affecting (i) internal solids and (ii) external solvent transport. Transport mechanisms 288 

inside the solid particles encompass solvent diffusion into the matrix cells, solute 289 

solubilization, and diffusion of the solute into the particle surface. External transport is 290 

related to convective mechanisms, including solvent entry into the particle and 291 

migration of the extracted solute from the surface of the particle into the bulk solvent 292 

(Aguilar-Acosta et al., 2020). Furthermore, traditional extraction techniques are highly 293 

intensive in terms of time, use of solvents, and high temperatures, which could 294 

negatively affect not only the activity of the extracted compounds but also the protein 295 

matrix (Navarro del Hierro et al., 2018).  296 

A common aspect of all extraction processes is that the cell wall is the main barrier 297 

to protein separation because proteins cannot cross it because of their high-molecular-298 
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weight (Voudouris et al., 2017). Although the milling processing collapses the cell wall 299 

and favors the liberation of protein matrices and starch granules, the use of emerging 300 

technologies could be a promising alternative to improve protein extraction yields from 301 

legumes (Aguilar-Acosta et al., 2020; Chemat et al., 2020). Emerging technologies must 302 

be driven to improve internal and/or external mass transport mechanisms by considering 303 

both target solutes and solvents without negatively affecting the structural constituents. 304 

Novel extraction techniques attempt to ease the removal of molecules strongly bound to 305 

the solid matrix under milder processing conditions (temperature, pH, or pressure) and 306 

reduce the use of solvents or replacing them by more sustainable solvents and with 307 

lower toxicity (Panja, 2018). Various eco-emerging technologies, also called green 308 

technologies, such as high-power ultrasound (HPU), supercritical fluids (SFs), pulsed 309 

(PEFs) and moderate electric fields (MEFs), high hydrostatic pressure (HHP), and 310 

microwaves (MWs), have been extensively used to intensify the extraction of natural 311 

compounds from vegetable matrices. Thus, a compilation of recent applications of 312 

emerging technologies to improve the removal of different ANFs and ATFs in legumes 313 

is shown in Table 2. Most previous literature has considered ANF and ATF removal as 314 

independent processes and has sought alternative uses for these fractions. However, an 315 

integrated analysis of ANF and ATF reduction or removal by extraction, as a previous 316 

and necessary step, for the isolation of legume proteins, remains a quite unexplored 317 

field to date. As stated above, innovative extraction techniques have attracted growing 318 

interest in the food industry because they improve compound recovery and shorten the 319 

extraction time, reducing energy and solvent consumption (Aguilar-Acosta et al., 2020; 320 

Chemat et al., 2020). The application of different emerging technologies and their 321 

optimal processing conditions for legume protein extraction are summarized in Table 3. 322 

However, it is also important to note that applying these technologies during protein 323 
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extraction processes can modify protein microstructure and therefore exert different 324 

effects on the functional properties of PCs and PIs (Aguilar-Acosta et al., 2020; Ochoa-325 

Rivas et al., 2017). Thus, the following sections present emerging sustainable 326 

technologies to remove undesirable compounds of legumes to improve purity, yield and 327 

overall quality properties of PIs. 328 

 329 

2.1. Pulsed Electric Fields 330 

2.1.1. Removal of anti-nutritional and anti-technogical factors 331 

PEF-assisted removal is one of the most prominent technologies used in the recent 332 

literature for extraction purposes. PEF processing is based on electric field strengths 333 

above 1 kV/cm applied as short duration pulses in the range of s or ms. PEFs cause 334 

electroporation of cell membranes, increasing permeability. PEF processing is mostly 335 

applied as a pretreatment to facilitate internal mass transport mechanisms (Puértolas et 336 

al., 2017). The importance of electric field strength lies in the electroporation effect on 337 

the cell membranes (Chemat et al., 2020). Electroporation causes structural 338 

modifications in vegetable cells (Puértolas et al., 2017), increasing permeability by 339 

creating microchannels that facilitate mass transfer of both solutes and solvents (Sarkis 340 

et al., 2015). The smaller the cell size, the higher the electric field level required for 341 

irreversible electroporation. Although the heat generated by the Joule effect during 342 

treatment can be moderate, PEF use is considered a non-thermal treatment, contributing 343 

to better preservation of thermolabile constituents (Chemat et al., 2020). Thus, PEF 344 

pretreatment has been demonstrated to effectively extract natural components, such as 345 

polyphenols and carotenoids, from very different matrices (Maroun et al. 2018). 346 

However, to our knowledge, this technology has not been used to extract ANFs and 347 

ATFs from legumes. 348 
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2.1.2. Extraction of proteins 349 

PEF technology has been used to facilitate the extraction of various intracellular 350 

compounds, including proteins (Chemat et al., 2020; Voudouris et al., 2017; Zhang et 351 

al., 2021). However, there is a lack of knowledge regarding the effects of PEF on 352 

proteins (Zhang et al., 2021). Furthermore, no recent studies have used this technology 353 

for protein extraction from legumes. Nonetheless, the application of PEF improved 354 

protein extraction from sesame cake (Sarkis et al., 2015). Moreover, PEF is a non-355 

thermal technique that could increase the yield and quality of the extracted proteins 356 

(Chemat et al., 2020). Another important advantage of PEF is the homogeneity of the 357 

method because all tissues (the electric field is distributed through all cells) are treated, 358 

compared to other techniques that only treat the surface (Siemer et al., 2018). 359 

Additionally, this technique was applied as a pretreatment followed by enzymatic 360 

hydrolysis because it facilitates enzyme access to the cells to cleave intracellular 361 

proteins (Zhang et al., 2021). Because of these aspects, PEF is a promising technique 362 

that could enhance legume protein extraction and reduce processing times. 363 

 364 

2.2. Moderate Electric Fields 365 

2.2.1. Removal of anti-nutritional and anti-technogical factors 366 

Electrotechnologies also include MEF processing (Gavahian et al., 2018). MEF 367 

processing operates with lower field strengths (<1 kV/cm) than PEF (Rodrigues et al. 368 

2020a). Thus, in MEF applications, the electroporation effect linked to the electric field 369 

is lower than in PEF treatments. On the other hand, MEF is applied continuously during 370 

the extraction process, which involves high-energy release (kJ/kg) into the medium. 371 

Thus, the concurrent presence of joint cell electroporation and considerable volumetric 372 

ohmic heating occurs (Gavahian et al., 2018). However, in many MEF applications 373 
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designed to extract natural components, such as carotenoids present in microalgae 374 

(Jaeschke et al., 2019), the temperature is controlled to avoid the thermal degradation of 375 

biomolecules. Moreover, several studies have reported the synergistic effects of 376 

combined electroporation and ohmic heating of vegetable cells for extraction purposes 377 

(Pereira et al., 2016). Thus, Pare et al. (2014) reported a positive effect of MEF 378 

application, coupled with an enzymatic treatment, in the extraction of oil from soybean 379 

seeds (70–90 °C, water solvent, 1:4 w/v, 50 Hz, 96 V/cm, 10 min), keeping the free 380 

fatty acids below an acceptable limit (3%).  381 

 382 

2.3. Microwaves 383 

2.3.1. Removal of anti-nutritional and anti-technogical factors 384 

MW extraction, which uses electromagnetic waves with frequencies between 300 385 

MHz and 300 GHz, is an interesting alternative to conventional extraction techniques. 386 

MW-assisted extraction is based on the interaction between the electromagnetic field 387 

and cell-matrix, which causes the rotation and alignment of some sensitive molecules 388 

with the electromagnetic field (Dalmoro et al., 2015). This alignment provokes 389 

molecular friction that allows selective and efficient heating in both solvent and matrix 390 

particles. Therefore, MWs provide shorter processing times and increased savings of 391 

solvents compared to conventional extraction (Zuluaga et al., 2020). Furthermore, 392 

heating of the water molecules inside the plant matrix expands cellular materials and 393 

facilitates the release of the cell contents when the structure is broken (Maroun et al., 394 

2018). MWs have been widely used to extract various phytochemicals, such as tannins, 395 

alkaloids, and saponins, from different plant sources (Xiaokang et al., 2020). Dalmoro 396 

et al. (2018) showed that MW pretreatment (60–75 °C 1000 W, 2.45 GHz, 1 min) 397 

reduced the tannin content with minimum impact on the structure of legume seeds. 398 
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Moreover, Maroun et al. (2018) reported that MWs could facilitate the selective 399 

extraction of polyphenols and shorten the time required for essential oil extraction from 400 

plant cells 6-fold compared to traditional methods. Zuluaga et al. (2020) proposed an 401 

optimized MW extraction process for inositols from pods (120 °C, 1200 W, water 402 

solvent, 16.5 min) and seeds (90 °C, 1200 W, water + ethanol (17%) solvent, 21.5 min) 403 

of different legumes, which was followed by a microbial-based treatment to further 404 

remove interfering soluble sugars. 405 

2.3.2. Extraction of proteins 406 

The use of MW-assisted extraction alone or combined with the HPU-assisted 407 

technique to enhance protein extraction from peanut flour has been investigated (Ochoa-408 

Rivas et al., 2017). In this study, the use of MW or HPU improved the extraction yield, 409 

but the sequential application of both extraction techniques did not exhibit a synergistic 410 

effect. With MWs, the application of higher power and longer extraction times 411 

improved the extraction yields. The optimized conditions for the MW-assisted 412 

extraction of protein were 725 W for 8 min. Moreover, combined extraction (MW and 413 

HPU) yielded higher protein extraction than the use of MWs alone but did not differ 414 

from the yield obtained from HPU alone. Therefore, the authors concluded that the 415 

ultrasound technique was the most appropriate for extracting proteins from peanuts 416 

(Ochoa-Rivas et al., 2017). Additionally, these technologies did not modify the protein 417 

isolate microstructure, although the secondary structure was affected.  418 

 419 

2.4. Supercritical Fluids 420 

2.4.1. Removal of anti-nutritional and anti-technogical factors 421 

SF extraction is an emerging technique that has attracted growing attention in the 422 

food industry in recent decades. It is considered a green technology because of the 423 
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utilization of non-toxic non-polar solvents, which results in more sustainable 424 

processing, and reduced energy use and environmental pollution (Khawli et al., 2019). 425 

An SF is any substance at a temperature and pressure above its critical point. Under this 426 

condition, the density of an SF is close to that of a liquid, and the viscosity is similar to 427 

that of a gas. These characteristics make SFs highly suitable for extraction purposes. 428 

Carbon dioxide (CO2) is the most widely used SF solvent in food applications because it 429 

is generally recognized as safe (GRAS) (Wrona et al., 2017). The CO2 critical 430 

conditions are a temperature of 31 °C and 7.38 MPa pressure. Thus, the moderate 431 

temperatures applied in supercritical carbon dioxide (SC-CO2) extraction allow the 432 

maintenance of the integrity of thermolabile compounds (Maroun et al., 2018). 433 

Furthermore, because of the nonpolar nature of CO2, SC-CO2 can be used to extract 434 

non-polar compounds, such as oils or carotenoids, and relatively low-polarity 435 

molecules, such as alkaloids, polyphenols, and saponins (Chemat et al., 2020; Khawli et 436 

al., 2019). 437 

The selectivity for lipophilic compounds can also be adjusted by using a co-solvent 438 

to either increase or decrease the polarity of CO2. Ethanol is the most frequently used 439 

co-solvent because it is considered a non-toxic solvent. The combination of CO2 with 440 

ethanol as a co-solvent has been widely studied for the extraction of phenolic 441 

compounds from multiple plant matrices (Khawli et al., 2019). In legumes, Buszewski 442 

et al. (2019) showed that SC-CO2 (16% ethanol) extraction increased polyphenol 443 

removal from germinated lupine seeds compared to conventional extraction processes. 444 

Moreover, t-resveratrol from peanut kernels was removed using SC-CO2 (3% ethanol), 445 

exhibiting greater selectivity than conventional methods (Jitrangsri et al., 2020). In 446 

addition to phenols, SC-CO2 modified with 10% ethanol can also improve alkaloid 447 

extraction yield (Nossack et al., 2000).  448 
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Given that high oil content limits the extraction of proteins, it is important to remove 449 

lipophilic compounds when obtaining PIs (Nadar et al., 2018). Additionally, SC-CO2 450 

extraction can be of interest for removing off-flavors (beany, grassy, earthy) because 451 

most are linked to the oxidation of the lipid fraction (Xu et al., 2020). Similarly, 452 

enzymatic browning is another common problem that can occur during legume 453 

processing. In this case, the reaction occurs between phenolic compounds that bind to 454 

proteins, especially under conditions of oxidative stress, which causes a loss in the 455 

quality of the extracted proteins, and in many cases, changes in the properties of these 456 

proteins. Additionally, it must be considered that, depending on the legume, high levels 457 

of ANFs can remain in the final PIs; thus, special attention must be paid to these 458 

compounds (Voudouris et al., 2017). 459 

SC-CO2 extraction has been widely used to remove oil from legumes and other 460 

ATFs and ANFs, avoiding large amounts of toxic organic solvents used in extraction 461 

processes (Schutyser et al., 2015). The use of SF is nowadays expensive and thus it is 462 

justified when obtaining high value products such essential oils and other 463 

phytochemicals for cosmetic and pharmaceutical uses. However, considering the 464 

protein-lipid interactions and the harsh conditions applied during alkaline solubilization 465 

and isoelectric precipitation, removing hydrophobic compounds before this step is 466 

advisable. Therefore, this technique may play a fundamental role in the pretreatment of 467 

legumes and allows the process to start with an initial material rich in proteins and free 468 

of compounds that may affect its subsequent protein extraction. 469 

 470 

 471 

2.5. High Hydrostatic Pressure  472 

2.5.1. Removal of anti-nutritional and anti-technogical factors 473 
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HHP consists of applying elevated pressure (between 100 and 1000 MPa) on 474 

extractable materials. The high pressure causes matrix changes in plant materials and 475 

maximizes permeabilization of cell membranes because of deprotonation of charged 476 

groups and dissociation of salt bridges and hydrophobic bonds. Therefore, this 477 

methodology can be applied as a pretreatment or during the extraction process. Both 478 

strategies will improve internal mass transport and the extraction of different bioactive 479 

compounds from plant cells (Grassino et al., 2020). Baier et al. (2015) used HHP (20 480 

°C, water solvent, 1:1 w/v, 400 MPa, 10 min) as a pretreatment for pea seeds to improve 481 

further separation of proteins and oligosaccharides. The extension of the HHP effect is 482 

dependent on the molecular size of the extracted solute. 483 

 484 

2.6. High Power Ultrasounds 485 

2.6.1. Removal of anti-nutritional and anti-technogical factors 486 

HPU addresses mechanical waves at high frequencies (>20 kHz) to modify products 487 

or processes. In liquid media, cavitation of air bubbles is the main phenomenon 488 

associated with HPU. Cavitation releases a large amount of mechanical and thermal 489 

energy, which positively affects the extraction of biomolecules from a solid matrix 490 

(Gharibzahedi & Smith, 2020; Maroun et al., 2018) because it may affect both internal 491 

and external mass transport. Cavitation, pressure variation, and oscillating particle 492 

velocity, induce an increase in solvent turbulence, facilitating convective flow, which 493 

encompasses solvent penetration into the solid matrix and solute solubilization in the 494 

bulk fluid. Moreover, mechanical stress caused by HPU may induce structural effects in 495 

the solid matrix, affecting its integrity and increasing concurrent internal solute and 496 

solvent transport. Therefore, the use of HPU for the intensification of polyphenol and 497 

other bioactive compounds extraction from vegetal-solid matrices in liquid media has 498 
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been extensively studied (Chemat et al., 2020). HPU can increase the extraction rate, 499 

reduce solvent use, and modify extract composition. For instance, HPU has been 500 

employed to extract saponins from lentils, fenugreek, and lupine (75 °C, water solvent, 501 

1:10 w/v, 60% amplitude, 15 min) (Navarro del Hierro et al., 2018). Hayta and İşçimen 502 

(2017) obtained the highest extraction yield of antioxidant compounds from chickpeas 503 

at 25 °C, water solvent 0.40 w/v, 36.16% amplitude (power), and 20.17 min of HPU 504 

treatment. Zhang and Wang (2016) found that water + ethanol (40%) solvent (1:20 w/v 505 

ratio) at 25 °C for 30 min with three rounds of extraction treatment represented the 506 

optimal conditions for maximizing the polyphenol extraction from red beans (Vigna 507 

angularis). Moreover, Miano et al. (2019) claimed that employing this technology (25 508 

°C, water, 25 kHz, 41 W/L, 300 min) for the hydration of lupine seeds before alkaloid 509 

extraction improved the removal yield of these ANFs by up to 21% compared to that 510 

from conventional hydration. Aguilar-Acosta et al. (2020) demonstrated that HPU 511 

treatment (63 °C, water solvent, 1:10 w/v, 100% amplitude, 10 min) reduced the 512 

alkaloid concentration by 50% in lupine compared to that from conventional extraction. 513 

Additionally, a 50% improvement in polyphenol extraction from yellow soybeans using 514 

HPU (25 °C, pure acetone solvent, 30% amplitude, 10 min) was demonstrated by 515 

Đurović et al. (2018). Therefore, by optimizing the treatment conditions (temperature, 516 

solvent type, solute/solvent ratio, supplied power, and time) for each legume and 517 

unwanted compounds, HPU can significantly improve the extraction yield of desired 518 

compound and shorten the extraction time. 519 

Previous studies on the use of the emerging technologies described above have 520 

demonstrated their potential for ANF and ATF removal from legumes (Table 2) 521 

(Patonay et al., 2019; Romero-Díez et al., 2019). However, further research should be 522 

conducted to analyze their use in an integrated process to isolate the protein fraction and 523 
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their impact on the techno-functional and health-related properties of the PIs. 524 

Additionally, these emerging technologies should not be considered individually 525 

because their combination could be beneficial for removing unwanted compounds 526 

present in legumes. In this regard, Đurović et al. (2018) reported that the combined 527 

application of HPU and MWs resulted in a synergistic effect, leading to increased 528 

extraction of phenolic acids from yellow soybeans. 529 

2.6.2. Extraction of protein 530 

Ultrasound-assisted extraction is one of the most efficient technologies for greater 531 

protein extraction (Tassoni et al., 2020). Ultrasound increases the protein extraction 532 

yield because of cavitation, which causes structural damage and favors the release of 533 

proteins into the solvent (Byanju et al., 2020). It reduces particle size and improves the 534 

mixing between protein and solvent and, in consequence, solubilization (Chemat et al., 535 

2020). Therefore, HPU could be used as either a pretreatment that facilitates the release 536 

of the legume proteins and/or improves the solubilization during extraction. However, it 537 

is important to highlight that sonication can modify protein structure (Byanju et al., 538 

2020). 539 

The use of HPU in the protein extraction of Ganxet beans was investigated by 540 

Lafarga et al. (2018), who optimized the pH and solvent concentration to maximize 541 

protein extraction. According to the experimental results, the use of ultrasound 542 

improved protein extraction yields. Ultrasonication for 60 min using 0.4 M NaOH as the 543 

solvent presented the maximum extraction conditions. As explained above, the 544 

cavitation phenomenon promotes both cell wall disruption and higher diffusion of the 545 

solvent into the cell material, which enhances mass transfer (Ochoa-Rivas et al., 2017). 546 

Moreover, strong alkali conditions and higher NaOH concentrations than the other 547 

conditions tested in this study also favored protein solubility and cell wall disruption 548 
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(Lafarga et al., 2018). Finally, neither increased NaOH concentration nor the use of 549 

ultrasound resulted in protein degradation or fragmentation. Therefore, the use of an 550 

HPU-assisted technique in combination with sequential alkaline extraction and acid 551 

precipitation resulted in a highly efficient procedure to recover proteins from Ganxet 552 

beans (Lafarga et al., 2018). 553 

The HPU-assisted extraction of proteins from defatted peanuts also reduced material 554 

particle size and increased protein yield while reducing the extraction time compared to 555 

conventional extraction (Nguyen & Le, 2019). Interestingly, these authors reported that 556 

an increase in pH reduced protein yield. They concluded that an increase in pH also 557 

increased the viscosity of the solvent/material mixture, which reduced the cavitation 558 

phenomenon, thereby decreasing protein yield. Additionally, an increase in ultrasonic 559 

power above 30 W/g, extraction time more than 15 min, or temperature above 50 °C did 560 

not affect or diminish the extraction of proteins. This confirms that mild extraction 561 

conditions are better than extremes (very low or very high parameters); thus, a correct 562 

selection of the extraction parameters is necessary to optimize the process and maximize 563 

protein yield (Nguyen & Le, 2019). Comparable results were reported by other authors, 564 

who observed that the extraction efficiency of peanut protein improved with the use of 565 

an HPU-assisted procedure in comparison with alkaline extraction (Sun et al., 2021). In 566 

this study, the application of 3.17 W/cm3 at 35 °C for 30 min was the best condition for 567 

protein extraction. Similarly, these authors reported that prolonged ultrasound time 568 

promoted the aggregate formation of peanut protein molecules, whereas the application 569 

of temperatures higher than 35 °C reduced the yield, which could negatively affect 570 

protein extraction (Sun et al., 2021).  571 

HPU technology has also been applied to lupine protein extraction (Aguilar-Acosta 572 

et al., 2020). Different results were obtained depending on the lupine cultivar used. For 573 
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L. mutabilis, the application of ultrasound for 10 min had a beneficial effect on protein 574 

yield, but longer sonication times (15 min) negatively influenced the yield. This could 575 

be related to extreme protein damage caused by the ultrasound, promoting protein 576 

aggregation and decreasing its solubilization (Aguilar-Acosta et al., 2020; Nguyen & 577 

Le, 2019; Sun et al., 2021). This aggregation effect could also have positive 578 

implications in the acid-precipitation stage, which is less explored in ultrasonic 579 

intensification. However, ultrasound did not significantly affect the protein extraction of 580 

L. angustifolius, but it is important to highlight that an average increase of 581 

approximately 10% in protein yield was observed with HPU treatment for 15 min. 582 

Additionally, L. angustifolius had a lower protein yield than L. mutabilis, which could 583 

be related to the differences in the flour particle size and protein composition or 584 

structure (Aguilar-Acosta et al., 2020). 585 

Similarly, HPU as a pretreatment for kidney beans and soybeans improved the 586 

protein extraction yields from soy flakes, and to a lesser extent, soybean flour and 587 

kidney beans (in both cases, HPU-assisted extraction increased protein yields by 588 

approximately 7%, although this was not significant) (Byanju et al., 2020). In contrast, 589 

the sonication treatment reduced the extraction yield in chickpeas, which is attributable 590 

to the high-lipid content of this legume, which reduces protein dissolution during the 591 

extraction step because of protein-lipid interactions. In addition, a high oil content limits 592 

the extraction of proteins because lipid-protein cross-links are generated, which reduces 593 

the access of the solvent to the proteins in the cell matrices (Byanju et al., 2020). This 594 

shows that the correct removal of lipids in the early stages is very important, not only to 595 

prevent a reduction in the extraction of proteins but also to minimize the appearance of 596 

off-flavors (Xu et al., 2020). Another possible explanation for the reduced extraction is 597 

the high carbohydrate content of chickpeas, which could create a gel that negatively 598 
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affects protein accessibility. These authors also noted that the protein band patterns for 599 

both HPU-assisted samples and untreated legumes were similar, which indicated that 600 

the peptides did not undergo alterations. Moreover, the use of HPU did not affect the 601 

secondary structure of proteins extracted from soybean flakes, soybean flour, and 602 

chickpeas while unfolding and destabilizing the protein structure of kidney bean protein 603 

(Byanju et al., 2020). 604 

In another study, the authors intensified soy protein extraction using HPU treatment 605 

(lab-scale experiment) of protein slurry and okara (the insoluble residue) (Preece et al., 606 

2017a). In the soy protein slurry, the application of ultrasound (from 1 to 15 min) 607 

improved protein extraction, but there was no benefit in performing HPU-assisted 608 

extraction for more than 5 min because the maximum yields were already achieved. The 609 

same trend was observed in okara, with similar protein yield values between 5 and 15 610 

min of ultrasound application, which did not justify using this treatment for more than 5 611 

min. Therefore, in the lab-scale experiment, the authors concluded that ultrasound 612 

treatment increased protein extraction (Preece et al., 2017a). However, when the same 613 

authors used a pilot-scale extractor, they observed that HPU-assisted extraction of 614 

proteins from soybean processing materials was not recommended for industrial use 615 

(Preece et al. 2017b). In this case, although HPU improved the protein extraction yield 616 

during okara solution treatment, they concluded that considering the entire soybase 617 

production process, the results obtained using ultrasound treatment were comparable to 618 

traditional processes applied to okara at the pilot scale. Therefore, considering the life of 619 

the ultrasonic probe and the energy input, the authors did not consider ultrasound the 620 

most beneficial operation to improve protein extraction (Preece et al. 2017b). However, 621 

for mild ultrasonic applications, ultrasonic baths could also be considered for 622 
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applications because it minimizes surface erosion and the migration of metal ions to the 623 

solvent. 624 

 625 

2.7. Enzyme-assisted extraction 626 

2.7.1. Extraction of proteins 627 

As mentioned above, the presence of different polysaccharides (cellulose, 628 

hemicellulose, or pectin) in the cell wall negatively affects the extraction of proteins 629 

from plant sources with conventional extraction techniques (Nadar et al., 2018). 630 

Additionally, protein extraction from the inner cell is limited by the high-molecular-631 

weight of proteins. Therefore, both carbohydrates and proteases can be used to improve 632 

protein extraction from legumes (Voudouris et al., 2017). The selective activity of the 633 

enzymes that hydrolyze carbohydrates, under optimal conditions of temperature and pH, 634 

allows degradation of the plant cell wall, releasing the intracellular compounds of 635 

interest (Nadar et al., 2018). In addition, proteases partially degrade high-molecular-636 

weight proteins into smaller proteins, and consequently, more soluble proteins (Baker & 637 

Charlton, 2020). Enzyme-assisted extraction is an extraction procedure that consumes 638 

little energy. It exhibits a rapid extraction rate while reducing the need to use solvents 639 

compared to traditional methods, and the selection of enzymes with synergistic effects 640 

can improve extraction yields (Nadar et al., 2018). Although protein extraction 641 

efficiency using an enzyme-assisted process is lower than that of chemical extraction 642 

processes (e.g., alkaline extraction), it would be interesting to have a pretreatment (cell 643 

wall disruption) followed by conventional chemical extraction. Consequently, it is clear 644 

that rather than an extraction process, it could be a very useful tool in conjunction with 645 

alkaline extraction. Additionally, enzyme-assisted extraction combined with other 646 

techniques, such as ultrasound, MW, or high-pressure extraction, has been accepted as a 647 
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powerful technique for extracting plant compounds (Nadar et al., 2018). However, 648 

enzymes are associated with drawbacks, such as high price or scaling-up for 649 

optimization (Baker & Charlton, 2020). Therefore, the synergy of enzyme-assisted 650 

extraction with other emerging techniques could be used to overcome these drawbacks.  651 

A comparison between alkaline extraction, enzyme-assisted extraction, and a 652 

combination of protein recovery from defatted soy grit was investigated (Perović et al., 653 

2020). The extraction time (1, 2, and 3 h) during alkaline extraction increased the 654 

protein yield. In contrast, in enzyme-assisted extraction, the use of both individual 655 

enzymes (cellulase, pectinase) and enzyme complexes (a commercial mixture of 656 

enzymes) improved protein extraction with the highest protein yield achieved by the 657 

commercial enzyme complexes. Contrary, xylanase did not affect protein yield. This 658 

occurred because protein cocktails enhanced protein extraction compared to individual 659 

enzyme treatments (Perović et al., 2020), probably because of a synergistic effect. 660 

Finally, an enzyme-assisted pretreatment followed by alkaline extraction (with an 661 

enzyme mixture) improved protein yield. In this case, the application of a combined 662 

enzymatic (1 h) and alkaline (1 h) extraction resulted in the highest protein yield and the 663 

shortest processing time. Therefore, the application of the enzymatic procedure 664 

improved protein extraction and reduced the alkaline extraction time, which positively 665 

affected the functional properties of the protein isolate (Perović et al., 2020). 666 

 667 

As a general conclusion, the application of sustainable and emerging technologies, 668 

such as pretreatment (removing undesirable compounds or disrupting cell walls) or 669 

during extraction (increasing solvent-protein mixture or facilitating protein 670 

solubilization) of legume proteins has multiple advantages, such as reducing solvent 671 

use, processing time, waste production, and energy expenditure. 672 
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 673 

3. Potential uses of emerging technologies for protein functionalization and 674 

structuring 675 

Proteins are versatile components that establish complex interactions with other 676 

food constituents and their environment. Their physicochemical properties (e.g., charge, 677 

surface hydrophobicity, molecular weight), function, and structure at different scales 678 

influence the appearance, flavor, and color of foods (Foegeding, 2015; Mirmoghtadaie 679 

et al., 2016). As a consequence of alkaline solubilization and isoelectric precipitation, 680 

the physicochemical and techno-functional properties (water absorption, oil binding, 681 

viscosity, gelling properties, and ability to form emulsions and foams) of proteins may 682 

change, leading to PCs and PIs with decreased technological functionality (Chéreau et 683 

al., 2016).  684 

The increasing demand for plant-based products has led to the employment of high-685 

quality plant ingredients with tailored functionalities, which can be achieved using 686 

different processing strategies (Zha et al., 2019). Recent reviews have focused on the 687 

effects of different physical, chemical, and biological processing techniques on the 688 

functionality of plant proteins (Akharume et al., 2021; Gharibzahedi & Smith, 2020, 689 

2021). Thus, various physical technologies can be used not only to assist extraction 690 

processes to obtain PCs and PIs with better yields but also to improve their techno-691 

functional properties. Furthermore, these technologies can be applied at different 692 

processing points to functionalize and structure proteinaceous ingredients after their 693 

extraction processes (Manassero et al., 2018a; Wang et al., 2020a). Moreover, they can 694 

be combined with other processes, such as enzymatic hydrolysis, to obtain functional 695 

food ingredients (Al-Ruwaih et al., 2019). In Table 4, we summarize the most important 696 
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techno-functional properties of proteins and how they can be improved using emerging 697 

technologies to obtain tailored protein ingredients from legumes. 698 

 699 

3.1. Solubility 700 

Solubility is one of the most important techno-functional properties of proteins 701 

because it directly impacts other functional properties. Thus, enzymatic hydrolysis is 702 

considered one of the most relevant methods for modifying tailor-made protein 703 

preparations and is typically used to improve the solubility and surfactant properties of 704 

proteins (Chéreau et al., 2016; García Arteaga et al., 2020). However, several emerging 705 

technologies have also shown promising results. 706 

PEF treatments cause partial unfolding of proteins, enhancing interactions between 707 

other protein molecules and the surrounding media. At lower treatment intensities, egg 708 

white protein changes lead to increased solubility because of enhanced interactions with 709 

water. At higher treatment intensities, PEF induces total unfolding, denaturation, and 710 

the formation of insoluble protein aggregates with disulfide bonds as the dominant 711 

binding forces and a lower contribution of noncovalent bonds compared to that of 712 

thermally-induced protein aggregates (Zhao et al., 2009). Similarly, Li et al. (2007) 713 

found that the solubility of soybean PIs increased with increasing PEF strength, with the 714 

greatest increase at 30 kV/cm and 288 µs of treatment time. Above these conditions, the 715 

increase in solubility was lower because of protein denaturation and aggregation. In 716 

another work at lower field strength (1.65 kV/cm) but much longer treatment time 717 

(20,000 MEF pulses of 5 µs, total treatment time of 0.1 s) with pea PCs at pH 6, the 718 

treatment decreased protein solubility, whereas no effect was obtained on pea PCs at pH 719 

5 (Melchior et al., 2020). Thus, the effects of PEF are dependent on protein nature and 720 

pH. 721 
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In general, HPU treatment improves the solubility of PI (Table 4) as a result of 722 

cavitational forces that lead to the partial unfolding of proteins, changes in their 723 

secondary and tertiary structures, and structural reorganization from large and irregular 724 

aggregates to small and uniform particles (Gharibzahedi & Smith, 2020). The increase 725 

in solubility has been attributed to a higher exposure of hydrophilic regions of proteins 726 

that enhance protein-water interactions (Gharibzahedi & Smith, 2020; Mirmoghtadaie et 727 

al., 2016). Additionally, a higher ultrasound intensity or treatment time induces greater 728 

exposure of internal hydrophobic regions of insoluble protein aggregates, which can be 729 

solubilized because of the formation of smaller aggregates stabilized by hydrophobic 730 

interactions, hydrogen bonds, and van de Waals forces (Gharibzahedi & Smith, 2020; 731 

Mirmoghtadaie et al., 2016). Furthermore, HPU treatment at 20 kHz for 15 min induced 732 

the greatest solubility increase in soy protein concentrate, whereas the greatest effect on 733 

protein isolates (PIs) was obtained at 40 kHz (Jambrak et al., 2009). Sonication of 734 

defatted soy flakes at an amplitude of 84 µm for 2 min also improved the solubility by 735 

34% (Karki et al., 2009). Similarly, soy protein isolate solubility increased after 550 W 736 

treatment, which was related to a decrease in particle size (Ren et al., 2020).  737 

In pea PIs, HHP treatments have been reported to cause a slight decrease in 738 

solubility (Chao et al., 2018). However, in other studies using PIs from different 739 

legumes, the solubility increased, thereby suggesting that this effect may depend on 740 

various conditions, such as the applied pressure, pH, and composition of the media in 741 

which proteins are dispersed (Li et al., 2011; Piccini et al., 2019). Overall, 742 

pressurization may improve the solubility of PIs by splitting aggregates while causing 743 

partial denaturation of proteins (Gharibzahedi & Smith, 2021; Manassero et al., 2018b). 744 

Alternatively, HHP can be used under mild pressure conditions (100–400 MPa) to 745 

increase the solubility of soybean PIs by binding phenolic compounds and inducing 746 
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glycation reactions with polysaccharides (e.g., flaxseed gum) (Chen et al., 2019; Liu et 747 

al., 2020). 748 

 749 

3.2. Water and oil absorption capacities  750 

Water absorption capacity (WAC) is crucial in viscous foods, such as soups and 751 

baked foods. The ability of proteins to imbibe water without dissolving helps provide 752 

body, thickening, and viscosity (Sreerama et al., 2012). Oil absorption capacity (OAC) 753 

plays an important role in many textural and quality properties of foods, including 754 

flavor absorption and dough quality. These interactions are mainly attributed to the 755 

physical entrapment of lipids, led by interactions with protein nonpolar side chains, 756 

which are particularly numerous in proteins of plant origin. Therefore, the WAC and 757 

OAC of proteins depend on the nature and physical modifications caused by food 758 

processing (Li et al., 2007; Shevkani et al., 2019). 759 

From the limited available data, it can be suggested that PEF can improve WAC or 760 

OAC because of water or oil entrapment within a protein network resulting from the 761 

formation of aggregates stabilized by disulfide bonds (Zhang et al., 2017). Melchior et 762 

al. (2020) found that a PEF treatment of 1.65 kV/cm at 0.1 s of total treatment time 763 

increased the WAC of pea PCs and both WAC and OAC of gluten concentrate at pH 6, 764 

although the OAC decreased in pea PCs at pH 5. Therefore, the effect of PEF depended 765 

particularly on the protein type and pH of the suspension.  766 

Concerning HPU, the extension of treatment time improved WAC, attributed to 767 

increased solubility and decreased particle size of the PIs (Wang et al., 2020a). The 768 

same explanation was provided for the improved WAC in pea PIs obtained using the 769 

HPU-assisted alkali method compared with that of the control method (Wang et al., 770 

2020b). These authors also reported an improvement in the OAC by HPU, which could 771 
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be caused by the exposure of hydrophobic groups or regions. However, in soy PIs, the 772 

WAC did not improve as a result of HPU, although the OAC increased because of the 773 

exposure of hydrophobic groups upon sonication and heating (Paglarini et al., 2019). 774 

MW treatments cause an increase in temperature, generating similar effects as 775 

conventional heating (Gomaa et al., 2013). However, canola seed pretreatment with 776 

MWs or ultrasound led to PIs with improved WAC and OAC (Li et al., 2021). MW and 777 

HPU pretreatments could have unfolded the protein molecules and increased the 778 

exposure of hydrophilic amino acids and negative charges, leading to the increased 779 

WAC, which together with increased exposure of hydrophobic and nonpolar side chains 780 

led to a higher OAC.  781 

Different legume PIs resulted in increased WAC after HHP exposure at moderate 782 

pressures (300–400 MPa) (Gharibzahedi & Smith, 2021; Peyrano et al., 2016). The 783 

unfolded conformation resulting from HHP treatments might provide linkages between 784 

the protein subunits in a flexible network to entrap water molecules. 785 

 786 

3.3. Gelation properties 787 

The ability to gel is another important techno-functional property to consider and is 788 

related to the capability of proteins to form a tridimensional network. Gels can be 789 

induced by temperature, the addition of salt, a change in pH, and the addition of 790 

enzymes or chemical cross-linkers. Cooked meat products are examples of heat-induced 791 

gels, whereas cheese and yogurt are examples of cold gelation processes. However, 792 

several facilitating technologies may also cause changes in the gelling properties of 793 

proteins (Nunes & Tavares, 2019). In general, higher surface hydrophobicity and free 794 

thiol groups favor the formation of protein aggregates and gels (Wu et al., 2020).  795 
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The cavitation effects of HPU treatments on protein solutions enhance solubility, 796 

reduce particle size, and induce partial protein unfolding with increased exposure of 797 

sulfhydryl and hydrophobic groups, which facilitate the formation of protein-protein 798 

interactions to form dense, uniform, and stable gel structures with high WAC and OAC 799 

(Gharibzahedi & Smith, 2020). In soybean PIs, ultrasound pretreatment (20 kHz, 400 800 

W, 5 min) enhanced the WAC of the resulting gels induced by calcium sulfate (Hu et 801 

al., 2013). Moreover, sonicated soybean PIs with soybean oil, inulin, and carrageenan 802 

formed an emulsion gel with increased OAC (Paglarini et al., 2019). However, HPU 803 

treatments can improve pea PI yields and reduce the gelling concentration of the 804 

resulting PIs (Wang et al., 2020b). Additionally, thermal-, acid-, and calcium-induced 805 

gelation of soybean and chickpea proteins pretreated with HPU resulted in greater 806 

gelling ability and greater gel hardness (Khatkar et al., 2020; Wang et al., 2020a; Wang 807 

et al., 2020c). Factors, such as exposure time, can be crucial because ultrasound 808 

treatments at 20 and 40 kHz for 15 min induced rapid gelling of soy PCs, whereas this 809 

effect did not occur when PCs were treated for 30 min (Jambrak et al., 2009).  810 

Protein gels can also be influenced by other emerging and sustainable technologies. 811 

In this sense, the cold-set gels of whey protein aggregates formed during ohmic heating 812 

combined with MEF were weaker, more elastic, and had higher water retention and 813 

swelling capacity than those heated in a conventional heat exchanger (Rodrigues et al., 814 

2020b). In soybean PIs and wheat gluten mixtures pretreated with different MW power 815 

and further cross-linked by the addition of transglutaminase, gel strength and firmness 816 

improved (Qin et al., 2016). HHP treatments have also been shown to increase the 817 

number of hydrophobic regions and free sulfhydryl groups in various PIs and PCs, 818 

which may explain their improved rheological and gelling properties (Akharume et al., 819 

2021; Gharibzahedi & Smith, 2021). Pretreatments with HHP enabled stronger cowpea 820 
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PI heat-induced gels, which formed at lower temperatures (Peyrano et al., 2019). 821 

However, when comparing the characteristics of heat- and HHP-induced pea PI gels, the 822 

latter were softer than those obtained by thermal treatments and required higher protein 823 

concentrations to gel (Peyrano et al., 2021; Sim et al., 2019). These differences occurred 824 

because heat-induced gels had a higher proportion of strong linkages than did HHP-825 

induced gels (Peyrano et al., 2021).  826 

 827 

3.4. Emulsifying properties 828 

Salad dressings, butter, mayonnaise, and other food products depend on the ability 829 

of proteins to form and stabilize oil-in-water and water-in-oil emulsions.  830 

Very little data are available on the effects of PEFs and other emerging and 831 

sustainable technologies on legume protein emulsions. However, Xiang et al. (2011) 832 

found that PEF-treated soymilk viscosity increased with increasing electric field 833 

intensity and the number of pulses. PEF pretreatment increased the emulsion capacity 834 

and emulsion stability of canola PIs after oil extraction (Zhang et al., 2017).  835 

The replacement of organic solvents, such as hexane, with SFs may also be 836 

advantageous for the overall quality and functionality of defatted proteins, as reported 837 

for canola seeds (Li et al., 2021), corn germ (Espinosa-Pardo et al., 2020), and soy flour 838 

(Kang et al., 2017). Kang et al. (2017) also noted that defatted soy flours with SF CO2 839 

led to improved emulsifying properties compared to conventional extraction with 840 

hexane, which could be caused by the higher protein content of the resulting PIs. 841 

However, further studies are needed because the emulsifying properties of PI obtained 842 

from other plant proteins were not improved by fat extraction with SF CO2 (Abirached 843 

et al., 2020; Li et al., 2021).  844 
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Ultrasound enhances the emulsifying properties because of a decrease in particle 845 

size and viscosity, which facilitates the adsorption of proteins to the oil-water interface 846 

and reduces interfacial tension (Gharibzahedi & Smith, 2020; Ren et al., 2020). Hence, 847 

HPU treatments (20–500 kHz, 15–30 min) increased the emulsifying activity and 848 

emulsion stability of soy PIs and PCs (Jambrak et al., 2009; Ren et al., 2020). de 849 

Oliveira et al. (2020) found an important effect of pH on the emulsifying properties of 850 

ultrasound-treated (562 W, 427 s) pea PIs, with improvements at pH 2.8 and 6.8. 851 

However, emulsification capacity could also accompany HPU treatments, as shown in 852 

defatted soy flakes treated at 20 kHz and 21 µm amplitude for 60 s (Karki et al., 2009).  853 

PIs from MW-pretreated rice bran resulted in improved emulsifying properties 854 

(Khan et al., 2011). Similarly, MW-assisted alkaline extraction of peanut flour resulted 855 

in PIs with improved emulsifying properties (Ochoa-Rivas et al., 2017). These 856 

improvements could be related to MW-induced unfolding and grafting reactions 857 

between soy proteins and different saccharides (Guan et al., 2011). 858 

As stated previously, the treatment of PIs from different legumes with HHP causes 859 

structural unfolding and partial denaturation, leading to higher exposure of hydrophobic 860 

groups (Gharibzahedi & Smith, 2021). These changes modify the interfacial properties 861 

of proteins and can explain the formation of smaller emulsified particles (Chao et al., 862 

2018; Manassero et al., 2018b). The reported reduction in droplet size, high ζ-potentials, 863 

and the likely formation of rigid membranes could explain enhanced emulsion stability 864 

(Manassero et al., 2018a). However, structural changes and the modification of ζ-865 

potential induced by HHP appear to be pH-dependent, which can explain controversial 866 

results (Manassero et al., 2018a; Manassero et al., 2018b). In the presence of tea 867 

polyphenols, the emulsifying properties of soybean PIs have also been improved by 868 
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applying mild pressure conditions (100–400 MPa) because of the binding of phenolic 869 

compounds (Chen et al., 2019). 870 

 871 

3.5. Foaming properties 872 

The ability of proteins to form stable foams is crucial in foods such as cakes, 873 

soufflés, whipped toppings, and ice creams. Although proteins are the most commonly 874 

employed foaming agents in the food industry, their ability to foam differs greatly. The 875 

presence of multiple hydrophobic sites facilitates protein interactions and the formation 876 

of an air-water interface (Sosa et al., 2020). Consequently, the higher concentration of 877 

protein with surface-active groups in soy flour defatted with SF CO2 could explain the 878 

improved foaming capacity and stability compared to defatted flour with hexane (Kang 879 

et al., 2017). Additionally, SFs can also be used to encapsulate compounds and improve 880 

fat dispersion through the particles from the gas saturated solutions (PGSS) method 881 

(Saldanha Do Carmo et al., 2016). These authors found that using this engineering 882 

process, pea proteins led to improved foaming stability, which could be related to the 883 

effects of applied dynamic high-pressure homogenization and increased surface 884 

hydrophobicity of proteins.  885 

The foaming properties of legume proteins can also be improved by HPU because of 886 

the increase in surface hydrophobicity induced by cavitation, thereby resulting in a 887 

reduction of surface tension at the air-water interface (Gharibzahedi & Smith, 2020; 888 

Xiong et al., 2018). However, divergent results have been reported in the literature. For 889 

instance, ultrasound treatments (20–500 kHz, 15–30 min) increased the foaming 890 

capacity and stability of soy PCs (Jambrak et al., 2009). Xiong et al. (2018) found that 891 

the foaming ability of pea PIs increased after ultrasound treatments (20 kHz, 30 min) 892 

while foaming stability increased with increasing amplitude after 10 min, it decreased 893 
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with greater time. Morales et al. (2015) found an increase in foaming capacity of soy 894 

PIs, which was related to a reduction of particle size, although foam stability was not 895 

affected. In another study, HPU treatment (20 kHz, 10 min) improved the foaming 896 

capacity but reduced the foam stability of soy PIs (Ren et al., 2020). Foaming capacity 897 

could also be decreased by HPU treatment, as shown by Karki et al. (2009) in defatted 898 

soy flakes treated at 20 kHz and 21 µm amplitude for 60 s, although no change in 899 

foaming stability was observed. In this case, sonication might have altered the ability of 900 

soy proteins to unfold at the interface, resulting in poor surface activity. 901 

MW-assisted extraction of peanut proteins resulted in PIs with improved foaming 902 

activity but decreased foaming stability (Ochoa-Rivas et al., 2017). However, MW-903 

assisted extraction has exhibited controversial results when comparing PIs from 904 

different plant proteins (Jiang et al., 2021; Sun et al., 2017). Wastewater from cooked 905 

legumes (aquafaba) contains high quantities of proteins with excellent foaming 906 

properties. The comparison between conventional cooking and the combined cooking 907 

and microwaving method of aquafaba from lima beans resulted in no differences in the 908 

foaming and texture properties of vegan cupcakes in which the formulation egg was 909 

replaced by aquafaba (Nguyen et al., 2020). 910 

In HHP-treated pea PIs, exposure up to 400 and 600 MPa increased the foaming 911 

capacity, whereas foaming stability depended on protein concentration (Chao et al., 912 

2018). In agreement with these results, the foaming capacity of soybean PIs has been 913 

reported to increase in the range of 200–300 MPa and 5–15 min (Li et al., 2011). 914 

Kidney bean PIs exposed to 300 MPa also exhibited better foaming capacity than the 915 

control, whereas no differences were found in foam stability (Al-Ruwaih et al., 2019). 916 

Therefore, HHP intensity and exposure time seem to influence foaming capacity and 917 

stability. 918 
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 919 

3.6. Texturization: extrusion 920 

The presence of fibers is a characteristic of many meat products. Thus, various 921 

methods have been proposed to imitate the fibrous texture of meat (Kumar et al., 2017). 922 

However, the only industrially viable option to functionalize and structure plant-based 923 

materials into fibrous products is extrusion (Dekkers et al., 2018). In this process, 924 

proteins are plasticized/molten inside the barrel by a combination of heating, hydration, 925 

and mechanical deformation. Depending on the moisture content, we can differentiate 926 

between high-moisture (50–80%) extrusion, in which texturized proteins present a 927 

fibrous texture that is more similar to meat, and low-moisture (<30%) extrusion, which 928 

generally forms texturized proteins with a sponge-like structure and hard texture that are 929 

moisturized afterward (Akharume et al., 2021; Dekkers et al., 2018). In the latter case, 930 

protein-rich fractions of legumes can be used to make extrudates with decreased 931 

sectional expansion, increased density, and specific hardness with increasing protein 932 

content (from 30% to 50%), which could be counteracted by preconditioning of the 933 

protein-rich ingredients (Martin et al., 2020). Jebalia et al. (2019) found that rupture 934 

stress and strain of pea flour and pea starch-protein composites obtained by low-935 

moisture (25–35%) extrusion were negatively correlated with their interface index. 936 

Therefore, a higher interface index of the pea flour composite was related to increased 937 

brittle behavior (Jebalia et al., 2019). 938 

Regarding the production of meat-like products, the control of shear and heat during 939 

high-moisture extrusion of soy protein facilitates structuring similar to muscle tissue 940 

(Jones, 2016). The formation of meat-like anisotropic structures from soy PCs occurred 941 

with increased extrusion temperature (100–143 °C). Under these conditions, protein-942 

protein interactions were not influenced, and the authors concluded that changes in 943 
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polysaccharides present in soy PCs could be responsible for the change in the 944 

rheological properties (Pietsch et al., 2019). The interaction between barrel temperature 945 

(120 and 150 °C) and feed moisture (20, 24%) affected the expansion ratio of chickpea 946 

flour extrudates. Greater expansion occurred at higher temperatures, negatively 947 

correlated with the hardness and bulk density (Wang et al., 2019). Several studies have 948 

described the development of meat analogs with fibrous structures using high-moisture 949 

extrusion of legume PIs and PCs (Vatansever et al., 2020). Other shearing devices have 950 

also shown promising results for physical structuring, but they require further 951 

development to produce fibrous textures at an industrial scale (Jones, 2016). 952 

 953 

4. Health effects of the technologically obtained PIs 954 

Consuming the recommended quantity of good-quality protein is essential for 955 

optimal human growth, development, and health (Wu, 2016). The effects of plant 956 

proteins, including legumes (peas, lupine, fava beans, and lentils), have recently been 957 

reviewed, confirming the health-promoting effects of these extracts on glycemic, 958 

appetite, cardiovascular, and muscular outcomes (Lonnie et al., 2020). The benefits of 959 

technological treatment of these protein sources to remove ANFs have already been 960 

stated. Furthermore, as summarized in Figure 3, the treatments performed during 961 

protein extraction and functionalization of PIs may lead to protein structure changes 962 

with potential benefits beyond their role as a macronutrient. 963 

Individuals become sensitized to dietary food allergens via the gastrointestinal tract 964 

during ingestion. During the process of digestion, dietary proteins can be broken up and 965 

produce peptides that could exhibit potential antigenicity (Verma et al., 2013). In 966 

particular, legumes play an important role in food allergies, with increased sensitization 967 

to legumes among populations from Mediterranean and Asian countries and Western 968 
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countries in the last few years. Immunoglobulin E (IgE)-binding proteins have been 969 

identified in most legumes and are responsible for reactions from mild skin irritations to 970 

life-threatening anaphylactic shock in sensitized individuals after their ingestion or 971 

inhalation. In soybeans, one of the most widely utilized legumes in the food and feed 972 

industries, the two most important antigenic proteins are glycinin and β-conglycinin, 973 

with reactions more prevalent in children (He et al., 2015). These macromolecules enter 974 

the lymph and blood through gaps between the intestinal epithelial cells and have 975 

considerable antigenic activity that stimulates the immune system, resulting in specific 976 

antigen-antibody reactions and T lymphoid cell-mediated delayed hypersensitivity (He 977 

et al., 2015). Examples can be found for other legumes; for instance, the major 978 

allergenic proteins associated with lupine sensitization are Lup-1, which is a β-conglutin 979 

(vicilin-like protein), and Lup-2, which is an α-conglutin (legumin-like protein) 980 

(Bingemann et al., 2019; Lucas et al., 2015). Lupine allergy may cause acute and severe 981 

reactions, including anaphylactic shock and fatality (Anzani et al., 2020). Despite this, 982 

lupine allergy is still quite rare, and thus its inclusion should be interpreted as a 983 

precautionary measure and not as a real limitation (Lucas et al., 2015). Applying the 984 

above-mentioned emerging technologies on legume processing, such as HPU, MWs, 985 

and HHP, may reduce allergenicity because of the alteration of secondary protein 986 

structure (Pojić et al., 2018). Changes in conformational epitopes, which are no longer 987 

recognized by IgE antibodies, cannot activate the immune response (Pojić et al., 2018). 988 

Although the application of these technologies opens up new possibilities for reducing 989 

allergenicity, there are still a limited number of studies on this topic (Pojić et al., 2018; 990 

Verhoeckx et al., 2015). Additionally, the extraction and functionalization treatments 991 

can affect legume allergenicity differently, depending on a wide range of factors, 992 



41 
 

including the duration of the process, intensity, and presence of a food matrix (Aguilera, 993 

2019).  994 

Changes in protein structure derived from the isolation and processing might lead to 995 

a potential reduction of allergens and the release of bioactive peptides. Peptides are 996 

obtained from protein cleavage through enzymatic hydrolysis, microbial fermentation, 997 

and food processing (Chakrabarti et al., 2018). Most studies on the effects of bioactive 998 

peptides have focused on hydrolysates obtained through enzymatic hydrolysis using 999 

different protein sources, enzymes, and/or conditions to obtain the hydrolysates. Thus, 1000 

enzyme-assisted extraction can help deliver health-promoting bioactive peptides. The 1001 

most studied bioactivities for food hydrolysates are angiotensin-I converting enzyme 1002 

(ACE) and dipeptidyl peptidase-IV (DPP-IV) inhibition. ACE inhibitors are used as 1003 

targets for hypertension treatment, and in vitro studies have shown the ACE-inhibitory 1004 

activity of legume hydrolysates and derived peptides, such as soybeans (Xu et al., 2021) 1005 

and mung beans (Yi-Shen et al., 2018). DPP-IV inhibitors are used to treat diabetes 1006 

development, in which some food-derived peptides might play a role. For example, in 1007 

vitro studies have shown the DPP-IV inhibitory capacity of some peptides from soy and 1008 

lupine (Lammi et al., 2016) and pigeon pea hydrolysates (Boachie et al., 2019). Other 1009 

enzyme-inhibitory activities have also been shown for legume hydrolysates. Enzymatic 1010 

digestion of black beans, green peas, chickpeas, and lentils has shown 3-hydroxy-3-1011 

methylglutaryl-coenzyme A reductase (HMGR) and pancreatic lipase (PL) inhibitory 1012 

activity, with different and synergistic effects (Moreno et al., 2020). Inhibition of 1013 

protein glycation, which could be related to the prevention of complications in diabetes, 1014 

has been suggested for lentils (Kuerban et al., 2020). In vitro α-amylase inhibition has 1015 

been observed in pigeon peas (Olagunju et al., 2020). Black bean, green pea, chickpea, 1016 

lentil (Moreno et al., 2020), and pigeon pea hydrolysates (Olagunju et al., 2020) also 1017 
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possess antioxidant activity. In vitro studies in different cell lines suggested the 1018 

antiproliferative effects of lentils, which suggested potential anticancer effects (Kuerban 1019 

et al., 2020). Thus, there is a wide spectrum of enzymatic inhibitory activities of legume 1020 

hydrolysates, which point to them as an interesting source of bioactive peptides.  1021 

However, caution must be taken when considering effects derived mainly from in 1022 

vitro studies because gastrointestinal digestion, which may lead to the further 1023 

processing of the peptides, and absorption of the active peptides, must be considered. 1024 

However, it is important to note that proteins and protein hydrolysates may also act at 1025 

the gastrointestinal tract level. The intestinal peptides interact with receptors that 1026 

activate the secretion of enterohormones, such as cholecystokinin (CCK), glucagon-like 1027 

peptide-1 (GLP-1) or peptide YY (PYY), which are involved in a wide range of 1028 

physiological and metabolic processes, such as appetite regulation, gastric motility, and 1029 

glucose homeostasis (Roura et al., 2019). In vivo satiety effects and ex vivo secretion of 1030 

CCK and GLP-1 were observed in soy (Yang et al., 2020) and pea (Häberer et al., 2011) 1031 

protein hydrolysates. Another intestinal target with whole-body repercussions is the 1032 

microbiota. There is evidence that soy protein, its hydrolysates, and peptides impact gut 1033 

microbiota, although there is still no consensus on specific effects (Ashaolu, 2020). In 1034 

turn, changes in the microbiota could lead to alterations in the gut barrier and 1035 

inflammation. There is compelling evidence supporting the biological relevance of 1036 

peptides released by either natural or artificial means from several dietary sources that 1037 

act at different levels of the intestinal barrier (Martínez-Augustin et al., 2014). Intestinal 1038 

anti-inflammatory effects have been shown for soybean proteins (Guha & Majumder, 1039 

2019). 1040 

Altogether, there is evidence of intestinal action of legume hydrolysates, which may 1041 

have systemic effects regardless of peptide absorption. The methods used to obtain the 1042 
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hydrolysates have not been detailed in this review, but the diversity of protocols used 1043 

shows that several enzymatic hydrolysis conditions could lead to bioactive protein-1044 

derivates. Additionally, from this brief review, it appears that within legumes, several 1045 

species could be chosen to obtain beneficial effects. These studies highlight the 1046 

additional benefits of enzyme-assisted protein extraction.  1047 

There is less evidence regarding other techniques of protein extraction. There is no 1048 

evidence of the biological effects of legume proteins exposed to MW-assisted protein 1049 

extraction. HPU did not lead to changes in the molecular weight of chickpea or kidney 1050 

bean protein; however, it exerts different effects on the secondary structure of proteins 1051 

depending on the legume type (Byanju et al., 2020). Ultrasound treatment improves the 1052 

release of bioactive peptides by enzymatic hydrolysis (Ashraf et al., 2020) or 1053 

fermentation (Ruan et al., 2020). Changes in secondary structure induced by HPU-1054 

assisted extraction could modulate protein digestibility, but these effects require 1055 

confirmation. Additionally, PEF-assisted extraction leads to changes in the secondary 1056 

structure that could modulate protein functionality. In this regard, peptides obtained 1057 

from soy protein have been shown to improve their antioxidant activity after PEF 1058 

treatment (Lin et al., 2016).  1059 

Overall, a limited number of works have addressed the use of emerging technologies 1060 

for ANF and ATF removal, or protein extraction, and assessed their effects on health 1061 

properties of legume PIs. Therefore, more studies are needed to fully understand these 1062 

effects. 1063 

 1064 

5. Conclusions 1065 

Legumes have emerged as a sustainable protein source with a promising future as an 1066 

alternative to meat and meat-based products. The selection of legume species should 1067 
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emphasize their adaptation to local climatic conditions because of their high relevance 1068 

for low-input agriculture. Additionally, low contents of ANFs, or other unwanted or 1069 

undesirable components must also be considered because of their impacts on the 1070 

extraction yield and techno-functional and health-related properties. Thus, special 1071 

attention should be given to lipid, alkaloid, tannin, and saponin contents. Emerging 1072 

technologies, such as PEFs, HPU, MW, and SFs, could be considered reliable and 1073 

sustainable alternatives to intensify the removal of undesirable compounds from the 1074 

protein fraction. Moreover, the discarded fractions containing unsaturated oil, 1075 

carotenoids, or polyphenols could be further exploited for their bioactive properties, 1076 

which adds value to the overall process and contributes to a circular economy. The use 1077 

of the aforementioned emerging technologies may also be used as pretreatment or in 1078 

assisted solubilization to intensify protein separation. Consequently, the phenomena 1079 

caused by these technologies may facilitate protein solubilization and disruption of cell 1080 

walls, which enhance protein yield and reduce solvent requirement, processing time, 1081 

waste production, and energy consumption. Furthermore, the techno-functional 1082 

properties of the PIs, such as solubility, foaming, emulsion, gelling, water binding, and 1083 

oil binding capacities may also be modified. Therefore, it is possible to obtain tailor-1084 

made PIs with specific techno-functional properties. To improve the health-related 1085 

properties of PIs, other approaches should be addressed. For this purpose, proteolysis 1086 

induced by enzymatic hydrolysis or microbial fermentation could be of paramount 1087 

importance because it leads to improved digestibility, reduced allergenicity, and the 1088 

release of bioactive peptides. These effects could similarly be obtained using emerging 1089 

technologies, although further research is required in this area. Finally, the application 1090 

of novel physical and enzymatic processes to obtain high-quality and functional PIs 1091 

offers interesting possibilities that should be explored in more detail; importantly, these 1092 
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PIs could be more easily accepted by consumers than those obtained utilizing chemical 1093 

processes.  1094 
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Table 1 1923 

Most relevant compounds with undesirable effects in legume protein isolates. 1924 

Compounds ANF1 ATF1 Reason2 Alternative use References 

Phenolic compounds (including phenolic 

acids, coumarins, flavonoids and tannins) 
X X 

↓Yield, ↓purity, color 

effects, protein binding, 

↓amino acid bioavailability 

Food antioxidant, 

nutraceutical 

Adrar et al. (2019) 

Alu’datt et al. (2013) 

Alu’Datt et al. (2014) 

Corrêa & Rogero (2019) 

Farha et al. (2020) 

Mondor et al. (2009) 

Polysaccharides (including dietary fiber) X X 
↓Nutrient Absorption, 

↓yield, ↓solubility 

Animal feed, food 

ingredient, nutraceutical 

Chéreau et al. (2016) 

Nadar et al. (2018) 

Vong & Liu (2016) 

Vioque et al. (2012)  

Alkaloids X X Toxicity, bitterness Nutraceutical 

Aguilar-Acosta et al. (2020) 

Chaves et al. (2016) 

Klupšaitė & Juodeikienė (2015)  

Carotenoids, tocopherols, phytosterols   X 
↓Yield, ↓purity, color 

effects 

Food coloring, food 

antioxidant, nutraceutical 

Albuquerque et al. (2020) 

Moreno-Valdespino et al. (2020)  

Phospholipids  X 
Protein-lipid interactions, 

off-flavors generation 

Food ingredients, 

cosmetics, nutraceutical 
Sánchez-Vioque et al. (1998) 

Protease inhibitors X  ↓Digestibility Nutraceutical 
Carbonaro et al. (2015) 

Mohan et al. (2015)  

Phytates X X 
↓Mineral bioavailability, 

↓yield, ↓solubility 
Nutraceutical 

Bessada et al. (2019) 

Mondor et al. (2004) 

Saponins X X 
↓Absorption lipids, toxicity, 

↓yield, ↓purity 

Food, cosmetic, 

nutraceutical 

Bessada et al. (2019) 

Navarro del Hierro et al. (2018) 

Reichert et al. (2019) 

Singh et al. (2017) 

lectins X  

↓Absorption, impaired 

growth, red blood cell 

agglutination  

Agricultural, 

nutraceutical 
Bessada et al. (2019) 

Alpha-galactosides X X Flatulence 
Animal feed, food 

ingredient, nutraceutical, 
Martínez-Villaluenga et al. (2008) 
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bioenergy production 

Reducing sugars   X ↓Yield, Maillard reactions 

Animal feed, food 

ingredients, bioenergy 

production 

Mondor et al. (2009) 

Zha et al. (2019) 

Triacylglycerides   X 

↓Yield, ↓purity, off-flavor 

precursors, protein-lipid 

interactions, polymerization 

reactions 

Oilseed 

Xing et al. (2018) 

 Xu et al. (2020) 

 Byanju et al. (2020) 

Minerals  X ↓Yield, protein interactions Agricultural  Boye et al. (2010) 

Abbreviations: ANF, anti-nutritional factor; ATF, anti-technological factor. 1925 

1 Those compounds considered as ANF and ATF are indicated with X. 1926 

2  ↓ Denotes a decrease 1927 

 1928 

1929 
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Table 2 1930 
Recent applications of emerging technologies to improve the removal of ATFs and ANFs from legumes. 1931 

Material ANF/ATF 
Sustainable 

technique 

Temperature 

(ºC) 
Solvent S/S ratio 

Maximum 

extraction 

conditions 

References 

Soybean 

Oil 
MEF + Enzyme-

assisted 

70 – 90 

50 
Water 1:4/1:2 w/v 

96 V/cm, 50 Hz, 10 

min, 90°C + 

cellulase enzyme, 16 

h 

 Pare et al. (2014) 

Polyphenols, 

phenolic acids 
HPU, HPU + MW 

25 

25/55 - 85 

Pure 

acetone 
 

20 kHz, 30% 

amplitude, 10 min + 

85°C, 2 min, 75 W 

 Đurović et al. (2018) 

Chickpea Polyphenols HPU 25 Water 0,40 w/v 

40 kHz, 36.16% 

amplitude, 20.17 

min 

 Hayta & İşçimen (2017) 

Red bean Polyphenols HPU 25 

Water + 

Ethanol 

(40%) 

1:20 w/v 
50 kHz, 100 W, 30 

min 
 Zhang & Wang (2016) 

Lentil Saponins HPU 75 Water 1:10 w/v 
60% amplitude, 15 

min 

 Navarro del Hierro et al. 

(2018) 

Lupine 

Alkaloids HPU 25 Water  

(Hydration 

pretreatment) 

25 kHz, water bath, 

41 W/L, 300 min 

 Miano et al. (2019) 

Alkaloids HPU 63 - 77 Water 1:10 w/v 

24 kHz, 100% 

amplitude, 10 min, 

63°C 

 Aguilar-Acosta et al. 

(2020) 

Saponins HPU 75 Water 1:10 w/v 
60% amplitude, 15 

min 

 Navarro del Hierro et al. 

(2018) 

Polyphenols SF 40 - 80 

CO2 + 

Ethanol  

(16.1%) 

 

16.1% co-solvent, 

147 bar, 40 min, 

73°C 

 Buszewski et al. (2019) 

Peanut t-resveratrol SF 50 - 70 

CO2 + 

Ethanol 

(3%) 

 
483 bar, 50 min, 

70°C 
 Jitrangsri et al. (2020) 
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 1932 

 1933 

 1934 

 1935 

 1936 

 1937 

 1938 

Abbreviations: ANF, anti-nutritional factor; ATF, anti-technological factor; HHP, high hydrostatic pressure; HPU, high-power ultrasound; MEF, 1939 

moderate electric field; MW, microwave; SF, supercritical fluid; s/s ratio, solid/solvent ratio. 1940 

 1941 

1942 

Pods Inositols MW 50 - 120 Water 1:20 w/v 
1200 W, 16.5 min, 

120°C 
 Zuluaga et al. (2020) 

Seeds Inositols MW 50 - 120 

Water + 

Ethanol 

(17%) 

1:20 w/v 
1200 W, 21.5 min, 

90°C 
 Zuluaga et al. (2020) 

Pinto 

bean 
Tannins MW 60 - 75 Water  

(Pretreatment) 

1000 W, 2.45 GHz, 

1 min 

 Dalmoro et al. (2018) 

Pea Oligosaccharides HHP 20 Water 1:1 w/v 400 MPa, 10 min  Baier et al. (2015) 
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 1943 

Table 3 1944 

Emerging technologies for legume protein extraction. 1945 

Material Technique Extraction conditions S/S ratio T (ºC) 
pH 

(extraction) 

pH 

(precipitation

) 

Protein 

concent

ration 

Optimum 

conditions 

Protein yield 

(%) 
Ref. 

Soy grit Enzyme-assisted 

Alkaline extraction (1, 2 and 

3h) 

1:10 50 

8 

4.5 
Freeze 

drying 

Enzymatic assisted + 

alkaline extraction 

(1+1h) 

40.87-45.93% 
 Perović et al. 

(2020) 

Enzymatic extraction (3h) 5.5 

Enzymatic + alkaline extraction 

(1+1h) 
5.5/8 

Enzymatic + alkaline extraction 

(1+2h) 
5.5/8 

Ganxet 

beans 
HPU 

Alkaline extraction (15 min) 

1:10 4 

12.06-12.94 

(NaOH 0.1, 

0.3, 0.3 & 

0.4M) 
5.5 

Freeze 

drying 

Ultrasound assisted 

(40 kHz, 250W, 60 

min) in alkaline 

conditions (0.4M 

NaOH; pH 12.95) 

78.73% 
 Lafarga et al. 

(2018) 

Ultrasound (30 or 60 min) in 

alkaline conditions 

12.04-12.97 

(NaOH 0.1, 

0.3, 0.3 & 

0.4M) 

Peanut 

meal 
HPU 

Ultrasonic power (0-60 W/g, 0-

20 min) 
1:5-1:20 40-70 7-10 - - 

Ultrasound assisted 

(30 W/g, 15 min, pH 

6.8); 1:20 s/s; 50ºC 

87.7% 
 Nguyen & Le 

(2019) 

Lupine HPU 

Ultrasound (0-15 min, 24 kHz, 

85 W/cm2) in alkaline 

conditions 

1:10 - 9 4.5 - 

Ultrasound assisted 

(85 W/cm2) during 

10 or 15 minutes 

(depending on the 

cultivar) 

~70% 

 Aguilar-

Acosta et al. 

(2020) 
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Soybean, 

chickpea 

and 

kidney 

bean 

HPU 

Ultrasound (5 min, 20 kHz, 2.5-

4.5 W/cm3) in alkaline 

conditions 

1:10 60 8.5 4.5 
Freeze 

drying 

Ultrasound assisted 

(4.5 W/cm3) except 

for chikpea that 

present higher 

protein yield the 

untreated samples 

Soy flakes 

(30.6-33.45%) 

Soy flour 

(50%) 

Kidney bean 

(51.4%) 

 

Byanju et al. 

(2020) 

Soy 

slurry and 

okara 

HPU 
Ultrasound (20 kHz, 400 W, 0-

15 min) in alkaline conditions 
1:6 

50 

(initial) 
- - - 

Ultrasound assisted 

(20 kHz, 5 min) 

Soy slurry 

(~55%) 

Okara (~67%) 

Preece et al. 

(2017a) 

Peanut 

flour 

- Alkaline extraction 1:10 50 

9 4.5 
Spray-

drying 

Ultrasound assisted 

(24 kHz, 100% 

amplitude, 15 min) 

~65% 
Ochoa-Rivas et 

al. (2017) 

MW 
Microwave (145-750 W, 2-10 

min) in alkaline conditions 

1:10-

1:25 

Variable 
HPU 

Ultrasound (24 kHz, 20-100% 

amplitude, 15-40 min) in 

alkaline conditions 

1:10 

MW + HPU  

Microwave (725 W, 8 min) + 

ultrasound (24 kHz, 100% 

amplitude, 15 min) in alkaline 

conditions 

1:10 

Symbols and abbreviations: -, not specified; HPU, ultrasound-assisted; MW, microwave-assisted; S/S, solid/solvent ratio. 1946 

1947 
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 1948 

Table 4 1949 

Recent findings regarding the main effects of pulsed electric fields, high hydrostatic pressure, high-power ultrasounds and microwaves on 1950 

techno-functional properties of legume proteins. 1951 

Legume  Applied matrix Technology Conditions Sol. WAC OAC Gel. EC/ES FC/FS References 

Soybean  Defatted PI PEF 0-40 kV/cm, 0-547 µs ↑↓1 - - - - -  Li et al. (2007) 

Pea  
5% PC 

dispersion 
PEF 

1.65 kV/cm, 400 Hz, 

0.1-0.3 s, pH 5-6 
=↓1 ↑↓ =↓1 - - ↑/↑ Melchior et al. (2020) 

Soybean  
3% PI 

dispersion 
HPU 

20 kHz, 550W, 60 

W/cm2, 5, 10, 20, and 

30 min, <35˚C 

↑ - - - ↑/↑ ↑/↓  Ren et al. (2020) 

Soybean  
10% PC 

dispersion 
HPU 

20 kHz, 750 W, 

amplitude 20%–40%, 

10–20 min 

↑↓ ↑↓ - ↑↓ - -  Khatkar et al. (2020) 

Soybean 
1-6% PI 

dispersion 
HPU 

400 W, 105–110 

W/cm2, 10 min 
- - - ↑ - -  Wang et al. (2020) 

Soybean  
11-12% PI 

dispersion 
HPU 

20 kHz, 30-40 W, 60 

µm, 30 min 
↑ = ↑ ↑ - -  Paglarini et al. (2019) 

Soybean  
Emulsions with 

1% PI 
HPU 

20 kHz, 50–55W/cm2, 

40% amplitude, 2, 6, 

12 or 18 min, 23˚C 

- - - - ↑/↑ -  Taha et al. (2018) 

Soybean  
≈1% PI 

HPU 
20 kHz, 600 W, 5 min, 

↑ - - - - -  Huang et al. (2017) 
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dispersion 25˚C 

Soybean  
0.1-10 % PI 

dispersion 
HPU 

20 kHz, 34 W/cm2, 2 

min 
- - - - =/= - O’Sullivan et al. (2016a) 

Soybean  
0.1-3% PI 

dispersion 
HPU 

20 kHz, 34 W/cm2, 2 

min 
- - - - ↑/↑ - O’Sullivan et al. (2016b) 

Soybean  

10% PI 

dispersion 

thereafter 

exposed to 

transglutaminase 

HPU 

20 kHz, 400 W, 105-

110 W/cm2, 5-40 min, 

14–20 ˚C 

↑ ↑ - ↑ - - Zhang et al. (2016) 

Soybean  
6% PI 

dispersion 
HPU 

20 kHz, amplitude 

20%, 75, 80 and 85 ˚C 
- - - - - ↑/=  Morales et al. (2015) 

Soybean  

10% PI 

dispersion 

thereafter 

exposed to 

transglutaminase 

HPU 
20 kHz, 400 W, 0-40 

min, <20˚C 
- - - ↑ - - Hu et al. (2015a) 

Soybean  

3% β-

conglycinin and 

glycinin 

dispersions 

HPU 
20 kHz, 400 W, 5-40 

min 
↑ - - - ↑/↑↓2 - Hu et al. (2015b) 

Soybean  1% glycinin HPU 

20 kHz, 80 W/cm2, 5-

40 min, different ionic 

strengths 

↑↓1 - - - ↑↓1/↑ -  Zhou et al. (2016) 
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Pea  

1:6-1:12 raw pea 

powder to obtain 

pea PI 

HPU 

Optimized extraction 

conditions 750 W, 

amplitude 33.7%, 13.5 

min, 25˚C 

↑ ↑ ↑ ↑ ↑/↑ ↑/↑ Wang et al. (2020) 

Pea  
5% PI 

dispersion 
HPU 

20 kHz, amplitude 30, 

60, 90%, 22-48 

W/cm2, 30 min 

- - - - - ↑/↑=  Xiong et al. (2018) 

Pea  
3% PI 

dispersion 
HPU 

20 kHz, 6.8 W/L, 5 

min, < 35˚C 
↑ - - - - - Jiang et al. (2017) 

Pea  
0.1-10% PI 

dispersion 
HPU 

20 kHz, 34 W/cm2, 2 

min 
- - - - ↑/↑ - O’Sullivan et al. (2016a) 

Pea  

0.1–3% PI 

dispersions and  

10% rapseed oil 

emulsion 

containing 0.1–

3% PI  

HPU 
20 kHz, 34 W/cm2, 2 

min 
- - - - =/↑ -  O’Sullivan et al. (2015) 

Chickpea  
8% PI 

dispersion 
HPU 

20 kHz, 300 W, 5, 10, 

and 20 min 
↑ ↑ - ↑ ↑/↑ ↑/= Wang et al. (2020) 

Faba bean  
10% PI 

dispersion 
HPU 

Optimized conditions 

20 kHz, amplitude 

72.67%, 16.1 min 

↑ - - - - ↑/↑  Martínez-Velasco et al. (2018) 

Peanut  

10% defatted 

peanut flour to 

obtain PI 

HPU 
24 kHz, amplitude 

100%, 15 min 
↓ ↑ = - ↓ ↑/↓  Ochoa-Rivas et al. (2017) 
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Peanut  

Peanut PI 

grafted with 

maltodextrin 

through HPU-

assisted 

Maillard 

reaction 

HPU 

25 kHz, 250 W, 

amplitude 95%, 10-

100 min 

↑ - - - ↑/↑ - Chen et al. (2016) 

Soybean 

10% PI 

dispersion 

thereafter 

exposed to 

laccase 

MW 
0, 120, 240, 360, 480, 

or 600 W for 1 min 
- ↑ - ↑ - -  Mu et al. (2020) 

Lima bean  
Aquafaba 

dispersion 
MW 

Cooking (100˚C for 30 

or 60 min) vs. 

Cooking (100˚C for 15 

or 45 min) + 840 W 

for 15 min 

- - - = - = Nguyen et al. (2020) 

Peanut  

10% defatted 

peanut flour to 

obtain PI  

MW 725 W, for 8 min ↓ ↑ = - ↑ ↑/↓  Ochoa-Rivas et al. (2017) 

Soybean 

10% soy PI + 

1% wheat gluten 

dispersion 

thereafter 

exposed to 

transglutaminase 

MW 
0, 70, 210, 350, 560 or 

700W, for 1min 
↓ ↑ - ↑ - -  Qin et al. (2016) 

Soybean  10% Soybean 

white flakes 

HHP 100 MPa, 200 MPa 

and 300 MPa, for 3 

↑ - - - - -  Liu et al. (2020) 
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incubated with 

flaxseed gum 

days, 60 °C 

Soybean 
1% PI 

dispersion 
HHP 

600 MPa, 5 min, 20˚C, 

with added Ca 
↑ ↑ - ↑ - -  Piccini et al. (2019) 

Soybean  

0.5 mmol/L soy 

PI + tea 

polyphenols 

HHP 
200, 300 or 400 MPa, 

10 min 
↑ - - - ↑/↑ - 

Chen et al. (2019) 

 

Soybean 

0.5% and 1% PI 

dispersed at pH 

5.9 and 7 

HHP 
600 MPa, 5 min, 20˚C, 

with added Ca 
- - - ↑ ↑/↑ -  Manassero et al. (2018a) 

Soybean 

0.5% and 1% PI 

dispersed at pH 

5.9 and 7 

HHP 

600 MPa, 5 min, 20˚C, 

with and without 

added Ca 

↑ - - - - -  Manassero et al. (2018b) 

Soybean 

1% PI 

dispersions 

adjusted to 

different pH 

HHP 
600 MPa, 10 min, 

20˚C 
↑ - - - - -  Manassero et al. (2015) 

Lentil  
5% PI 

dispersion 
HHP 

300 MPa, 15 min, 

20˚C 
- ↑ - - ↑/↓ ↓/=  Ahmed et al. (2019) 

Lentil  

5% PI 

dispersion 

exposed to HHP 

and thereafter 

hydrolyzed  

HHP 
300 MPa, 15 min, 

20˚C 
- = - - ↓/↓ =/↓  Ahmed et al. (2019) 
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Lentil  
2% PC 

dispersion 
HHP 

100, 200, 300, 400, 

500, 600 MPa, 15 min, 

40˚C 

=↓1 - - - - -  Garcia-Mora et al. (2015) 

Cowpea  

Seeds exposed 

to HHP and 

thereafter milled  

HHP 
200, 400 or 600 MPa, 

5 min, 20˚C 
↓ ↓ = = ↑↓1/= ↑/↑  Sosa et al. (2020) 

Cowpea  

Different 

concentrations 

of PI obtained 

by different 

alkaline 

solubilization 

pH 

HHP 
400 or 600 MPa, 5 

min, 20˚C 
- - - ↑ - - Peyrano et al. (2019) 

Cowpea  

1% PI obtained 

by different 

alkaline 

solubilization 

pH 

HHP 

200, 400 or 600 MPa, 

5 min, 20˚C versus 

thermal treatments 

↓= ↑ - ↑ - -  Peyrano et al. (2016) 

Kidney bean  
5% PI 

dispersion 
HHP 300 MPa, 15 min - ↑ - - ↑/↑ ↑/=  Al-Ruwaih et al. (2019) 

Kidney bean  
20-25% PI 

dispersion 
HHP 

200, 400 or 600 MPa, 

15 min, 20˚C 
- ↑ - - ↑/↑ ↓/↓  Ahmed et al. (2018) 

Pea  
0.25% PI 

dispersion 
HHP 

200, 400 or 600 MPa, 

5 min, 23 ˚C, different 

pH 

↓ - - - ↑/↑↓ =↑/↓  Chao et al. (2018) 
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Pigeon pea  

Seeds exposed 

to HHP and 

thereafter milled 

HHP 
200, 400 or 600 MPa, 

5 min, 20˚C 
↓ ↑↓1 ↑ = =/↑↓1 ↓/↓  Sosa et al. (2020) 

Dolichos bean  

Seeds exposed 

to HHP and 

thereafter milled 

HHP 
200, 400 or 600 MPa, 

5 min, 20˚C 
↓ ↑ = = ↓/= ↑↓/↑↓  Sosa et al. (2020) 

Jack bean  

Seeds exposed 

to HHP and 

thereafter milled 

HHP 
200, 400 or 600 MPa, 

5 min, 20˚C 
↓ =↓1 = = ↓/= ↓/↓  Sosa et al. (2020) 

1 Decrease at extreme conditions 1952 

2 Glycinin decreases, whereas conglycinin increases 1953 

Symbols and abbreviations: -, not specified; =, no effect;↑, increase; ↓, decrease; EC/ES, emulsifying capacity/stability; FC/FS, foaming 1954 

capacity/stability; Gel., Gelation; HHP, high hydrostatic pressure; HPU, high-power ultrasounds; MW, microwaves; OAC, oil absorption 1955 

capacity; PC, protein concentrate; PEF, pulsed electric fields, PI, protein isolate; Sol., solubility; WAC, water absorption capacity. 1956 
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 1957 

Figure 1: 1958 

Strategies and objectives of employing emerging technologies to obtain functional protein isolates.1959 
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 1960 

 1961 

Figure 2 1962 

Scheme of the potential application of emerging technologies to improve protein recovery 1963 

during wet-extraction processes. 1964 

1965 
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 1966 

Figure 3 1967 

Summary of the mechanisms for the health effects of the technologically obtained legume 1968 

protein isolates.  1969 

CCK: cholecystokinin, PYY: peptide YY; GLP-1: glucagon-like peptide-1; ACE: angiotensin-I 1970 

converting enzyme; DPP-IV: dipeptidyl peptidase-IV; HMGR: 3-hydroxy-3-methylglutaryl-1971 

coenzyme A reductase; PL: pancreatic lipase. Images from PDB-101. 1972 

 1973 

1974 
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