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Abstract

The EFSA asked the Panel on Animal Health and Welfare to develop a guidance document on good
practice in conducting scientific assessments in animal health using modelling. In previous opinions, the
AHAW Panel has responded to two-thirds of animal health-related mandates using some kind of
modelling. These models range from simple to complex, employing a combination of scientific, economic,
socio-economic or other types of data. Hence, there is strong interest in the development of a guidance
document to integrate modelling efforts into the routine process of EFSA working groups. In this
document, an ‘operating procedure’ (OP) for the use of modelling within an AH working group is
presented. The OP provides a detailed flowchart enabling modelling to be transparently and consistently
integrated in the assessment. The OP is structured into phases. These phases combine the relevant
standard operating procedures and working instructions of EFSA with the modelling process. Each phase
includes roles and actions to be taken, expected output and the sequence of agreements that need to be
made between all partners in the scientific assessment. In conclusion, it is expected that adherence to
the OP will improve transparency of models in EFSA outputs, and it is recommended to adopt it as a
standard procedure when responding to AHAW mandates.
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Summary

The European Food Safety Authority (EFSA) asked the Panel on Animal Health and Welfare to
develop a guidance document on good practice in conducting scientific assessments in animal health
using modelling.

In the past, EFSA has used a range of models to inform opinions on important problems in animal
health (AH), including qualitative models, pathway-based decision tree models, epidemiological
transmission or disease spread models, diagnostic test simulations on virtual hosts or host groupings.
These models have ranged from simple to complex, employing a combination of scientific, economic,
socio-economic or other types of data.

Modelling was used during the preparation of approximately two-thirds of past AH mandates (22/
31). The use of modelling in this work is logical, providing a structured representation of our
knowledge about the ‘real world” underpinning each animal health problem. There is strong interest in
the development of a guidance document to integrate modelling efforts into the routine work of EFSA
working groups.

In this document, we present an ‘operating procedure’ (OP) for the use of modelling within an AH
working group, to support animal health decisions or to inform scientific risk or benefit assessments. A
detailed procedure is presented, providing the chair and other members of a WG with a flowchart that
lists the actions to be taken and the decisions to be made, to enable modelling to be transparently and
consistently integrated, and objectives achieved.

The OP includes four main phases, which include the initial receipt of the mandate, the
development of a strategic work plan, the implementation of the work plan and the reporting for final
adoption of the resulting opinion. Each phase includes actions to be taken, the contributing actors, the
expected output and the relevant approval stages (i.e. sequence of agreements that need to be made
between all partners in the steps towards a final scientific assessment). The OP highlights the points
when agreement must be achieved within the working group on key methodological issues. Therefore,
within the OP relevant decision points are scheduled.

The guidance document recommends the development of a dynamic glossary containing standard
terminology for the use of mathematical and statistical models in risk and benefit assessments, to be
maintained and continuously peer reviewed by EFSA experts. This will support consistent use of
terminology by AH opinions, at least to be consistent within the Panel and preferably across all EFSA
outputs.

In conclusion, it is expected that adherence to the OP will improve transparency and acceptability
of models in EFSA outputs. The Panel recommends its adoption as a standard procedure when
responding in an AHAW mandate.
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1. Background and Terms of Reference as provided by the requestor

During the process of assessing a potential risk for animal health, the use of models can be a
prerequisite where mental simulation is not able to represent multiple causal links within a system.
Models can help experts from different fields to interact and use all the available scientific evidence to
answer with best confidence the risk management question. Models present a reflection of our
understanding of the ‘real world’ and allow explaining or predicting effects.

Different types of models exist, and different approaches can be used to categorise models, one
being to group them into qualitative and quantitative models, and their roles in a scientific assessment
process will vary according to the circumstances.

During scientific assessments, however, the danger may exist that good practice is overlooked
whilst applying models under time pressure. Potential hazards to using modelling in risk assessments
may be poor communication among subject experts and modelling experts, which may lead to poor
understanding of the objectives for the modelling or its role in the scientific output.

Considering the above, the aim of this mandate is to produce guidelines for the use of
mathematical and statistical models to be provided to chairs and members of AHAW Working Groups
(WG) as a support while conducting scientific assessments in animal health during their specific tasks
and mandates. The goal is that models should be well-integrated into the scientific work and reflect
the intention of the mandate, input of parameters into models and integration of model outcomes into
the scientific output.

TERMS OF REFERENCE AS PROVIDED BY EFSA

1) A glossary should be created, and definitions should be provided in order to establish a
standard terminology for the use of mathematical and statistical models.

2) Description of the main types of models, including usefulness and limitations, is needed.

3) A set of criteria or questions to guide a WG through the process should be developed,
starting by the decision of using a model or not, choice of model and the possible objectives
and roles of a model and recommended processes for model verification and validation.

4) Procedural guidelines for the proper integration of modelling into WG standard operational
procedures should be developed. This may include effective communication among WG
members and risk managers, common understanding of objectives and the role of the model
in the scientific output, as well as guidelines on the role of the subject and modelling experts
within the WG.

During the review of the guidance document by the AHAW Panel in November 2019, it was agreed
to revise the guidance to take account of recent relevant developments in this area.

The following changes have been made:

In the main document:

e Update of Section 2.3 regarding data limitations and the link to EFSA’s guidance documents on
uncertainty;

e Addition of Section 2.3.4 on model transparency;

e Update of Section 2.4 on the procedural guidelines for appropriate integration of modelling into
Working group standard operational procedures, including an update of Figure A.1.

In the Appendices:
e Update of the standard terminology for the use of mathematical and statistical models.

The other sections of the document have not been modified.

2. Assessment

Models in general are a reflection of our understanding of the ‘real world’. The type of model used
in a specific situation is determined by the purpose of the task, and by the availability and type of
data, and often also by the available expertise and resources.

A model can be developed for one or several reasons including simplification of complexity,
synthesis, optimisation, analysis, explanation, assessment, prediction and simulation of complex
systems. Considering these broad possible uses, models can assist:
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e where multiple causal links within a system cannot be adequately represented by mental
simulation (Lempert et al., 2003),

e when structuring available information or hypotheses about potential causal processes,

e in appropriately integrating available scientific evidence, and

¢ in explaining, predicting, forecasting and nowcasting effects.

Hence, models (i.e. ‘modelling”) are likely to be at the core of the scientific assessment.

To assess the role of modelling in past EFSA AH opinions, a procurement was launched to
systematically review the application of quantitative modelling in these documents. It was found that
21 of the 31 used some kind of model and 12 included a quantitative assessment applying in total 21
different modelling approaches (Singer, 2010).

Decisions on the development of new or use of existing models for a specific mandate have to be
an essential element of the planning of the scientific assessment process. Experience with previous
EFSA mandates has demonstrated some of the challenges faced when models are used as part of the
scientific assessment. As a consequence of communication problems within the working group (WG)
and beyond, some models have not been optimally integrated into the resulting scientific output of the
Panel.

The main causes of communication problems between subject and modelling experts were (a) the
unclear reasons for selecting different model types to deal with apparently similar risk questions, (b) a
lack of understanding of the model development process by those not directly involved, (c) insufficient
communication among all those involved in scientific assessment process (risk modeller, WG, Panel
members and requesting party), (d) a lack of documentation about the model structure, (e) the time
constraints and (f) lack of transparency in relation to decisions taken with respect to the modelling
process. Consequently, discussions about the objective and purpose of the modelling, and of the
appropriateness of selected tools and resulting outcomes have often only been held during the final
phase of scientific assessment process, when adjustments to the modelling process are no longer
possible.

The overall aim of this mandate therefore is to produce guidelines to chairs and members of AHAW
WGs for the use of models in support of scientific assessments in animal health. The objective is to
establish a structured process that results in models which are:

more transparent,

accepted by the majority of stakeholders,

directly related to the scientific work,

produced in a timely fashion,

consistent with the Terms of Reference laid out in the Mandate.

and account for uncertainties about the model structure (EFSA Scientific Committee, 2018a).

A large amount of literature is available on the topic of modelling (e.g. Scott and Smith, 1994;
Mollison, 1995; Grenfell and Dobson, 1995; Hudson et al., 2002; Grimm and Railsback, 2005). It would
be beyond the scope of this guidance document to cover all the technical aspects of any modelling
that could be useful for addressing future mandates. Therefore, it was decided to include only a rather
general description of main model types including their usefulness and limitations, as an Appendix A
(thereby specifically addressing ToR item 2).

The core of this guidance document addresses items 3 and 4 of the ToR. It is comprised of a
flowchart laying out the process of (a) deciding whether a model is needed early during acceptance
and clarification of a given mandate, (b) assuring that all partners agree on the objective and scope
before starting the modelling process and (c) establishing sufficient communication and feedback loops
within the WG and between WG, Panel, Secretariat and Commission during the scientific assessment.
This flowchart is annotated with explanations and accompanied by a short general glossary of
technical terms used in mathematical and statistical modelling (ToR item 1) to establish a common
level of understanding of the relevant terminology.

For the guidance document, the definition of a ‘model’ includes a wide range of approaches from
conceptual models (Dresner, 2008; Thulke and Grimm, 2010; i.e. verbal description or graphical
representation of possible structures and relationships), to complex mathematical implementations
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(translations) of such conceptual models (i.e. computational models). The conceptual modelling is based
on concepts and knowledge arranged to represent the processes and interaction in a disease-host-
management problem explored without using technical tools, e.g. by mental simulation according to
Lempert et al. (2003). The computational modelling refers to construction of technical tools (e.g. from
semantic logical axioms, scoring systems, semi-quantitative flow diagrams, mathematical equations, or
numerically simulated dynamic systems). Appendix A identifies characteristics of computational models
that may enhance communication of a particular model in use. Moreover, the set of standard terms
referring to the use of mathematical and statistical models was collated from previous AHAW documents.

While identifying standard terminology, a recurrent problem of the absence of universally agreed
definitions in risk or benefit assessment terminology was faced. With the exception of some instances
e.g. the OIE handbook on Import risk analysis (OIE, 2004) and some of the EFSA opinions, glossaries
containing definitions in risk assessment for animal health are rare. One reason might be that the
terms used in scientific assessments can vary between different disciplines such as ‘risk” in animal
health and quantitative microbiology. This might explain why glossaries are rarely included in textbooks
on quantitative scientific assessment. Further in qualitative risk and benefit assessment, the
interpretation of the verbal grading of levels of occurrence and consequences may vary among
different assessments.

In order to reply to the first ToR, it was decided to search for the relevant terms and respective
definitions used in previous AHAW scientific opinions and reports dealing with animal health issues.
This review was carried out in 2010 (Singer, 2010). A total of 31 opinions have been analysed for
terms related to risk assessment and modelling. The following terms were searched at the beginning:
risk, assess, model, statistic, probability, prevalence and epidemiology. An Excel table was developed
with the terms found, the definition provided or the text related and the location in the document.
Some terms were found in the opinions’ glossary, some were retrieved from the text. A reference
number was given to each term/definition. Experts were asked to evaluate these terms and the
definitions provided and to classify them using the following criteria:

G  Generic in context of modelling.
S Specific in context of modelling.
NR Not relevant in context of modelling.
D  To be discussed important concept for risk communication (to be included,

e.g. a recommendation).

It was decided to include in the standard terminology only those terms that were classified as
‘Generic’ (G). Additional terms with definitions were included according to the expert’s knowledge, e.g.
if used in the current guidance. Terms and definition were provided with a source reference if the
definition was cited without modifications from that reference. All the other definitions were elaborated
and agreed by the experts (see Appendix B — Standard terminology for the use of mathematical and
statistical models). Because that list is not exhaustive, a wiki-based approach was recommended for an
EFSA glossary on standard terminology for the use of mathematical and statistical models.

Although there are some generally applicable terms in modelling, their precise interpretation may
vary slightly according to the discipline or context of a specific scientific assessment. One option has
been to define terms for each particular EFSA scientific report/opinion. This, however, leads to an
unstructured assemblage of relevant terms and concurrent definitions of the same term.

Such a glossary would facilitate the process of comparing outputs from different assessments, e.g.
by identifying the differences between different model types. The already existing definitions in the
EFSA AHAW opinions as well as the standard terminology list of this guideline could serve as a basis.

The recommended glossary should be preferably dynamic and kept in a central internal repository
of EFSA containing standard terminology for the use of mathematical and statistical models in risk and
benefit assessments. The access to the glossary should be limited to EFSA and its WGs. The formalities
of updating the terminology should be specified.

The internally available compendium of agreed terms is recommended to be used as follows: (a) a
self-sustaining glossary is still required for each scientific output, but the general glossary should be
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considered as first source when definitions are provided, (b) if an existing definition is found to need
improvement, the WG can recommend an update.

As a consequence, definitions used in EFSA communications would be consistent at least within the
Panel and preferably across all EFSA outputs.

Models can be classified according to different criteria. These criteria indicate whether a certain
feature is present in the model. Examples are quantitative vs. qualitative; analytic vs. simulation;
complex vs. abstract; dynamic vs. static, strategic vs. tactical (Holling, 1966; May, 1973); top-down vs.
bottom-up (Grimm and Railsback, 2005); associative vs. process (King and Soskoline, 1988); empirical
vs. explanatory (Thrusfield, 2005); non-spatial vs. spatially implicit vs. spatially explicit; frequentist vs.
Bayesian. The purpose of model characterisation and categorisation is to provide a common,
shareable, configurable framework of information to describe a model of any type. These approaches
of categorising modelling approaches are often seen as competing or mutually exclusive.

According to the scientific review done through the procurement (Singer, 2010), the previous EFSA
AH mandates show that:

e Mandates, some with relatively similar terms of reference, differ in the type of modelling
techniques that were used,

e Stochastic decision trees, constructed from conceptual pathways, were the most-frequently
used modelling approach,

e Heterogeneous methods were applied to answer questions on specification of diagnostic test
characteristics, and

e The spread or the transmission of diseases was seldom asked to be modelled.

Since the development of this guidance document in 2010, disease spread and transmission models
have been used in several of EFSA scientific assessments such as those on Rift Valley Fever, African
swine fever and Lumpy Skin Disease (Nielsen et al., 2020; EFSA AHAW Panel, 2020, 2021a).

The exhaustive model characterisation will assist in communicating the particular modelling
approach adopted. For a selected model, the classification of the modelling technique (Appendix A,
Section A.1), the methods of analysing the model (Appendix A, Section A.2) and the related
uncertainties should be specified in the model report to enhance transparency in communication.

This guidance does not specifically consider artificial intelligence techniques, including machine
learning or deep learning (see Appendix A — Model characterisation). Concerning models based on
machine learning techniques, implementation and validation phases may follow different approaches
than those described in the present guidance. For this reason, the application of the guidance for this
type of models must be evaluated on a case-by-case basis.

The specific objective or purpose of a model-based scientific assessment along with the data
available will guide whether a particular modelling approach will be suitable (Starfield et al., 1990;
Roughgarden et al.,, 1996; Philips et al., 2004; Grimm and Railsback, 2005; Garner and Hamilton,
2011). A thorough and structured assessment of the available data and data that would be needed
(and the uncertainties associated with it) should be performed in the initial steps of the scientific
assessment before a final decision on the model selected is adopted (see Section 2.3.4).

The use of formalistic decision flows as a guide during model selection (part of ToR item 3) is not
recommended. It is recognised that such a decision tree would (a) never completely reflect the scope
of existing models, (b) not be agreeable to all modelling experts, and — most importantly — (c) reduce
the flexibility of future WGs during the selection of model(s) that would be fit for purpose in achieving
the specific objective. Often, there are several approaches that might be suitable when addressing a
particular mandate (Philips et al., 2004).

Three general objectives have been described in the literature (Figure 1). The purpose of modelling
either focuses on more comprehensive description of collected data or aims at a systemic
understanding, or the prediction/nowcasting/forecasting of future events (Hall and DeAngelis,
1985).
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Description Understanding Prediction

¢ Distribution
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Projection
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kernel

Note: Overlapping ellipses symbolise potentially non-distinct purposes of practical models.

Figure 1: Identified purposes of modelling with typical examples

The purpose of models made for description is to clearly and systematically extract information
from available data (including empirical data sets). It is important to gain an understanding of data
availability, and of their inherent content and uncertainty. Models applied for descriptive purposes can
provide important clues for explaining relationships. The purpose might relate naturally to the concept
of ‘data-driven’ modelling. The outcome of descriptive models may be hypotheses, which can then be
challenged if new data become available.

The second purpose of models aims at improving our understanding of a system. The modelling
can result in relative comparisons and show variability in outcomes given different assumptions.
Subsequently, it allows to understand the impact of some parameters, assumptions/scenarios.
Accuracy is often a less important issue when modelling relative or worst-case scenarios to aid
decision-making. The complexity of a system and its internal relationships can generate emergent
findings, and then lead to improved system understanding. This purpose can be related to the concept
of ‘*knowledge-driven” modelling.

The last group of models deals with prediction/forecasting of future outcomes. Models intended
for predictive purposes often attempt to mimic nature in great detail, leading to so-called ‘naive
realism’ (Grimm and Railsback, 2005). High accuracy, high predictive value and minimal uncertainty are
desired, but on the other hand unforeseen changes can have an impact on the precision of the
forecast. This model category can be associated with both ‘data- and knowledge-driven” modelling.

The three categories reflect differences in the expected outcome of a modelling procedure.
However, as the overlapping ellipses in Figure 1 indicate, in practice objectives of modelling reflect
smooth transitions between the identified purposes. In addition to combined model purposes
‘description and understanding’ and ‘understanding and prediction” shown in Figure 1, it is also
possible that a model addresses both the purpose of ‘description and prediction’, without the purpose
of understanding.

2.3.3. Modelling process

The usefulness of a model can be enhanced by transparent and comprehensive communication of
the model structure, the assumptions and outputs, including related uncertainty. When the outputs
and conclusions are based on the result of a model or statistical analysis, uncertainties not quantified
within the model or analysis, as well as uncertainties about the assumptions of the model should be
considered. This should be carried out as part of the process of characterising the overall uncertainty
(EFSA Scientific Committee, 2018b) (see subsections below). Recent hierarchical schemes of model
integration in decision-making outline the sequence of steps in a modelling process (e.g. Schmolke et
al., 2010). The process can be divided into three groups of activities that need to be completed in
order to produce a transparent and comprehensive model:
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e Model design & model formulation.
¢ Model implementation & model evaluation.
e Model application & output communication.

Correspondingly, the associated decisions and outcomes have to be documented along with the
procedural steps to allow retrospective justification, the communication to external participants as well
as guidance for methodological reporting.

2.3.3.1. Model design and formulation

This activity comprises of two elements: (a) the formulation of objectives to be addressed by the
modelling and (b) the description of the model design.

The formulated objective, e.g. an identified risk question, is needed to focus the discussion amongst
participants, and is part of the first step in the process of the scientific assessment during the protocol
development phase (EFSA, 2020a). At this stage, evidence needs for the methodological approach proposed
(i.e. the model) should be also defined, thus setting the minimum set of data that will be required to conduct
the scientific assessment. Availability of data/information about the system to be modelled will then be
assessed, e.g. through systematic literature reviews, as described in the EFSA guidance document on the
application of systematic review methodology to food and feed safety assessments to support decision-
making (EFSA, 2008). Uncertainties associated with the assessment (both linked to the data inputs and to
the assessment methodology) should be also identified in a systematic manner (EFSA Scientific Committee,
2018a,b) and, if needed, the approach initially considered should be revised. Agreement needs to be reached
amongst participants about what represents acceptable model inputs and model outputs. A key question will
be how the model output eventually will inform the conclusions expressed in the scientific opinion.
Participants involved in the modelling process need to be made aware that the formulation of the objectives
and data review can be one of the most time-consuming steps in the whole modelling process.

The description of the model design refers to the joint specification of the conceptual model (i.e.
verbal and graphical description). The conceptual model provides the basis for the model development
process (Pascual et al., 2003; Philips et al., 2004). Based on this, the model type and its overall
complexity can be justified considering available resources and timelines. Here, the participants in the
modelling process identify all important simplifying assumptions. The relationship between the model
design and the model objectives needs to be documented. Written documentation should be provided
at this stage because it will be essential for transparency and for communication with reviewers, Panel
members or requesting party.

2.3.3.2. Model implementation and model evaluation

This activity comprises of two elements: (a) model implementation, parameterisation and
calibration; and (b) model analysis and evaluation.

Model implementation refers to the physical realisation of the technical model. This is a technical
task to be completed by a modelling expert. Modelling experts will use a variety of methods to
translate a particular conceptual model into a formal mathematical representation, which ranges from
functional equations to one-by-one sequences of conditional rules implemented in computer software.
A core element of the model implementation is the source code (in the form of a collection of files)
that represents the ‘virtual’ model together with any specification choices made at this stage. To
support transparency (see Section 2.3.4) and comprehensiveness, all model parameters, including their
units, data source (e.g. own experiments, literature, expert estimations), and their variability/
uncertainty should be documented. The technical component of model implementations includes
qualitative and quantitative calibration of the model. All participants in the process need to be made
aware that they can review any documentation associated with this step.

Model evaluation refers to a systematic technical analysis of an implemented model and is the
subsidiary part of the model development process. During model evaluation, it is decided whether the
model performs better applying different methods. This analysis does not target the resulting outcome
of the modelling exercise but the detailed knowledge about the model and its properties. Accordingly,
the analysis for a model evaluation can involve (Schmolke et al., 2010):

o \Verification: to test whether the model is working according to its specification;

e Uncertainty analysis: to investigate the effects of lack of knowledge and other potential weak
sources contributing to the model (e.g. the ‘uncertainty’ associated with model parameter
values, or model structure), essential for the assessment of the reliability of the model-based
findings;
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e \Validation: to compare model output or output of submodels with independent field data to
strengthen confidence in usefulness of model for the specified problem;

e Peer review: Review of the model (including questions, conceptual model and model evaluation)
by a third party (not included in the modelling exercise) to increase confidence in model.

The documented outcome of the model evaluation activity provides the basis to reach acceptance
of the implemented model by all participants

2.3.3.3. Model application and communication

Once a model is accepted by the participants in the modelling process, it will be applied to produce
outputs relevant to the objective of the modelling exercise. This activity comprises of two elements:
(a) model application; and (b) communication of model output.

The application of the model generates outputs that lead to findings and recommendations. The
modelling expert has to develop an appropriate pathway to analyse the model. Choosing a method of
analysis still allows for some flexibility (although narrowed down by the existing model) to account for
available technical resources and the agreed time horizon. Together with generating model outputs,
the analysis might include:

e Sensitivity analysis: to measure the effect of changes in input values or assumptions on a
model’s output; when conducted in combination with uncertainty analysis, it allows a model
user to be more informed about the confidence that can be placed in model-based findings
(Pascual et al., 2003);

e Robustness analysis: to consider the impact on model output (e.g. estimates, scenario ranking,
relative risk level) if changing certain structural aspects of the model;

e Threshold analysis: to specify the range of uncertain assumptions or parameters to which
critical findings like breakpoints, thresholds and other quantitative or qualitative statements do
not alter;

e Model Uncertainty analysis: Uncertainty about model structure can be quantified statistically,
e.g. by model averaging, while other types of uncertainty about model structure must be
assessed by expert judgement and taken into account when characterising the overall
uncertainty. Judgements about model uncertainties should be expressed not as a probability
that the model is correct, but as probability distributions or probability bounds for the
difference between the model output and the real quantity it is intended to represent.

The communication of the output refers to the transparent and comprehensive explanation of
model output based on the conceptual model and already demonstrated model properties. The
communication enables the check whether initial questions could be answered. The communication
facilitates the identification of findings and scientific conclusions as outcome of the modelling.

Model transparency means the comprehensive documentation and communication of all data,
information, assumptions, methods, results, discussion and conclusions from the model used in the risk
assessment and uncertainties. The transparency is essential because data are often uncertain or
incomplete and, without full documentation, the distinction between facts and the modeller's value
judgements may blur (OIE, 2004, chapter 2.1).

The models used in assessments should be accompanied with documentation that

i) provides qualitative description of the model to readers who want to understand in general
how the model works;

ii) provides sufficient technical information to readers who want to evaluate the mathematical
and programming details of the model, and possibly replicate it (Eddy et al., 2012).

Grimm et al. (2006) presented an ‘ODD (Overview — Design concepts — Details) protocol’ to
structure the information of simulation models (individual-based models or agent-based models). First,
it provides an ‘Overview’ on the purpose and main processes of the model. Second, in the ‘Design
Concepts’ block, the general concepts underlying the model design are depicted and third, in the
‘Details’, all of the necessary information is given that would allow for a reimplementation of the
model. The three blocks (ODD) are subdivided in seven elements: for the block ‘overview’, these are
(i) purpose, (ii) state variables and scales and (iii) process overview and scheduling; for the block
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‘Design concepts’, this element is (iv) design concepts and for block ‘Details’, the elements are (v)
initialisation (vi) input and (vii) submodels (parts or modules).

Common practices for transparency focus on making model source code open access, documenting
key equations and parameter values and providing data (FAIR! data’). This ensures in the first place the
reproducibility of results (DeCarolis et al.,, 2012, 2017). Bistline et al. (2020) mention that these first
steps improve transparency for modellers and can help building confidence but are insufficient for
achieving what might be called ‘deep transparency’, which requires making structural assumptions
explicit, creating opportunities for interdisciplinary engagement and explicitly communicating value-laden
assumptions to stakeholders. To achieve this, they mainly recommend three major best practices:

i) Additional sensitivity analysis and model diagnostics including uncertainty. This analysis
identifies the impact of model parameters and assumptions on the model outputs;

i) Better model documentation (beyond equations) to enable open communication across
audiences and disciplines. This includes peer review of methods applied allowing periodic
updates and eventually broader engagement (e.g. crowdsourcing and collaborative websites,
e.g. Github), citations of sources and data posted to trusted repositories with guidance for
use to non-modellers and possible limitations, model code publicly available and extensively
commented for other users and external verification of the code;

ii) Greater discussion across modelling groups and other disciplines (e.g. by model inter-
comparison projects). The latter may include ethical implications and periodic reassessments
with interdisciplinary teams, guaranteeing broader engagement.

Making models as transparent as possible should help to communicate insights to a broader range
of stakeholders by appropriately explaining the strengths, limitations and assumptions to avoid
misinterpreting results.

This chapter describes the recommended operating procedure for a WG in relation to the three
stages of the modelling process. It reflects the activities that are particular for situations where the
assessment requires the application of a modelling.

The roles of WG experts in the context of the modelling process need to be clearly defined. WG
members may have one or both of two roles with regard to their responsibilities, particularly
concerning the type of contributions to the draft scientific output:

e Subject experts provide the scientific foundation for the problem to be addressed and identify
the relevant scientific literature and data sources. If technical modelling is advised, subject
experts provide scientific guidance and information for the development of the technical
model. Based on their subject knowledge, they support the modelling experts by putting the
relevant information into a logical framework appropriate for addressing the mandate. This
includes an identification of assumptions, limitations and uncertainties, such as expert opinion
as expressed in a semi-quantitative or quantitative manner. They should validate the output of
models and derived findings in the light of their knowledge and experience. Subject experts
will be responsible for ensuring state-of-art science with regard to the subject matter.

e Modelling experts select an appropriate modelling approach, which requires an understanding
of the subject issues (with the support from the subject experts). Modelling experts are
responsible for communicating their requirements to the WG (data, expert opinion, working
time). This must be done in a timely and transparent manner to allow model verification and
validation before application of the model in the assessment process. Modelling experts will be
responsible for ensuring state-of-the-art with respect to the modelling techniques. Table 1
specifies responsibilities for each of these two roles.

! Findability, Accessibility, Interoperability and Reuse of digital assets
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Table 1: Responsibilities of the subject and modelling expert(s)

Responsibilities of the subject expert(s) Responsibilities of the modelling expert(s)

Review the mandate and determine the required  Review the mandate and determine relevant needs for the
relevant scientific literature and data sources type of model and its requirements

Contribute to laying out the conceptual model Contribute to laying out the conceptual model within the

within the framework of the objectives of the ToRs framework of the objectives of the ToRs

and translating the ToRs into specific risk questions

Determine the scientific soundness of the proposed Determine the relevant modelling options, considering
modelling approach(es) including assumptions and timeframe, data and available resources; propose a
biological aspects structured model plan with required data

Assess the reliability of the data sources and the  Assess the feasibility of the intended modelling
quality of data

Assess the reliability of the practical model Provide proper implementation of the model tool
implementation

Assure transparency of the modelling process Assure transparency of the modelling process including
including reviewing the validity of assumptions, documentation of the model that identifies to the subject
limitations and potential uncertainty together with = experts the underlying assumptions, limitations and potential
the model experts uncertainty of the expected model output

Provide scientific guidance and information for the = Provide sufficient evaluation of the model to demonstrate

justification of the model within the framework of  consistency with scientific guidance and information (e.g.

the objectives of the TOR correctness and validity) within the framework of the
objectives of the TOR

Assess the scientific validity of the model output Apply the model to answer the objectives

Review and assess critically the practical relevance Present, explain and justify the model output, aiming for

of the model outputs aiming to derive sound transparent communication of technical details and respond
findings as outcome from the modelling to questions from the subject experts

Draft model findings and conclusions for the Draft final model description and model output for the
scientific output model report

Being the advocate in promoting to the Panel Confirm the conclusions and recommendation of the model
members and others the scientific findings report derived from the model output

generated by the modelling process

The recommended operating procedure for guiding a WG’s response to a mandate whose ToRs are
being addressed using modelling has been formulated based on relevant EFSA standard operating
procedures (SOPs) and working instructions (WINs) and the experiences of members of WGs of the
AHAW Panel. In the following, the operating procedure is documented along the sequential stages of a
WG's work together with the required actions and expected outcomes. The stages are presented in
Table 2. The operating procedure has been partitioned into four main phases to mirror EFSA's SOP on
generic mandates. Each of the phases comprises a series of steps. Moreover, within each step of the
procedural sequence, the readers’ attention is called to the particular needs for appropriate integration
of the modelling process (see Section 2.3.3). Agreements and final decisions are highlighted and
involved participants and required communication between these is emphasised. Producing a decision
tree to select a particular modelling approach, however, is not intended by the operating procedure
(see Section 2.3).

The four macrophases of the recommended operating procedure are:

1) Mandate intake.

2) Activities preliminary to Risk Assessment.
3) Risk Assessment.

4) Output publication and dissemination.

The procedure is the same for self-tasks of the Panel and Commission mandates, although the
involvement of the Commission in the former is informative and consultative in the latter.
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Table 2: Risk Assessment activities and actors including specific tasks related to modelling

Generic Risk Lo

Assessment Generic Risk Assessment Actors-Tasks Outcome
steps

macrophases

Macrophase 1
Mandate Intake

2 Receipt of a mandate

3 Chartering and acceptance

4 Workforce Mix Definition

5 Definition of outsourced
tasks

Macrophase 2 6 Protocol development
Activities preliminary to

Risk Assessment

1 Negotiation of the mandate No action for the Panel

Taken care of by EFSA staff

EFSA assigns mandate to the AHAW Panel

EFSA staff forwards mandate to the Panel

European Commission presents mandate to the Panel, and Panel
and European Commission discuss/clarify mandate (including
identification of background, objectives and questions) and the
need for modelling at a plenary meeting of the Panel

EFSA staff, WG chair and European Commission discuss the
mandate at the kick-off meeting with the European Commission

EFSA staff and Panel discuss whether the RA can be fully or
partially outsourced to Art.36 Organization or other Tenderers/
Grant beneficiaries

EFSA staff and WG chair propose experts for WG

EFSA staff invites selected experts

EFSA staff assures that appropriate contracts and/or grant
agreements are put in place

EC/WG chair present the clarified mandate and its purpose to the
WG

EFSA staff and WG discuss strategic approaches to respond to the
mandate (determination of specific risk assessment questions and
expected answers in relation to timelines)

EFSA staff and WG decide if a quantitative assessment is needed
or not (if not, follow the procedure except for points related to
modelling)

Not applicable

Panel informed of the new mandate for the
AHAW Panel

Mandate preliminarily clarified (TORs/goal/
target/aim/problem/question understood) and
accepted by the Panel with WG chair and
other Panel members (including modelling
advice) designated

Mandate clarified (defined and accomplishable
goals, purpose, question, expected answers
and timelines agreed including deadlines)
Potential strategic approaches described
(including draft roadmap, potential models
and their expected contribution, required and
available resources, sources of information/
data)

Decision on outsourcing of RA

AHAW Panel comments on WG composition
(by written procedure)

WG established

Outsourcing contracts/agreements

Draft protocol with approach to respond to
the TORs, including the modelling approach,
draft work plan, task distribution and action
plan proposed.

Proposed protocol with modelling approach
commented by Panel

www.efsa.europa.eu/efsajournal

14

EFSA Journal 2022;20(5):7346



Good practice in conducting scientific assessments in animal health using modelling

‘ Jt EFSA Journal

Generic Risk Generic Risk Assessment
Assessment Actors-Tasks Outcome
steps
macrophases
EFSA staff and WG present, justify and discuss the proposed
modelling approach with Panel
EFSA staff and WG discuss and further develop modelling
approach according the Panel's comments
7 Protocol check (Tollgate 1)  EFSA staff and WG inform the Panel and European Commission Agreed protocol, including the modelling
about the draft protocol approach to be followed
Panel and European Commission check if the protocol sufficiently  Tollgate passing recorded in case
describes the methodologies, the scientific (mathematical/ management tool
statistical/computer) models and the required expertise, data and
scientific clarity and completeness needed to reply to all relevant
questions of the mandate in relation to the scientific value agreed
with the requestor
8 Protocol approval If a public consultation on the draft protocol was agreed during Agreed protocol
the mandate negotiation, the draft protocol is updated based on  Tollgate passing recorded in case
the comments received during the public consultation management tool
9 Meetings No action for Panel not applicable
Taken care of by EFSA staff
Macrophase 3 10 Preparation of first draft EFSA staff and WG collect data and expert opinion for the model, Applicable model and documentation and
Risk Assessment output implement the model, discuss and revise the model report, inform agreed draft model report

11 Draft output integration
(Tollgate 2)

the Panel on progress of the model report

EFSA staff, WG demonstrate the model and its suitability (valid,
representative, fit for purpose)

EFSA staff, WG apply the model and communicate the model
output

EFSA staff, WG, panel representatives and European Commission
discuss the draft output, including model-based findings

Eventual feedback from the Panel on the
model report and modelling follow up
Agreement on the application of the
presented model in contributing to the
response to the mandate

Model output as basis for findings
Discussion of uncertainties as basis for
transparency

Interpretation of findings (limitations,
assumptions and uncertainties) agreed
Version of the draft output presented to the
Panel and needs for further improvements
agreed
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Generic Risk Generic Risk Assessment
Assessment Actors-Tasks Outcome
steps
macrophases
12 Draft output finalisation EFSA staff and WG revise the draft output based on the feedback Revised draft output for possible adoption
(Tollgate 3) received from Panel and European Commission
EFSA staff and WG decide if draft output is ready for adoption
13/14/15 Endorsement/ EFSA staff and WG chair present the model report and model Adopted scientific opinion and accepted
adoption of scientific output  outcome/derived findings to Panel and European Commission model report on modelling
Panel adopts the scientific opinion based on the accepted model
report/assessment and model
Macrophase 4 16 Editorial checks and No action for Panel Not applicable
Output publication & corrections Taken care of by EFSA staff
dissemination 17/18/19 Publication of No action for Panel Not applicable
scientific output Taken care of by EFSA staff
20 Correction of published No action for Panel Not applicable
scientific output Taken care of by EFSA staff
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Phase 1: Mandate intake

Within this first phase, the animal health-related background for addressing a specific mandate is
presented, discussed and clarified within the AHAW Panel. If applicable, possible relationships with
existing legislation used by risk managers are considered.

If EFSA accepts the mandate, an appropriate chairperson is subsequently selected for the WG.
Additionally, the Panel assures modelling advice as needed to assist the discussions in the consecutive
steps, e.g. with the requesting party, tailored to clarify whether the achievement of certain objectives
may be enhanced by a modelling study, and what expectations are realistic with regard to technical
limitations or required resources.

Panel experts together with the AHAW secretariat start drafting potential strategic approaches. Each
term of reference (ToR) should be explicitly addressed. The strategic approach should identify possible
questions where a model should be used, specify required expertise, data and resources as well as
timelines. The possibility to partially or fully outsource the risk assessment should also be discussed.

The working group members (experts) are invited based on the requirements identified in the draft
assessment protocol. They review the mandate and the proposed strategy and define the roles and
responsibilities of the respective WG members. If unclear or impractical details in the mandate are
identified, clarification should be sought from the requestor. The WG develops a strategic work plan
from the draft assessment protocol. It is important that the strategic work plan is concise, clear,
target-oriented and free from technical jargon which may compromise its readability.

If the strategic work plan incorporates the use of modelling, then the WG has to formulate the
objectives of the modelling and develop a conceptual representation of the model (see Section
2.3.3.1) that allows the modelling expert to propose a modelling approach (Pascual et al., 2003). The
conceptual model represents the structural relationships between all the knowledge the WG identifies
relevant to answer those questions addressed by application of modelling. The conceptual model
should be developed jointly by subject and model experts. The objectives and the respective
conceptual model should be documented in the assessment protocol and the scientific assessment,
e.g. using flowcharts.

At the end of phase 1, the mandate has been clarified and all partners should be in agreement
on the interpretation of the mandate, the terms of reference (ToR), the scientific approach including, if
applicable, the preferred modelling approach. The potential strategic approaches (defined and
accomplishable goals, purpose, questions, expected answers and timelines, including deadlines, agreed
with the requestor, draft roadmap, potential models and their expected contribution, required and
available resources, sources of information/data), including the Panel’s decision whether or not a
technical model will be used, have been described. This forms the basis for the development of the
assessment protocol in phase 2. The WG with the agreed expertise composition has been established.

Phase 2: Activities preliminary to Risk Assessment

The requestor or the WG chair present the clarified mandate and its purpose to the WG and
discuss the proposed strategic approaches to respond to the mandate. The WG discusses if a
guantitative assessment is needed or not and drafts the assessment protocol that proposes a
strategy and has reached consensus among the WG members. If a model in the technical sense is
considered to address any of the ToRs, then the expected contribution(s) of this model to answer the
ToRs should be documented. The resources in terms of time, data, methods and expertise, which are
deemed necessary to implement the model, including potential outsourcing, should be specified. More
details on how to develop the assessment protocol are described in EFSA's framework for protocol
development for EFSA's scientific assessments (EFSA, 2020).

EFSA staff and the WG chair present, justify and discuss the draft assessment protocol and the
proposed modelling approach with the Panel. The Panel comments on the proposed assessment
protocol, including the proposed modelling approach and the WG further develops modelling approach
according to the Panel’s comments. If a public consultation on the draft protocol was agreed during
the mandate negotiation, the draft protocol is updated based on the comments received during the
public consultation.

The updated draft assessment protocol is reviewed by the Panel and European Commission to
check if it sufficiently describes the methodologies, the scientific (conceptual/mathematical/statistical/
computer) models and the required expertise, data and scientific clarity and completeness needed to
reply to all relevant questions of the mandate in relation to the scientific value agreed with the
requestor.
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The deliverables for Phase 2 are an agreed assessment protocol that describes the approach to
respond to the TORs, including the modelling approach, draft work plan, task distribution and action
plan, the expected outcomes, potential limitations and resources (time, external support, etc.) required
to complete the task. The responsibilities of individual experts have been accepted and all partners are
committed to follow the approved assessment protocol and the strategic work plan, and further
modifications are not expected.

Phase 3: Risk Assessment

In this phase, the assessment protocol including modelling is implemented by the WG, and results
are generated. There is an ongoing communication between WG and the Panel members on the
progress made, e.g. presentation and peer review of first results in the context of plenary Panel
meetings. The review of the modelling may trigger iterative loops of data gathering and quality
assessment. Draft model reports including the output of the models are made available to the Panel to
identify gaps in understanding of the structure, output and interpretation of the model, and to make
the process as transparent as possible. If possible, selected Panel members should act as scientific
reviewers. The milestone of this phase is the generation of a model report prepared to be presented to
the Panel.

If a technical model belongs to the work plan, the following steps related to the implementation,
the evaluation and the application of the model (see Sections 2.3.3.2 and 2.3.3.3) should be taken:

Implementation of the model: This step refers to the technical realisation of the model that
translates the conceptual model into mathematics or computer programming (see Section 2.3.3.2). To
address a specific objective, usually several modelling techniques are applicable. The technical task of
model implementation is likely to become the responsibility of modelling experts. Selection of the
appropriate technical approach may depend on the particular data structure, accessible expertise,
available timeframe, resources and desired precision of model output. The outcome of this task is a
functioning technical tool. Model documentation should be produced in parallel with the model
implementation, and a flowchart, formal or standardised model description (e.g. ODD protocol in
2.3.4) should accompany the model. The level of model documentation should enable subject experts
to conjecture on the model outcome.

Demonstration of model suitability: This step refers to the model evaluation (see Section 2.3.3.2).
The modelling expert has to evaluate the correctness of the model realisation (verification) and the
adequate representation of the underlying conceptual model (validation) and the uncertainty in model
behaviour arising from: (a) scenarios, (b) modelling technique and (c) data or parameters.

The outcome of this step is a comprehensive demonstration of the usefulness and trustworthiness
of the model. The documentation of the evaluation effort should identify critical assumptions in model
structure, uncertain parameters and secondary model outcomes that were used to validate the model.
For transparency, the source for model inputs and assumptions should be clearly stated. During the
demonstration, the WG and the Panel need to decide whether the model is fit for purpose, that the
model represents the relevant scientific knowledge adequately, and what kind of model(s) has/have
been used by relevant sources to address similar problems, what are similarities and differences
compared with other models. The technical documentation of the model implementation and its
evaluation steps should be provided by the modelling expert and allow for independent reproduction.

The evaluation of the model with successive communication and approval by the Panel should be
performed before application of the model to the mandate’s question. The objective of this step is a
second approval, which means that all partners are committed to the approved model and further
modifications are not expected. The model is now ready for application to contribute to the WG’s
response to the mandate.

Model output: As the final main task for the modelling, the tool is applied to the study question.
The final model output is presented and explained to the WG. The WG will use the resulting model
output to derive findings and recommendations. Again, the individual steps of the model analysis
should be documented to allow repeatability of the investigations. The model output must be
accompanied by estimates of the associated uncertainty and sensitivity of model outcomes in relation
to uncertain model inputs or particular assumptions. WG, Panel and other partners might check
whether the analysis provides a substantial knowledge gain concerning the system; whether the model
output is consistent with expectations, and if not, whether deviations could be understood by the
model assumptions.

The outcome of this phase will be a set of justified findings agreed between subject and
modelling experts. The interpretation of the model-derived findings is a matter of discussion and
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agreement between the WG, the Panel and other stakeholders, e.g. the requestor. Given agreement,
the draft model report can be finalised for possible acceptance.

The model report should contain adequate documentation of the whole modelling, e.g. as an
Annex. Standardised model documentation schemes recommend following the sequence of activities
during the modelling process (see Section 2.3.3) when documenting for support in decision-making:

e Model objectives, assessment questions, definition of outputs;

e Conceptual model including data presentation: crude data or references to data sources;

e Standardised model description, including the theoretical and empirical basis e.g. computer
code of the model, including design concept;

e Assumptions regarding model inputs, ranges, distributions, other;

e Discussion and comparison of alternative model formulations and justification for choices made
about model structure;

e Model verification, validation;

e Scenarios presentation: e.g. in the context of risk assessment, one could include the temporal
and spatial aspects of the exposure scenarios, the specific hazards addressed, exposed
populations and exposure pathways;

e Applied model analysis with uncertainty and, where needed/feasible, sensitivity analysis.

At a plenary meeting, EFSA staff and the WG chair present the draft output, including the model-
based findings and discuss it with Panel and European Commission representatives. This meeting is the
final platform for constructive communication of the interpretation of findings between WG and Panel.
The findings are often presented as conclusions. As the Panel has already approved the assessment
protocol and work plan, including the model approach and the suitability of the implemented technical
model based on the suitability demonstration and justified documentation, at this stage no discussion
of the assessment protocol and the work plan or the way how answers to the mandate’s questions
were achieved are expected. Insufficient transparency of the assessment protocol and working plan
implementation at this stage is an indicator that the regular updates during Panel meetings need to be
improved. The interpretation of findings (limitations, assumptions and uncertainties) and any needs for
further improvements are agreed.

EFSA staff and the WG finalise the draft output based on the feedback received from Panel and
European Commission and decide if the draft output is ready for adoption. The revised draft output is
presented to the Panel for possible adoption. The model report is accepted by the AHAW Panel and
subsequently the scientific opinion is adopted; the latter being the outcome for this phase and the
completion of the task. If the model report is not accepted, the model report and model should be
returned to the WG for further improvement. The revised model report and model need to be
presented again at a later Panel plenary meeting.

Phase 4: Output publication and dissemination

In this phase, no specific model-related tasks need to be carried out.

3. Conclusions

e Models have the potential to play an important role when addressing mandates, given their
role in representing multiple causal links within a system, structuring available information,
examining hypotheses about potential causal processes, integrating appropriately available
scientific evidence and explaining or predicting effects, e.g. to verify or quantify the
effectiveness of control or prevention measures.

e It is not appropriate to predetermine a decision flow for model type selection that can be
applied to all scientific questions as this would never completely reflect the scope of existing
models, not be agreeable to all modelling experts, and reduce the flexibility of future WGs
during the selection of model(s) that would be fit for purpose in achieving the specific
objective.

e Agreement among participants about the objectives and conceptual model(s) underpinning the
mandate will strengthen decisions as to whether a technical model tool will be needed during
the scientific assessment.

e There is a need for early and ongoing involvement and communication among all participants
in the assessment process. A detailed draft assessment protocol and strategic working plan are
integral to transparent communication.
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e There is a need for adequately harmonised terminology across scientific assessments.

e Guidelines produced for modelling in relation to AH may be helpful to WGs considering animal
welfare topics.

e The operating procedure presented in this guidance document was designed so that it can
provide guidance to others (outside AHAW) on the development, evaluation and application of
models.

4. Recommendation

e When addressing mandate questions, it is important that a decision is taken early regarding
the use of modelling.

e For each ToR, the use of modelling should be considered based on a conceptual
representation.

e The conceptual model for each ToR should be presented in the protocol to allow judgement,
justification and peer review of any decision made with regard to modelling.

e All participants in a mandate (WG, Panel and requesting party) should agree on the objectives
and be actively and regularly involved in the development of the conceptual model, the
strategic working plan and the derivation of findings (regardless of whether modelling is used
or not).

e Terminology should be harmonised to enhance transparency and clarity in assessments where
modelling is used.

e A glossary of modelling terms that is used for all scientific assessments using modelling should
be established. A specific glossary section is required for each model report.

¢ Modelling definitions should be consistent, both for communication within the AHAW Panel and
more broadly. The adoption of these definitions should be explored with international
organisations such as OIE and FAO.

e For those mandates where modelling is used, all partners should contribute to the transparent
assessment process, as proposed in the operating procedure.

e All stages in the modelling process, apart from the technical implementation of model tools,
should be dealt with by all participating expert(s). The technical implementation of model tools
is taken care of solely by the modelling experts.

e All partners should evaluate the output of models and derived findings in the light of their
knowledge and experience.

e Standard protocols for reporting should be developed and used when describing models,
model outputs and related findings. These should reflect EFSA's framework for protocol
development.

e Standard reporting protocols should be developed for the most commonly used modelling
approaches in AH mandates to enhance preparedness, transparency and coherence across
assessments.

e The code of the model used should be published in open access platforms, e.g. Zenodo.

e The proposed operating procedure should be considered in relation to other disciplines within
EFSA.
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Appendix A — Model characterisation

A.1, Modelling techniques

Modelling techniques have defined characteristics. Examples are inclusion of randomness,
mathematical formulation, representation of functional relations, distributional laws and inclusion of
heterogeneities (entities, temporal, spatial). These basic features do not provide a unique hierarchy
but help to identify the technical aspects of a model used (Hurd and Kaneene, 1993). None of these
features alone can guide model selection in exclusively one way. Different features can be linked
according to the problem the model should address. In Figure A.1, connecting lines show available
examples that may combine the respective features within a particular model.

In the following text the model features are presented. It is obvious that all of them could be
combined according to purpose, expertise, timeframe and resources available. The list is not
comprehensive.

Variability expressed

Deterministic as randomness

Mathematical formulation

Rule-based

Representation of functional
relations, distributional laws, etc

Population Inclusion of heterogeneities

None of the model features exclusively governs the choice of other model features. Numbers and line type identify model
examples from research about rabies in foxes: 1- Anderson et al., 1981; 2 - Kallen et al., 1985; 3 — Tyulko and Kuzmin,
2002; 4 — Garnerin et al., 1986; 5 - Thulke et al., 2004; 6 —Eisinger et al., 2005. (Note: Neither the scheme nor the selection
of examples does intend completeness).

Sample paths (lines) represent existing models from epidemiological or ecological studies. Horizontally, different
forms of the same model feature are shown, overlapping represents possible mixtures or hybrid models.

Figure A.1: Representation of various combinations of model characteristics

Whether a model is classified as deterministic or stochastic depends on whether randomness is
included in some way. Deterministic modelling is based on the assumptions that an average of some
quantity (parameter describing a distribution or dynamic), is relevant and that uncertainty about the
‘average’ can be neglected. Most existing political legislations, at the end, reflect deterministic
thoughts. Deterministic models require that model inputs are single-valued, e.g. mean, median or
percentiles of known distributions. In some applications, default values are used, which are either
derived from data using standard methods or set by expert Panels. It has also been noted that the use
of upper percentiles for a large number of independent model input values ends up in a scenario
which has virtually zero probability to occur in the real world (Greiner et al., 2007). Based on
deterministic models, different scenarios or concepts can be compared and a worst-case scenario can
be presented. Using ‘pessimistic’ values in deterministic assessments may intentionally or implicitly
introduce an element of precaution.
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If variability of any input quantity is expected to matter, the model will include some parameters or
processes that are modelled in a stochastic way, e.g. by randomly drawing values from a probability
distribution, leading to a stochastic (probabilistic) model. Accounting for variability and/or uncertainty
may increase confidence in the model outcome. However, this gain of stochastic modelling is offset by
less unique outcome that requires interpretation of the joint contribution of variability and uncertainty
on the endpoint of the model. For example: the arithmetic mean of a data set with or without
deviance descriptors (e.g. confidence limits); and correspondingly the epidemic SIR model with or
without randomised infections of spatially distinct individuals that might soften the theoretically sharp
threshold value for mass vaccinations (e.g. Anderson et al., 1981 vs. Eisinger and Thulke, 2008). In
both examples the first provide the reader with a clear and decisive endpoint, but only the second
allows judging the strength of the end-point message and a plausible range of outcomes. The purpose
of the modelling is the only way to decide which of both is relevant for the assessment.

Mathematical formulation is the favourite feature for characterising models, but often inadequate as
a good indicator for the right model type for a given problem.

Models can be formulated based on equations (e.g. SIR dynamic model with differential equations,
or the normal distribution as probability model) or arbitrarily grainy (fuzzy) as sequence of logical rules
(e.g. SIR dynamic model with explicit spatial movement of vehicles, daily decisions of farmers and
infection depending on numbers of hosts and farm type; or using the empirical distribution as
probability model). Examples from epidemiological literature can illustrate selection between the two
characteristics (e.g. EFSA, 2009). Categorising mathematical formulation may be confused with the
description of functional relationships that are ‘continuous versus discrete’ (see next point) or the topic
of solving a model by an ‘analytic (closed) solution’ or ‘simulation-based solution’ (see sub-section
Methods of model analysis).

Analytic approaches have the advantage of describing the model in a concise way (in mathematical
language e.g. a set of equations). But this simplicity presumes mathematical soundness which means
that assumptions have to be agreed and accepted prior to model building. In other words, the
dynamics of analytically formulated models are imposed top-down, for instance at the host population
level. In the other approach, based on detailed and explicit rules, no assumptions on structural
characteristics, functional shapes or characteristics of dynamics are required. In the extreme,
everything will be progressively developed in the model. The dynamics of such rule-based models are
implemented bottom-up, i.e. from the entities behaviour. However, the communication and
documentation of such detailed models require a considerable effort, although standard protocols start
to emerge (Grimm et al., 2006). This usually requires an element of translation between the technical
jargon used on either side.

Most analytic formulations have well understood properties or dynamic behaviour. Rule based
model formulations have usually rather unknown (i.e. emergent) properties or dynamic behaviour.
Here, specific methods for verification and validation need to be deployed (e.g. Wiegand et al., 2003;
Grimm et al., 2005; Kramer-Schadt et al., 2007).

Since more than one model type may be appropriate and different model types require different
skills, experience has shown that the choice of the model depends strongly on the particular expertise
of the modeller Often modellers impose their favourite modelling technique (Schmolke et al., 2010). It
may be beneficial to elaborate those identities between different model realisations if the reconcilability
and interpretation of given scientific literature is enhanced. Indeed, techniques do exist to align models
from different mathematical formulations to each other, e.g. adding more differential equation to the
system, or substituting sets of rules by an aggregated description and thus allowing a certain
comparison or transition between analytical and rule based models (Levin and Durrett, 1996; Bolker
and Pacala, 1997, 1999; Wilson, 1998; Fahse et al., 1998; Grunbaum, 1998; Bolker et al., 2000;
Dieckmann and Law, 2000; Sato and Iwasa, 2000; Picard and Franc, 2001; Law et al., 2003).

The aspect is used to identify how model entities (Grimm et al., 2006), like random variates or their
relation to each other are represented. Model entities can be represented continuous or discrete, for
example time scale, spatial structure, host population, transmission factors and many others. This
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model aspect is illustrated by probability distributions of random variables in a model (e.g. birth) with
the examples of the normal and the binomial model - the first being continuous and the second
discrete. Models also vary according to the use of continuous and discrete functions used to represent
outcomes of real-world processes (e.g. seasonal birth distribution). The choice of distribution in models
often follows the nature of the input data which is being modelled (e.g. count data vs. measurement
data) and the corresponding sample statistics.

Stratification or factor levels in models are used to describe different states of a model entity, for
instance all hosts are represented as one population number, several herds or numerous individuals
(e.g. population dynamics model or individual-based model). If in epidemiological models, susceptible
sub-population or intervention measures change with time the model can incorporate heterogeneous
time (e.g. continuous or discrete changes). Studies that take into account spatial patterns as having an
impact on for example disease spreading will represent heterogeneous space (e.g. geographic location
of herds, habitat maps, patchy or regular grids with units representing changes in space or
connectivity among farms by vehicles). The inclusion of these heterogeneous entities characterises a
model and all combinations of heterogeneity in spatial, temporal and population units might be used in
epidemiological modelling. However, a decision whether or not explicit heterogeneity will matter for the
problem at hand has to be made with respect to the particular objective of the modelling.

Heterogeneity might be assessed in the context of the process generating the data. But if reasons
for heterogeneity in data are known, this should be reflected by a stratified analysis or incorporation of
factor levels.

A.2. Methods of model analysis

The way a model’s output is calculated can be classed at least by two main types (Hurd and
Kaneene, 1993): the analytical solution versus simulation-based solution (Fine, 1982). Related
concepts feature either or both of these principal approaches. Stepwise analysis may for example use
different techniques or even combine their application, e.g. if a model is analysed with simulations but
stochastically formulated then techniques of statistics are applied to explain model output.

Analytical analysis depends on mathematical manipulation to explore the relationship between
different (dynamic) variables. Ideally, a solution is sought to describe the state of these variables at
equilibrium (Hurd and Kaneene, 1993). Most classic epidemiological models employ this approach,
which requires sound mathematical skills (Bailey, 1982). The great advantages are the ease of
presenting closed-form solutions (e.g. comprised in some functional expressions) and the rigor of
evaluation. Closed expressions can lead to the identification of functional relationships among model
parameters, which may generate new insights. Examples include the relationship between prevalence
and incidence or the calculation of the basic reproduction number Ry from the parameters of a SIR
model.

The numerical analysis concept incorporates algorithmic procedures combined with an analytic
solution (today often computer-based routines). Examples include the Newton-Raphson (NR) or
expectation-maximisation (EM) algorithms for calibrating model parameters in generalised linear
models through estimation (GLM). The importance of these algorithms in statistics arises from their
use in maximum-likelihood (ML) estimation, when the likelihood function and its derivative cannot be
written in closed form. The outcome is not necessarily of a closed form — that is a set of equations -
and may be presented for instance as a graphic solution. The choice of numerical techniques depends
on the complexity of the problem. NR and EM algorithms, for example, depend among others on
starting values. The latter is especially an issue if the target function is a function in several model
parameters and local maxima (or minima) exist. So-called life-science algorithms such as simulated
annealing or genetic algorithms usually overcome the problem of multidimensional, multimodal target
functions at the cost of long run-time. All these algorithms are examples of optimisation algorithms
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and therefore require an objective or target function. For statistical estimation, this is a function in the
parameters given the data. In other applications (e.g. optimisation of surveillance sampling), the
objective function may reflect utilities such as testing costs, risks and benefits of testing.

By statistical analysis, the formulated model is fitted (parameters, factors or distributions) to
optimise representation of the data. In that sense parameter estimation in statistics might be seen as
model calibration using data. The accuracy of model fitting (e.g. in terms of maximum R? or AIC value)
might be seek with patterns observed on different data (e.g. temporal, spatial), different scales (herd
and country or different hierarchical levels (population and individual). Ideally, different patterns are
simultaneously considered as quality of model accuracy (Grimm et al., 2005).

According to the classical, ‘frequentist’ approach in statistical inference, all evidence about a
parameter is derived from the data used in the estimation. Common estimation methods in this
framework include maximume-likelihood (ML), least-squares, method-of-moments, minimum chi-square
to mention a few. Bayesian methods, on the other hand, have in common with ML technique, that all
information about a parameter is extracted from the data in form of the so-called likelihood. The latter
expresses the probability of the data given a set of model parameter(s).

A particular feature of Bayesian analysis is that the unknown parameter is interpreted as a random
qguantity and that all existing (or non-existing) knowledge about this quantity can be expressed in
terms of a probability density. Therefore, in the Bayesian framework, prior knowledge (the priors)
exists about the parameter(s) of interest. Choosing ‘non-informative’ or ‘flat’ priors allows expressing
that virtually no prior information exists. For example, the non-informative prior distribution of a
prevalence parameter p may just state that the minimum is 0 and the maximum is 1 and that every
value between and including these limits has the same chance to be correct. A statistical distribution
reflecting this flat prior is the beta(1,1), which is also equivalent with a continuous uniform distribution
U (0,1). In the Bayesian framework, prior distributions may be subjective or objective (empirical). An
example for the first is to choose a beta prior based on expert opinion (e.g. ‘The most plausible value
for piis 0.1 and I am 95% sure that p is less than 0.2"). An example for an empirical prior distribution
based on count data such as 'k out of n were positive’ is a beta (k + 1, n — k + 1). It is important to
ensure that the prior is in fact independent of the data.

Bayesian estimation is a process of updating the prior using the likelihood. This process may be
simple or computationally complex. In the example given above, the beta prior is said to be conjugate
to the binomial likelihood of the data. Therefore, and due to the additive properties of the beta
distribution, beta (k + 1, n — k + 1) can also be interpreted as posterior of the likelihood L (k, n) and
the beta (1, 1) prior. In other cases, the update requires iterative algorithms as those implemented in
Markov-chain Monte Carlo (MCMC) methods (see Section A.2.6).

The advantage of frequentist methods is that the potentially controversy about valid prior
information is avoided. ML estimators have favourable statistical properties, especially so for large data
sets. The advantage of Bayesian methods is that they are applicable even for sparse data, that prior
information can be combined with new study data and complex models or estimation of parameters
with unknown sampling distributions can be more easily implemented. An additional advantage is the
availability of the posterior (non-parametric) distribution of parameter estimates for further analysis.

Simulation-based analysis refers to the procedural solving of models by iterative evaluation of
scenarios. Particular difference to numerical approaches is that the solution must not even have a form
of a function e.g. when studying several management scenarios for the eradication of a disease. The
technique might be used to derive a proxy solution for models that were formulated analytically (see
Section A.1.2) if temporal and/or spatial dimension are made discrete by intervals or spatial segments.
The technique may also be helpful for stochastic models. Then multiple simulations (repetitions) of the
same model (constant parameters) accumulate to a frequency distribution as solution (this is not
equivalent to Monte-Carlo simulations).
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The method of analysis explores model properties using descriptors from graph theory (degree,
betweenness and centrality). Recently, this analysis is applied to solve network models that reflect e.g.
transport structures in animal industry or large-scale networks of transport and trade. The analysis
enables the identification of specific structures like central nodes that are high risk with regard to
disease spread. This will be relevant to perform exposure assessments in compartmentalised trading
systems or to assess consequences after incursion of a disease.

Monte-Carlo analysis focuses on the explicit representation of uncertainties within the model
outcome and relies on random sampling from distributions describing the ranges of these
uncertainties. The technique is often applied to analyse models based on simulations. Usually, the
solution is derived from multiple analyses of the model with randomised sets of parameter values
reflecting the associated uncertainties. Hence with Monte-Carlo techniques, the analysis outcome is
again a distribution. The resulting probability distributions are typically non-parametric hence they
cannot be described in analytically closed form. Rather the output is described using statistical
techniques, e.g. based on moments and percentiles of the resulting distribution.

Monte-Carlo techniques allow functions of random variables being evaluated without need for
analytical convolution of probability density functions. Therefore, in probabilistic risk assessments,
where highly non-linear functions of random variables need to be considered as outcome functions
such techniques are useful.

In Life-sciences, the Monte-Carlo approach is used for models constructed with great detail (e.g.
agent-based models). Latin-Hypercube sampling (LHS) performed to sample parameter combinations
for which the model is solved can be used in combination with a Monte-Carlo approach. More
technical, LHS enhances convergence to the specified sampling distributions by drawing values
stratified for intervals with sampling weights proportional to the area over the respective intervals, e.g.
simple random sampling might become cumbersome if lognormal distributions are involved — due to
their heavy tail LHS will quicker represent extreme realisations and thus converge faster to the true
distribution. Often the Monte-Carlo concept is inconsistently called for if model outcome is compared
for different sets of scenarios (as already discussed under Section 2.4). This, however, is rather a
simulation-based analysis as long as for each scenario a constant set of parameters applies.
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Appendix B — Standard terminology for the use of mathematical and

statistical models

Table B.1: Terms and definitions for ToR 1 on standard terminology

Accuracy

Assumption

Bayes’ Theorem

Bayesian framework

Classification of risks

Closed solving

Compartmental model

Compound distribution

Conceptual model

Confidence Interval

Continuous variable

www.efsa.europa.eu/efsajournal

Generally, in the modelling context accuracy describes the degree of agreement
between the observation and the model outcome, i.e. how close the model
outcome is to the observed value (e.g. R?).

In specific statistical models, accuracy of the model output in comparison to the
observed data is often expressed as a summary value, and the objective in model
fitting is to optimise this value. The smaller/larger it is, the higher accurate the
model is depending on the particular summary value (e.g. Chi?, R?, AIC).

Assumptions, or working hypotheses, are important components of many models.
They can be defined as propositions taken for granted on which models may be
based, and under which these models will give valid results. The validity of and
therefore results from those models partly depend on the plausibility of such
propositions. Assumptions often are found to be the most plausible, reliable, or
suitable conditions (but often without formal proof).

A theorem developed by Thomas Bayes that is the backbone for Bayesian
Inference and thus a Bayesian framework. Bayes’ Theorem is a simple
mathematical formula used for calculating conditional probabilities. The Theorem
relates the ‘direct’ probability of a hypothesis conditional on a given body of data,
P=(H), to the ‘inverse’ probability of the data conditional on the hypothesis, P,(E):
With that the most general formulation of Bayes’ Theorem is provided by: Pe(H)
= [P(H)/P(E)] PH(E).

Within a Bayesian framework, Bayes’ Theorem is used as a method to combine
new evidence or observations (data) with prior (to data collection) probability of a
certain condition or event into a new (posterior) probability for that condition/
event. This is to be contrasted to the frequentist framework in which the new
probability of a condition or event is exclusively derived from the data (and the
used model with inherent assumptions).

The division of risk into classes according to specific criteria of both their
probability to occur and their consequence. The classification will depend on the
hazard, the risk assessment process as well as the risk management and
communication needs.

Method of analysing a model resulting in a ‘closed solution’. A closed-form
solution solves a given model in terms of functions and mathematical operations.
These models describe how individual units like animals or herds move between
defined compartments (states) of a system on the basis of transition probabilities.
One basic assumption is that all entities in a compartment are assumed in an
identical status (homogeneous) with regard to the described dynamics.

A secondary probability distribution specified by a first probability distribution in
which one or more parameters that define this primary distribution are not fixed
values but follow yet another (second) probability distribution. Compound
distributions are sometimes used in stochastic models to describe specific
probabilities. (Oxford Dictionary of statistical terms).

Descriptive representation of a system based on current knowledge as well as on
assumptions about its components, their inter-relationships, and system
boundaries. Conceptual models often are depicted by visual methods (diagrams)
that exhibit assumed causal relationships. They form the basis for further
modelling approaches.

A range of estimates, with a lower bound and an upper bound, statistically
derived from a sample designed to include (capture) an unknown (true)
population parameter with a certain level of confidence.

Quantitative or metric variable measured on a continuous scale. It may take on
any value within a given interval, and the meaning of unity does not change
along the interval. The interval (valid data range) could be finite or infinite.
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Covariate

Data-driven model

Decision tree model

Deterministic model

Discrete variable

Dose-response model

Estimate

Evidence

Expert opinion

Explanatory variable

Exploratory data
analysis (EDA)

Exposure assessment

Generic model

Hazard characterisation

Hazard identification

Import risk assessment

Individual-based model
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Explanatory variables likely to affect the outcome variable of a model or the
relationship between this outcome variable and other explanatory variables of
primary interest of primary interest

Quantitative models where the relationships between the factors are directly
determined/estimated from observed data. A simple example of a data-driven
model is a linear regression model. Coefficients of the regression equation are
identified (‘trained’) based on the existing data.

The model translation of a decision tree or risk pathway diagram. Usually applied
as unidirectional evaluation of a sequence of alternative (stochastic) events that
contribute to the final outcome of the tree (end-point calculation).

A model (or system) in which no random process is involved in the derivation of
future states of the model. Deterministic models thus produce identical outputs
(results) for a given unchanged set of input values (starting conditions).
(Wikipedia)

Quantitative or metric variable that takes on selected values (typically equally
spaced) within an interval; the interval could be finite or infinite.

A dose-response model describes the likelihood of a specified response resulting
from exposure to a specified pathogen or hazard in a specified population, as a
function of the dose. The result of such a model described the change in
response with changing levels of dose (exposure).

Expert knowledge: subjective indication of the value of a parameter based on
the information available to the expert including his own *field experience’.
Statistics: Calculation of the value of an unknown parameter based on observed
data from a sample of individual units using statistical functions and

assumptions.

Includes specific information that is used to demonstrate the truth of an assertion
or allow the estimation of a parameter. Scientific evidence is generated
through population studies or observations or through experiments and is used to
support or reject a hypothesis. Anecdotal evidence is derived from
unsystematic individual (case) reports and is weaker than scientific evidence in
supporting or rejecting hypotheses.

Information on a specific question or the value of a parameter that was provided
by one or more experts based on their personal experience, opinion and (often)
assumptions. Expert opinion is important in areas where data is needed but not
readily available through other sources.

Variable which seeks to predict or explain the outcome variable (also known as
independent variables although they may not be independent of one another)

Statistical techniques (mostly graphical) not based on prior assumptions on data
structure describing the distribution of values within variables, and subsequently
exploring relevant relationships between factors or differences between
population groups of interest. EDA is frequently used to identify potential
research questions.

The quantitative and qualitative evaluation of the likelihood of hazards occurring
in a given population as a result of exposure.

Generalised format of existing models not yet adapted to a specific hazard (e.g.
individual pathogen, disease, population, or combination of all). They incorporate
standardised relation types, together with the entities or objects that may be
related.

The qualitative and/or quantitative evaluation of the nature of the adverse effects
associated with the hazard.

The identification of any factor, from birth to end of life, capable of causing
adverse effects on a studied subject / population.

Formal risk assessment to evaluate the probability of importing a specific hazard
into a defined (animal) population or (geographic) region (to be checked with
other risk assessment glossaries).

Model with individuals as basic entity. Individuals differ in their status and
exchange information between them or with the environment (e.g. host animals,
farms, and free rooming herds). In such models, the history of individually
identified units (animals, people) is modelled and thus can be followed.
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Input parameter (model) A factor/ component in @ model which is provided with a value/ specification at
the beginning of the calculation process (output parameter).

Intermediate parameter Intermediate output of a stepwise (iterative) model analysis that is necessary for

value the next analysis step but is not a model result.
Knowledge-driven Models where the system relationships, key parameters and their values are
model predominantly based on a synthesis of existing knowledge including published

and unpublished data sources as well as expert opinion, but not from sample-
derived estimation (see ‘data driven models”).

Likelihood Probability. In statistics often used in the context of estimation, e.g. the
‘maximum likelihood estimator’ as being the estimator of a certain value or model
component which gives the highest probability (likelihood) to the observed data
given the applied model.

Linear regression model A regression model assuming a linear functional relationship between outcome
and explanatory variables, i.e. assuming that there is a linear (straight line)
relationship between those.

Logistic regression A regression model assuming a linear functional relationship between the logit

model (log odds) of an event probability (In(p/(1-p)) as outcome variable and the
explanatory variables.

Mathematical model Models that are formulated (can be written down) by mathematical language.

Meta-analysis A statistical analysis that combines the results of several independent studies that

have addressed the same research question. As combination may increase
statistical power of the estimation, results may be a more accurate reflection of
the unknown property than those derived from a single study under one set of
conditions.

Metapopulation model The term metapopulation originates from ecology. A meta-population consists
of a group of spatially separated populations of the same species that interact at
some level. A metapopulation model links multiple sub-populations to represent
spatial structures. Linkage of these population might be determined either explicit
(e.g. landscape map) or implicit (e.g. intensity value of exchange).

Model A (simplifying) representation of the essentials (parameters, relations, processes,
or mechanisms) of an existing system (or a system to be constructed) which
incorporates existing knowledge and/or assumptions about the relationship
between all system components in an explicit form that can be investigated by
systematic or manipulative experiments.

Model input Any part of a model which is specified (e.g. by a value/ distribution/ functional
relation / mechanistic rule) before model analysis (-* model output).

Model output General: All output that is generated by the analysis of a model (e.g. qualitative
or quantitative values/distributions/proportions).

Model prediction A process where models, based on specific input, are used to forecast (predict)
results for yet unobserved (unobservable, new or future) situations.

Modelling approach The methods used to construct, validate and analyse the model, including

estimation techniques for the model analysis.

Monte Carlo simulation Iterative technique applies in modelling (with Markov chain Monte Carlo or MCMC
sampling as a common example) to estimate the range of possible output (i.e. a
distribution) that involves repeatedly drawing random numbers from input
(parameter) probability distributions. The technique usually is applied in
stochastic models in which the exact parameterisation cannot be taken for
granted (substantial uncertainty in input values).

Multivariable model A model in which several explanatory (predictor/ risk factor) variables are
assessed simultaneously for their relationship to a single outcome variable
(univariate model), thereby allowing control for confounding relationships
between the explanatory variables.

Multivariate model A model in which one (univariable) or several (multivariable) explanatory
(predictor/ risk factor) variables are assessed simultaneously for their relationship
to two or more outcome variables; this relationship is often expressed in the form
of matrices.
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Outcome variable

Output value
Output parameter

(model)

Parameter

Point estimate

Population dynamics
model

Prediction Interval

Predictive model
Probability distribution

p-value

Qualitative Risk
Assessment

Quantitative Risk

Assessment

Regression model

Relative risk

Risk
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The variable of primary importance in investigations since the major objective is
usually to study the effects of treatment and/or other explanatory variables on
this variable and to provide suitable models for the relationship between it and
the explanatory variables

Qualitative or quantitative value of designated output parameters at the end of
the model analysis.

Factor / component in a model for which the final value is derived or estimated
during the calculation process (as a function of the model structure and the
model input). Consistent use only possible if the output structure is pre-specified
and has itself ~parameters to estimate/ evaluate (see ‘output value”).

Numerical characteristic of a model element, system or function. Parameters can
take a range of values from qualitative classes via single values to probability
distributions, depending on their role in a model (-, input, intermediate or output
parameter).

The single-valued result of the application of a point estimator to the data. In
statistical models, this is often provided by the maximum likelihood estimation
(MLE) of the (unknown) true population parameter. Point estimation usually is
accompanied by its confidence interval, i.e. the calculation of an interval estimate
from the same data.

A model that represents dynamic processes of a system on the level of population
changes, i.e. proportions of populations or sub-populations that change their
‘state’. From these models, population averages can be derived, but no individuals
fate can be ‘simulated’ (see ‘individual based model’).

An interval estimate in which future observations will fall, with a certain
probability (e.g. 95%), given what has already been observed. Prediction
intervals are often used in regression analysis.

see ‘Model prediction’

A model of occurrence of possible values (probabilities) of a random variable.
There are theoretic probability distributions with defined shape (e.g. normal,
exponential, binomial) and empirical distributions reflecting raw data on
occurrence that have no defined shape.

The probability that a sample characteristic or model output (e.g. difference
between mean of two groups) might have been observed by chance, given that
the null hypothesis (of no difference) is true in the population from which the
sample was drawn. The p-value can range from 0 to 1. By specifying a threshold
level of significance (often 0.05), sample characteristics (difference between
means) are judged statistically significant (‘not plausible by chance’) if the p-value
is smaller than the threshold.

An assessment that generates an estimate of categorical nature or based on an
ordinal scoring system. The outcome of such an assessment is a classification of
output into descriptive categories.

An assessment that generates an estimate of a numerical nature directly tied to a
measurement or calculation. Depending on the type of model tool used, an
indication of the associated uncertainties - expressed either as extreme values, -,
confidence intervals or -, prediction intervals are needed.

A mathematical model that describes the relationship between an outcome
variable (y) and one or more explanatory (predictor/risk factor) variables (x1, x2,
x3...) using a specific functional form of the relation (e.g. -, linear, -, logistic,
exponential).

The comparison of risk estimates from two samples or risk scenarios by dividing
the two risks, i.e. expressing on risk as a relative value to the other (often
denoted as baseline) risk value. Possible value range is 0 to infinity, with a
relative risk of 1 indicating that the two compared risks were identical.

Epidemiology: Likelihood (probability) of a certain event (outcome) to occur in a
cohort, where the event usually is considered ‘negative’. Risk assessment: A
function of a probability of an adverse health effect and the health effect and the
(negative) consequence, severity of that effect, consequential to a hazard.
General: subjective summary for a hazard, its probability of occurrence and the
severity of that effect, consequential to a hazard.
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Risk Analysis

Risk Assessment

Risk characterisation

Risk factor

Risk mapping

Risk pathway

Rule-based model

Scenario

Scenario analysis

SEIR model

Semi-quantitative or
qualitative risk scale

Sensitivity Analysis

Simulation model
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A formal process consisting of three components: risk assessment, risk
management and risk communication.

A systematic approach to assess the effect of an exposure to a hazard/stressor.
The approachformally includes hazard identification, characterisation and
consequences assessment. These steps are implemented in the risk assessment
model, and respective procedural guidelines are available.

Element of a -, Risk Assessment, determining/ describing the effect of a hazard
qualitatively or quantitatively, including attendant uncertainties about the occurrence
and severity of known or potential adverse effects on a given population.

A factor that influences the likelihood for the disease or health event to occur.
Risk factors are often identified through epidemiological studies and related risk
factor analyses (such as uni- and multivariable regression models).
Diagrammed technique to prioritise risks according to frequency (alternatively
likelihood) and severity (alternatively significance). For each risk, the severity is
plotted on one axis and the frequency is plotted on the other axis.
Geographical representation of spatial variation in risk.

A (conceptual) representation that illustrates the sequential events of risks
considered to be leading to the risk outcome. The risk pathway will serve as
guidance for data collection, logical deductions, and any quantification required in
the subsequent risk assessment e.g. using -, decision tree models.

Model that is constructed from simple and generic rules that reflect expert knowledge
as close as possible. The method is purposeful if limitations due to structural
assumptions have to be avoided and usually results in more complex models.

A certain combination of input parameter values that is used in a specific model
run. When there is uncertainty about the value of a specific input parameter, a
range is considered (selected), and (randomly) chosen representatives are tested
in separate model runs (‘scenarios’). Alternatively, different hypotheses about the
modelled system (control options) might lead to specific parameterisation of the
model, each reflecting a scenario.

Assessment of the model output depending on specified scenarios. Often the
analysis includes at least a worst-case scenario, i.e. with values selected for
important input parameters that are assumed to (all) be at the maximum likely
negative (adverse in the risk context) value.

Compartmental model that incorporating four possible ‘states’ (compartments) in
which subjects can be found: S=susceptible, E=latently infected but not (yet)
infectious; I= infectious; and R= recovered/immune.

Within -, Risk Assessment, probabilities of an event are assessed and described
textually on a scale from negligible, indicating that the probability of an event or
the estimated risk cannot be differentiated from zero (and in practical terms can
be ignored) to extremely high.

A method to qualify the output of a model by measuring the variation in model
outputs resulting from changes in inputs. Through this, the ‘sensitivity’ of a model
to the respective changes can be assessed, and work can be focused onto those
input parameters that have substantial impact on the model output. Testing
changes in model output caused by changing certain structural aspects of the
model usually may be referred to as Robustness Analysis.

A model that is evaluated via explicit (e.g. step-by-step) simulation of the
implemented structural processes and their interactions. Simulation as method of
model analysis/model solution allows arbitrary complexity of the model.

Alternatively: a mathematical representation of the essential characteristics of a
real-world system or situation, which can be used to predict future behaviour
under a variety of different conditions. The process of developing a simulation
model involves defining the situation or system to be analysed, identifying the
associated variables, and describing the relationships between them as accurately
as possible.

Alternatively: Simulation is a computerised (iterative) approach to derive solutions
(often in form of outcome distributions) for models that either do not have a
closed mathematical solution or in which uncertainty in the input parameter
values needs to be accounted for.
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SIR model

Spatial model

Statistical analysis

Statistical significance

Stochastic model

Systematic Literature
review

Transmission model

Uncertainty (statistical)

Uncertainty analysis

Univariable model
Univariate model

Validation

Variability (biological)

Verification

Worst-case scenario
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Compartmental model that incorporating three possible ‘states’ (compartments) in
which subjects can be found: S = susceptible, I = infectious; and R = recovered/
immune.

Model that explicitly or implicitly incorporates the effect of spatial heterogeneity,
i.e. spatial differences in either population density, outcome-related (risk) factors
or both.

Any method applied to explore, describe or model the information contained in a
given set of data, in most instances samples derived from larger populations, to
make inferences from that sample to specific (source) population parameters.
The a-priori fixed (threshold) level of maximum error probability (alpha, type 1
error) that one accepts when concluding — based on the results of a statistical
test — that the alternative hypothesis (inequality) is correct. Depending on the
nature of topic maximum error probability of alpha = 0.05, 0.01, or even less are
used in statistical hypothesis testing, i.e. -, p-value.

A model in which randomness is involved in the derivation of future states of the
model. Stochastic models thus produce distributions as output even for a given
starting condition. Randomness might be incorporated via stochastic
parameterisation, i.e. accounting for variability and uncertainty of event
occurrence.

Conducting a literature review using predefined criteria for searching/selection of
the relevant literature with scientific tools to assess the findings from the
published studies in a transparent and reproducible way.

Specific models in which pathways describing the transmission of (infectious)
diseases/agents in populations are constructed, and values for the transmission
probabilities along that pathway either entered (to simulate disease spread) or
estimated based on observed population data.

Lack of knowledge in the exact value of a population parameter. Statistic methods
derive estimates for that parameter as well as the associated uncertainty using
fundamental concepts and theories of sampling, probability and randomness. In
models uncertainty can be incorporated by probability distributions with
information coming from either data or expert opinion.

Uncertainty analysis is defined as the process of identifying and characterising
uncertainty about questions of interest and/or quantities of interest in a scientific
assessment.

A model in which a single explanatory (predictor/ risk factor) variable is assessed
for its relationship to one or more outcome variables.

A model in which one or more explanatory (predictor/ risk factor) variables are
assessed for their relationship to a single outcome variable.

The concept of checking the validity of the model formulation with regard to its
intended purpose; ideally done with independently observed patterns. Checking
correctness is intended task of model -, verification.

True (inherent) biological, measurement or system-based variation in the possible
values (value range) for a given parameter. In models, that variability, similarly to
what is done with uncertainty, can be incorporated as probability distributions
with information coming from either data (and classic statistics) or expert opinion
The concept of checking the correctness of the model implementation; ideally
done by measuring back any input pattern, code review, implausible scenarios
(e.g. assuming no effect of a proven treatment). Checking appropriateness for
purpose and consistency with conceptual thinking is the intended task of model -,
validation.

A situation where everything that can go wrong, does go wrong. Used in risk

assessment to consider the worst predictable outcome by using extreme (risk
increasing) model inputs.
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