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Abstract17

Dry-cured ham is a traditional Mediterranean meat product consumed through-

out the world. This product is very variable in terms of composition and

quality. Consumer’s acceptability of this product is influenced by different

factors, in particular, visual intramuscular fat and its distribution across the

slice, also known as marbling. On-line marbling assessment is of great in-

terest for the industry for classification purposes. However, until now this

assessment has been traditionally carried out by panels of experts and this

methodology cannot be implement in industry. We propose a complete au-

tomatic system to predict marbling degree of dry-cured ham slices, which

combines: 1) the color texture features of regions of interest (ROIs) extracted

automatically for each muscle; and 2) machine learning models to predict the

marbling. For the ROIs extraction algorithm more than the 90% of pixels of

the ROI fall into the true muscle. The proposed system achieves a correlation
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of 0.92 using the support vector regression and a set of color texture features

including statistics of each channel of RGB color image and Haralick’s coe-

ficients of its grey-level version. The mean absolute error was 0.46, which is

lower than the standard desviation (0.5) of the marbling scores evaluated by

experts. This high accuracy in the marbling prediction for sliced dry-cured

ham would allow to deploy its application in the dry-cured ham industry.

Keywords: Dry-cured ham, intramuscular fat, marbling, support vector18

regression, texture analysis, image segmentation19

1. Introduction20

Dry-cured ham is a traditional meat product of many Mediterranean21

countries that is widely consumed throughout the world, being its flavour22

and texture characteristics highly appreciated by consumers. There are many23

factors affecting the final characteristics of dry-cured ham, such as processing24

conditions and raw material characteristics, i.e. fat content (Coll-Brasas et al.,25

2021). In sliced dry-cured ham, visual intramuscular fat, subcutaneous fat26

thickness and color are the parameters most used by the consumers for the27

product evaluation, therefore affecting consumer’s acceptability and pur-28

chase decision (Lorido et al., 2019). Although several non-invasive tech-29

nologies can be used to categorize entire hams according to its fat content30

(de Prados et al., 2015), these technologies cannot be used to predict intra-31

muscular fat (IMF) in sliced products because of its variability between the32

muscles of a ham.33
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Eating quality in meat has been associated to the fat distribution rather34

than to the total IMF. Distribution of IMF is usually known as marbling,35

because of its appearance similar to marble (Cernadas et al., 2002). One36

of the most important challenges for producers is the heterogeneity of the37

marbling in slices, that can vary significantly among ham pieces and even38

within the same piece. Classification of slices of dry-cured ham according to39

the marbling degree is of special interest for the food industry. Producers40

would be able to segment the market, offering products tailored to consumer’s41

needs and increasing the value of their production.42

Marbling ranking in different meats and meat products has been per-43

formed by panels of trained experts or relying on standards consisting of44

pictures depicting a scale of marbling (from 0.0 to 10.0), as it is the case45

for the National Pork Producers standards (Moines, 1999). In the case of46

dry-cured ham, a marbling ranking has been developed but it is not still47

published. However, marbling evaluations by experts are costly and are not48

feasible for the ham industry. Computer image analysis might be a solution49

because it is a fast and non-destructive technology, and it is a replicable and50

repetitive method that has been successfully applied to the assessment of51

multiple food characteristics: fish (Dutta et al., 2016), cheese (Dias et al.,52

2021) or bread (Srivastava et al., 2015). The scientific literature includes53

several studies that apply computer image analysis to determine IMF and54

marbling in different meat products. Combining magnetic resonance imag-55

ing (MRI) and computer vision techniques, the works (Cernadas et al., 2005;56
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Ávila et al., 2019) predicted marbling in the biceps muscle of dry-cured hams57

and loins, but MRI is a technology that is expensive to install in meat in-58

dustries.59

For the segmentation of IMF in meat and meat products, several tech-60

niques have been applied: K-means clustering in beef Longissimus dorsi61

muscle (Jackman et al., 2009), automatic thresholding (Liu et al., 2018) and62

the Otsu method (Uttaro et al., 2021) in pork loin, multi-scale line detec-63

tion (Cernadas et al., 2002), gradient-based techniques (Santos-Garcés et al.,64

2014) and convolutional neural networks (Muñoz et al., 2019) for dry cured65

ham. In general, these segmentation algorithms perform quite well, high66

correlation values or low classification errors are obtained, depending on67

the aim of the study. For classification of marbling, the following tech-68

niques have been applied: chemical pre-treatments and line detection al-69

gorithms (Faucitano et al., 2004), line detection algorithm (Liu et al., 2012)70

and (Huang et al., 2013) in pork meat, neural networks (Muñoz et al., 2015)71

and decision trees in hyperspectral images of dry cured ham (Velásquez et al.,72

2017). In general, the results of marbling classification are quite satisfactory73

with low prediction errors and at least 90% of the samples correctly classified.74

However, the evaluation of IMF and marbling in dry-cured ham slices is still75

a challenge. A wide range of variation in the color of lean and fat tissues76

can be observed in slices across hams, which poses a challenge for image seg-77

mentation and the evaluation of marbling. These differences are explained78

by the different levels of drying of the hams, and the presence of precipitates79
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such as phosphates of tyrosine crystals, with a white color similar to that of80

the fat.81

This paper proposes a prototype to automatically predict marbling of82

the principal muscles from a ham slice using image segmentation, texture83

analysis and regression models. Specifically, we define an algorithm that au-84

tomatically extracts squared regions inside the main muscles. Then, color85

texture features are computed for each region, which are the inputs to a re-86

gression model that predicts the marbling score for each muscle. The paper87

is organised as follows. Section 2 describes the materials used to obtain the88

ham slice, to develop the sensorial analysis on the ham muscles and to an-89

notate the contour of ham muscles. Section 3 describes the algorithm used90

to extract automatically the square ROIs representing each ham muscle, and91

briefly explains the color texture features extraction techniques and the re-92

gression models. Section 4 describes the experimental setup and statistical93

evaluation measures used. Section 5 presents and discusses the results. Fi-94

nally, section 6 summarises the main conclusions and proposals of future95

work.96

2. Materials97

This section describes the material used to obtain the data in this re-98

search: the system used to capture images of ham slice (subsection 2.1), the99

traditional procedures to determine the marbling of a ham muscle (subsec-100

tion 2.2), and the process to draw the outline of each muscle on the ham slice101
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(subsection 2.3).102

2.1. Image acquisition103

High quality images were acquired with a calibrated digital camera Canon104

EOS 50D (15.1 megapixels) and an objective Canon EF-S 18–200 mm f/3,5–105

5,6 IS. The camera was mounted in a black closet (1.06×1.06×2.50 m3) with106

8 equidistant halogen lights Solux Q50MR16 CG/47/36°12 V/50 W/4700 K107

(Eiko Ltd., Shawnee, Kansas, U.S.A.) to ensure a correct lighting. White108

balance was carried out with a white card (Lastolite). The camera was109

connected to a computer to store the images. Slices were placed 30 cm below110

the camera on a uniform black surface. Photos of both sides of the dry-111

cured ham slices were taken. All the images were taken during the same112

session. The white balance of the images was carried out with Capture One113

PRO 5.0 software (Phase One A/S Inc., Frederiksberg, Denmark) and RGB114

images of 667× 1000 pixels with 16 bits color were obtained, with one pixel115

corresponding to 0.3968 mm2. For the evaluation of marbling, the computer116

screen was calibrated so that the colors of the images were as close as possible117

to the colors of the samples (NEC Multisync LCD 2690 WUXI2). Figure 1118

shows a scheme of the image acquisition system used.119

2.2. Marbling evaluation120

Sensory analysis (marbling evaluation) of the samples was carried out by121

six trained panelists (ISO 8586-2: 2012) and consisted of a visual assess-122

ment of the marbling of the most representative muscles: Biceps femoris123
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Figure 1: Scheme of the image acquisition system.

(BF), Semimembranosus (SM) and Semitendinosus (ST) of a dry-cured ham124

(Bermúdez et al., 2014). Marbling was scored by consensus (in our case125

three panelists) by means of scoring scale from 0.5 (minimum marbling) to126

10 (maximum marbling) at intervals of 0.5. When scoring marbling, the127

panelists considered the total amount and the distribution of the fat streaks.128

Marbling evaluation was done in triplicate by the panelists. The standard129

deviation of the panelists among trials was determined at 0.5 points.130

Muscle #images Min. Max. Avg. Dev.
Biceps femoris 337 1 7 3.1 1.0
Semimembranosus 322 0.5 6 2.0 1.0
Semitendinosus 55 4 9 6.2 1.2

Table 1: Number of images, minimum, maximum, average and standard desviation of the
marbling values for the different ham muscles used in this experimentation.

A collection of commercial dry-cured hams were obtained from different131

ham producers with crosses from different pig breeds (Large White, Lan-132
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drace, Duroc and Iberian) and having a wide range of marbling. A 2 cm133

thick slice containing muscles BF, SM and ST was obtained at 10 cm from134

the aitch bone in the distal direction (at the widest part of the ham) and135

packed into plastic bags of polyamide/polyethylene (oxygen permeability of136

50 cm3/m2/24 h at 23°C and water permeability of 2.6 g/m2/24 h at 23°C137

and 85% RH, Sacoliva© S.L., Spain). The image dataset is composed of138

714 images obtained in the following way: photos were obtained from 180139

commercial dry-cured hams, 2 slices/ham (at different points in the ham, ob-140

taining slices quite different one from another) and 2 muscles for each slice,141

giving a total of 180 hams × 2 slices × 2 muscles = 720 photos. Six of these142

photos were not included in the evaluation due to defects on the surface such143

as cuts and phosphate crystals. For each image, it was only provided the144

measure of marbling for one muscle with values between 0.5 and 9 with the145

distribution shown in table 1. Figure 2 shows examples of different marbling146

scores for biceps muscle.147

2.3. Muscle annotation148

To develop the first experiment, the experts delineated the contour of the149

muscle for which the marbling was estimated by sensorial analysis. To draw150

the contours for all images, they used a home-made software, as it can be151

seen in figure 3.152

8



a b c d

Figure 2: Examples of marbling scores for biceps muscle: a) slice 8372 with score 1; b)
slice 8485 with score 1; c) slice 8274 with score 3; and d) slice 8424 with score 6.5.

Figure 3: Examples of the contours of biceps (left panel) and semimembranosus (right
panel) muscles overlapped to images of ham slice.

3. Methods153

The system proposed to predict the marbling from dry-cured ham slices,154

shown in figure 4, encloses the following stages: 1) the image acquisition155

system already described in section 2.1; 2) the automatic extraction of the156

ROIs in the ham slice; 3) the computation of features from the ROI extracted;157
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and 4) the regression model to predict the marbling score of each muscle in158

the ham slice. The subsections 3.1, 3.2 and 3.3 describe the stages 2, 3 and159

4, respectively.160

Figure 4: Stages of the method to predict the marbling from dry-cured ham slices.

a b c d

Figure 5: Examples of the extraction of square ROIs from the ham slice for all muscles:
a) original images; b) channel b of Lab color space after smoothing; c) binary mask with
the ham slice and bone hole and d) the extracted ROIs for each muscle, white for biceps,
yellow for semimembranosus and green for semitendinosus.
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3.1. Automatic extraction of ROIs161

The ham slice images are processed to automatically extract square ROIs162

from the biceps femoris, semimembranosus and semitendinosus muscles. These163

extracted ROIs will be used in the third experiment. In this process, we take164

into account the anatomical information about the distribution of the mus-165

cles and subcutaneal/intermuscular fat within the ham. As it can be seen in166

figure 3, some slices present a hole in the slice (left panel), due to the slice167

is cut by the ham bone, and others not (right panel). As well, the biceps168

muscle can be in the right or left side of the image. The algorithm to extract169

the square ROIs encloses the following steps: 1) extract the ham slice from170

the image; 2) check if the slice has the bone hole; 3) if there is not a hole171

in the slice, find the biggest intermuscular fat region in the slice; 4) in both172

previous cases (step 2 or 3), a reference position is calculated to know the173

slice orientation, which allows to know if the muscles are upper/bottom or if174

the BF muscle is on left/right side of the slice; and 5) extract a square region175

for each muscle. In our case, we use a ROI with length s = 64 pixels.176

To extract the ham slice, the original RGB image I(x, y), with x =177

1, . . . , N , and y = 1, . . . ,M , of dimensions N × M , is transformed to the178

Lab color space, because it is more robust to illuminance variance than the179

RGB space (Cernadas et al., 2017). Let Ib(x, y) be the b channel of the ham180

slice after smoothing with a mask (we use a mask of 5 pixels) in order to181

attenuate the small fat features and noise ( column b in figure 5). Let hb be182

the histogram of image Ib(x, y). The maximum value Hb of hb is chosen to183

11



0 100 200 300 400 500 600

Row 540 in image 8607

0

50

100

150

G
re

y
 l
e

v
e

l

wx1 wx2
Average grey value I

a

Figure 6: Extraction of the square ROIs of each muscle. Upper left panel: scheme of a
ham slice. Upper right panel: row 540 of the transformed version Ia of the ham slice
no. 8607. Lower panel: the ham slice with the extrated ROIs overlapped: biceps (white),
semimembranosus (yellow) and semitendinosus (green).

calculate the area of ham slice. The Ib(x, y) image is thresholded to calculate184

the binary image B(x, y) using the following expresion:185

B(x, y) =











0 |Ib(x, y)−Hb| ≤ 5

255 otherwise
(1)

After thresholding, we apply morphological operators to the binary image186

B in order to fill small holes. First, the biggest region of B is extracted and it187
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Algorithm 1: Automatic extraction of square ROI images for each
muscle from a ham slice.
1 Algorithm: [IBF , ISM , IST ]=ExtractSquaredROI(I, s)

Data: I: original RGB image of ham slice; s: size of ROI
Result: IBF , ISM , IST : square ROI images for biceps,

semimembranosus and semitendinosus muscles
2 Ib ← b channel of Lab image smoothed by box filter
3 hb ← histogram of Ib
4 Hb ← maximum of hb

5 B ← binary image using eq. 1 and morphological processing
6 Bm ← image mask with ham slice outline and hole if exist
7 Rs ← (xs, ys, wRs, hRs) rectangle enclosing ham slice
8 Ia ← a channel of Lab image smoothed and masked by Bm

9 µa ← average value of Ia inside Bm; offset←10
10 if existsHole(Ib) then

11 Rh ← (xh, yh, wRh, hRh) rectangle enclosing hole
12 dupper ← ys − yh; dlower ← ys + hRs − (yh + hRh)
13 if dupper > dlower then

14 yc ← ys − (ys − yh)/4
15 ye ← yh − s/2− offset

16 else

17 yc ← ys + hRs − s− (ys + hRs − yh − hRh)/4
18 ye ← yh + hRh + s/2 + offset

19 end

20 xc ← middlePointX(row(yc + s/2))
21 IST ← extST(xc − s/2,yc,s)
22 [IBF , ISM ]← extBSM(ye)

23 else

24 T2 ← second Otsu’s threshold of Ia
25 (xin, yin)← centroid of the largest inner region inside Ia after

thresholding using T2

26 IST ← extSTC(xin, yin, s)
27 [IBF , ISM ]← extBSM(yin)

28 end
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is associated with the contour of ham slice. Next, the algorithm searches for188

a large black region inside this contour. If this region is found, it is associated189

to the bone hole. The contours of ham slice and bone hole are used to create190

a binary mask image Bm(x, y)=0 (black color in column c of figure 5) when191

(x, y) is inside the contour and outside the bone, and Bm(x, y)=1 (white192

color) when (x, y) is outside the contour or inside the bone. This process193

is shown in the columns a, b and c of the figure 5. The process to extract194

the ROI for each muscle, denoted as IBF , ISM and IST for biceps femoris,195

semimembranosus and semitendinosus, respectively, is drawn in figure 6 and196

summarized by algorithm 1. Let Rs be the rectangle enclosing the ham slice,197

which is defined by the top left vertex (xs, ys) and by its width (wRs) and198

height (hRs). Let Ia be the a channel of Lab image of the ham slice masked199

(multiplied) by Bm. Two cases can be considered:200

a) When the ham slice has visible bone hole, the algorithm uses as refe-201

rence its enclosing rectangle Rh, with initial coordinates (xh, yh) and202

width and height wRh and hRh, respectively.203

b) When the ham slice has not a visible bone hole, the algorithm searches204

for the largest intermuscular fat region and calculates its centroid. In205

order to discard the background from the image Ia, we selected a thresh-206

old applying the Otsu’s method (Otsu, 1979) with three thresholds207

{Ti}
3

i=1
, that correspond to different types of materials in the image208

(background, subcutaneal fat and muscle). Experimentally, we checked209
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that threshold T2 ensures an accurate segmentation of background from210

the remaining materials. In the binary image generated by threshold-211

ing Ia with T2, the inner biggest region is selected as representing the212

intermuscular fat region, whose centroid is (xin, yin).213

These reference points (bone hole or centroid of intermuscular fat) allow214

to select the height where the different muscles should be extracted. In order215

to extract the BF and SM muscles, the algorithm finds out whether the biceps216

is on the left or right side of the ham slice. The position in the horizontal217

axis for extracting the BF and SM muscles is determined analysing a specific218

row in the image Ia. This row is smoothed in order to attenuate the random219

noise and it is denoted as row(yb) = Ia(x, yb), x = 1, . . . ,M (see upper left220

panel of figure 6). In order to locate the BF muscle, we estimate the pixels221

representing the subcutaneal fat (close to the bicepsmuscle) along the row(yb)222

counting the number of values. Specifically, the procedure is as follows:223

1. Let k1 be the first value of x where Ia(x, yb) > 0 coming from left to224

right (see the upper right panel of figure 6). Let wx1 be the number of225

values of x where Ia(x, yb) < µa, for x = k1, k1 + 1, . . . ,M (i.e. going226

from left to right side), where µa is the average value of Ia inside Bm.227

2. Let k2 be the first value of x where Ia(x, yb) > 0 coming from right228

to left, and wx2 the number of values that Ia(x, yb) < µa, for x =229

k2, k2 − 1, . . . , 2, 1 (i.e. going from right to left side).230
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If wx1 > wx2 the BF muscle is on the left side of ham slice. Otherwise, it231

is on the right side. This process is performed by the extBSM(y) function in232

the algorithm 1, where y represents the row to be analysed in the image. So233

the square ROIs for muscles BF and SM, of size s, are extracted at positions234

(k1+wx1+s/2+offset, y) and (k2−wx2−s/2−offset, y) (we use an offset of235

10 pixels in order to avoid defects in the contour of ham slice). The regions236

extracted for each muscle are shown overlapped to the ham slice in the column237

d of the figure 5. When there is bone hole, the y coordinate for extracting238

muscles are determined calculating the distances dupper = ys−yh and dlower =239

ys + hRs − (yh + hRh). If dupper > dlower, the muscles are above the bone240

hole, otherwise the muscles are below the bone hole. The middlePointX(y)241

function returns the middle point of the ham slice for the image row y. The242

extST(x,y,s) function extracts a square ROI of size s for the ST muscle243

from the original RGB image in the point (x, y) for ham slices with visible244

hole. The extSTC(x,y,s) function extracts a square ROI of the ST muscle245

for ham slices without visible hole. Let xc1=middlePointX(row(yin + s/2))246

and xc2=middlePointX(row(yin − s/2)) be two middle points in the ham247

slice in the horizontal axis near the centroid of intermulcular fat. Let r1248

and r2 be two ROIs of size s, extracted from the image Ia in the points249

(xc1−s/2, ys− (ys−yin)/6) and (xc2−s/2, ys+wRs−s− (ys+wRs−yin)/3)250

respectively. To select which ROI corresponds to the ST muscle, the mean251

value of both ROIs, µr1 and µr2, are calculated and the ST muscle is the ROI252

with the highest mean value, which corresponds with the ROI containing253
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more fat.254

3.2. Color texture features255

Texture analysis has been employed in previous works to predict different256

qualities or attibutes of meat products from MRI images (Cernadas et al.,257

2005; Ávila et al., 2019), which are grey level images. Nevertheless, it is258

known that the color is also a very important characteristic in other computer259

vision applications (González-Rufino et al., 2013; Cernadas et al., 2017). Color260

texture analysis can be tackled from different paradigms: simple color fea-261

tures, grey level texture features and integrative color texture analysis. A262

recent work (Cernadas et al., 2017) concluded that parallel approaches, that263

concatenate the two former, are superior than analysing directly the color264

texture with integrative approaches.265

There are many methods to extract only the color in a strict sense (Cernadas et al.,266

2017). In this work we use two color spaces, RGB and Lab, where the chro-267

matic channels are a and b. We use first-order features of three types, each268

with 2 feature vectors:269

1. Only mean value for each chromatic channel, denoted as CM, that270

stands for “color mean”: 1) CMRGB, 3 features: mean color of the271

channels R, G, and B of the muscle; 2) CMab, 2 features: mean color272

of the channels a and b of the Lab image. In both cases, the mean273

values are only calculated inside the muscle regions.274

2. Mean and variance for each chromatic channel, CMV, or color mean275
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and variance: 1) CMVRGB, 6 features: mean and variance of the276

channels R, G and B of the RGB image. 2) CMVab, 4 features: mean277

and variance of the channels a and b of the Lab image.278

3. First order statistics, denoted as FOS, for each chromatic channel, that279

include mean, variance, skewness, kurtosis and entropy: 1) FOSRGB,280

15 features: 5 features × 3 color channels of the RGB image. 2)281

FOSab, 10 features: 5 features × 2 color channels of the Lab image.282

The most popular grey level texture features belong to the families of283

statistical, such as second-order features and local binary patterns (LBP),284

and frequencial, including wavelet and Gabor features. The grey level version285

of the original image is obtained following two alternative approaches: 1)286

converting a RGB image to grey level image; and 2) using the L channel of287

a Lab image.288

Among the second-order statistics we selected the Haralick coeficients289

(Haralick et al., 1973), derived from the grey level coocurrence matrix (GLCM).290

These coeficients describe the probability of finding two pixels with the same291

value at different scales, or distances, and orientations, or angles. The pa-292

rameters used normally are: 1) the orientations 0o, 45o, 90o and 135o; and 2)293

three scales, with pixel distances of 1, 2, and 3. For each scale, the GLCM294

matrix is averaged over all orientations, and the contrast, homogeneity, cor-295

relation and energy of the matrix is computed. Two feature vectors were296

considered: 1) HarRGB, that includes the four previous features for scales297
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{1, 2, 3} calculated on the grey version of the RGB image, with 4×3=12 fea-298

tures; and 2) HarLab, which is similar to HarRGB but calculated on the299

L channel of Lab image. When the input is an irregular region, the features300

are computed only on pixels included in the region (González-Rufino et al.,301

2013). The Haralick’s coeficients were computed using the graycomatrix()302

function of the Matlab Image Processing Toolbox1.303

The LBP operator is a state-of-art texture analysis approach proposed by304

Ojala et al. (2002), which describes each pixel comparing its value with the305

neighboring pixels. For each neighboring pixel, the result will be set to one306

if its value is higher than the value of central pixel, otherwise the result will307

be set to zero, developing a binary code for each pixel. We use the uniform308

LBP, which considers the binary paterns with only two transitions (from309

0 to 1 and vice versa). In a circularly symmetric neighbor set of P pixels310

can occur P +1 uniform binary patterns. The number of “1’s” in the binary311

pattern is the label of the pattern, while the nonuniform patterns are labelled312

by P + 1. This process can be applied to different scales, as in the case of313

coocurrence image. The histogram of the pattern labels accumulated over314

the intensity image is employed as texture feature vector. The most common315

values for these parameters are {(P,R) ∈ (8, 1), (12, 2), (16, 3)}, where P is316

the number of neighbors and R is the distance between the central pixel317

and the neighbors. We construct the texture feature vectors LBPRGB and318

1https://www.mathworks.com
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LBPLab to be applied on the grey version on RGB image and on the L319

channel of the Lab image, respectively. Both vectors have 42 = (8 + 2) +320

(12+2)+(16+2) features, because the uniform LBP are P +2 features. We321

use the LBPMatlab2 implementation provided by the LBP creators.322

Discrete wavelet transform (DWT) representation is a theory for multi-323

dimensional signal decomposition (Walker, 2008; Laine and Fan, 1993) which324

recursively apply filters to decompose the image into low-pass and high-325

pass frequency bands. A compact representation for texture analysis can326

be computed taking the mean and variance of the energy distribution for327

the transformed coefficients in each sub-band and decomposition level. We328

compute texture feature vectors calculating the mean and variance of the329

energy over 3 levels of decomposition and create the feature vectors WTijk,330

where: 1) i = {Haar,Daub} is the type of filters to use, namelly Haar (2331

coeficients) or Daubechies filtering with four coeficients; 2) j = {RGB,Lab}332

is the grey level version of the RGB image or the L channel of the Lab image;333

and 3) k = {LL,All} represents if only the low-low decomposition sub-bands334

are considered (6 = 2 × 3 features) or all the sub-bands (24 = 2 × 3 × 4335

features). We used the functions wfilters() and dwt2() of the Matlab336

Wavelet Toolbox.337

Gabor filters are sinusoidal waves modulated by a Gaussian envelope338

that can be used for texture classification (Randen and Husoy, 1999). The339

2http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
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filters are applied to the images varying their frequency and orientation.340

Bianconi and Fernández (2007) analysed the influence of these parameters341

for texture classification. After applying a set of digital Gabor filters Gij(x, y)342

with i ∈ {1, . . . , nF} and j ∈ {1, . . . , nO}, where nF and nO are respectively343

the number of frequency and orientations, some statistical features are com-344

puted over each filtered image. We used the gabor() and imgaborfilt()345

functions of the Matlab Image Processing Toolbox considering the wave-346

lengths [3, 6, 9, 12] and orientations [0, 30, 60, 90, 120, 150], recommended by347

(Bianconi and Fernández, 2007). We compute the feature vectors Gabor-348

RGB and GaborLab, both with 48 features, that include the mean and349

standard desviation for each filter (nF × nO = 6× 4 = 24 filters) applied on350

the grey level version of the RBG image or the L channel of the Lab image,351

respectively.352

3.3. Regression models353

We selected for this experimentation several state-of-art regression models354

of different families that provided good performances in the comparative355

analysis (Fernández-Delgado et al., 2019). One of them is implemented in356

the Octave3 scientific programming language, and the remaining ones in the357

R4 statistical computing language. Most regressors in our collection have358

tunable hyper-parameters, i.e., parameters whose values must be specified359

3http://www.octave.org
4http://www.r-project.org
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previously to training, that often have a strong influence on the regressor360

performance. In these cases, it is a good practice to try several values for each361

hyper-parameter in a trial-and-error procedure, and to select the value that362

provides the best performance on a separate data collection. This method is363

called “grid search” tuning. The following is a list of these regressors, with364

its tunable hyper-parameters and the list of values tried for each one in the365

grid search. For the regressors programmed in R, these values were provided366

by the getModelInfo() function of the caret R package (Kuhn, 2016).367

1. lm is the linear regression provided by the stats R package, which per-368

forms multivariate linear regression and has no tunable hyper-parameter369

(Bates and Chambers, 1992).370

2. svr: epsilon-support vector regression with radial basis function kernel,371

using the LibSVM library (Chang and Lin, 2011) through its Octave in-372

terface. The regularization hyper-parameter C and γ = 1/2σ2, where373

σ is the kernel spread, are tuned with values {2i}15
−5

and {2i}10
−10

, re-374

spectively.375

3. M5: regression tree (Quinlan, 1992) implemented by the Weka Data376

Mining Software5 and accesed from a R program through the RWeka377

package. It has no tunable hyper-parameter.378

4. cubist: M5 rule-based regressor with corrections based on nearest379

5http://www.cs.waikato.ac.nz/ml/weka
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neighbors in the training set (Quinlan, 1993), implemented by the380

Cubist R package. Its tunable hyper-parameters are the number of381

neighbors [0,5,9] and the number of committees [1,10,20].382

5. gbm: generalized boosting regression model (gbm R package) with383

Gaussian distribution. The tunable hyper-parameters are the maxi-384

mum depth of input interactions, with values [1,2,3,4,5] and the number385

of trees for prediction, with values from 50 to 250 step 50.386

6. rf : random forest (Breiman, 2001) ensemble of averaged random regres-387

sion trees (randomForest R package). The number of inputs selected388

at each tree (mtry) is tuned with 10 values between 2 and the number389

of features.390

4. Experimental setup391

In order to achieve a fully automatic system, which can operate on-line392

in the meat industries, we will develop three experiments to compare the393

computer predictions with the sensorial procedures:394

1. Experiment 1: prediction of the marbling from irregular regions of the395

ham muscles that are delineated and annotated by the food technology396

experts. In this case, the prediction is done using the same information397

(irregular region) as the experts.398

2. Experiment 2: prediction of the marbling using square regions ex-399

tracted from the irregular regions of the experiment 1. This experiment400
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tests the reduction of performance when a region of the slice smaller401

than the whole irregular region is used to do the prediction.402

3. Experiment 3: fully automatic extraction of square regions of interest403

(ROI) for each ham muscle, and prediction of the marbling using these404

ROIs. This experiment will test the performance loss when the ROI405

extraction may be suboptimal, but the method is fully automatic and406

does not require any food technology expert.407

In order to test the performance of the ROI extraction algorithm, we408

define the overlapping percentage (OP) as:409

OPm = 100
NOm

Rt

(2)

where m may be biceps, semimembranosus or semitendinosus, Rt is the num-410

ber of pixels of the ROI (in our case s2=64×64=4,096 pixels) and NOm is411

the number of pixels overlapped to the true region annotated by the expert412

for the muscle m.413

To test the performance of regression models in the prediction of marbling,414

we used the classical K-fold cross-validation methodology, which uses training415

and test sets. The most popular performance measures are the Pearson’s416

correlation coefficient (R) between the true and predicted marbling, the mean417

absolute error (average absolute difference between the predicted and true418

marbling, MAE) and the root mean square error (square root of the mean419
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squared difference between them, RMSE):420

R =

N
∑

i=1

(yi − ȳ)(oi − ō)

√

√

√

√

(

N
∑

i=1

(yi − ȳ)2

)(

N
∑

i=1

(oi − ō)2

)

(3)

MAE =
1

N

N
∑

i=1

|yi − oi| (4)

RMSE =

√

√

√

√

1

N

N
∑

i=1

(yi − oi)2 (5)

where yi and oi are the predicted and true values of marbling respectively for421

ham slice i, ȳ and ō are the mean values of {yi}
N
i=1

and {oi}
N
i=1

, respectively,422

and N is the number of ham slices. The |R| values can be interpreted ac-423

cording to Colton (1974) as: true and predicted values are not correlated at424

all (0-0.25), bad to moderate correlation (0.25-0.5), moderate to good (0.5-425

0.75), very good to excellent (0.75-1). In our study, we use K = 4 folds or426

trials, devoting K − 2 = 2 folds for training, one for validation and one for427

test. Since all the folds have the same size, 50%, 25% and 25% of the data428

are devoted to training, validation and test sets, respectively. In our case,429

each data corresponds to the image of a ham slice, and it is composed by the430

texture feature vector extracted from the image (input) and the marbling431

value (output) corresponding to that slice image. In order to guarantee that432

training, validation and test sets contain output values distributed across the433
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whole range of marbling values, the data are sorted by increasing marbling.434

After sorting, data 1, 2, 3 and 4 are included in folds 1, 2, 3 and 4, respec-435

tively. Data 5, 6, 7 and 8 are added to folds 1, 2, 3 and 4, respectively, and436

so on. Let {Tk, Vk, Sk}
K
k=1

be the training, validation and test folds on k-th437

trial. Trial 1 uses folds 1 and 2 for training, fold 3 for validation and fold438

4 for test (see table 2). Trial 2 uses folds 2 and 3 for training, fold 4 for439

validation and fold 1 for test, and analogously for trials 3 and 4. Therefore,440

training, validation and test sets in all the trials include data with marbling441

values in the whole range of values, composing training sets of higher quality442

that are expected to allow regressors learn better.443

K=4 Trial 1 Trial 2 Trial 3 Trial 4
Train T1={1,2} T1={2,3} T1={3,4} T1={4,1}
Validation V1={3} V1={4} V1={1} V1={2}
Test S1={4} S1={1} S1={2} S1={3}

Table 2: Distributions of folds in training, validation and test for each trial.

Table 2 reports the experimental methodolody. For each combination Ci444

of hyper-parameter values of the model, with i = 1, . . . , N , and for each trial445

k, with k = 1, . . . , K, the set Tk is used to train the model using the com-446

bination Ci of hyper-parameter values, while the set Vk is used as validation447

set to evaluate the performance Pik of the trained model using Ci on Vk.448

The average Pi of {Pik}
K
k=1

is thus the performance associated to the com-449

bination Ci of hyper-parameter values. The process is repeated for all the450

combinations {Ci}
N
i=1

, and the combination CI with the highest performance451

I = argmax{Pi}
N
i=1

is selected. Then, for k = 1, . . . , K the model with this452
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best combination CI is trained on the set {Tk, Vk}, that includes K−1 folds,453

and tested on the set Sk (1 fold), achieving a performance Pk. The average454

of {Pk}
K
k=1

is the final test performance P of the model.455

Algorithm 2: Experimental methodology, combining K-fold cross-
validation and hyper-parameter tuning.

1 for i = 1 : N do

2 for k = 1 : K do

3 Train the model with Ci on dataset Tk

4 Validate the model with Ci on dataset Vk

5 Pik=performance with Ci on Vk

6 Pi=average of {Pik}
K
k=1

7 I = argmax{Pi}
N
i=1

8 for k = 1 : K do

9 Train the model with CI on {Tk, Vk}
10 Test the model with CI on Sk

11 Pk=performance with CI on Sk

12 P=average of {Pk}
K
k=1

5. Results and discussion456

We present the results obtained from the different points of view: the au-457

tomatic extraction of ROIs to represent each muscle (subsection 5.1), the per-458

formance of marbling prediction model (subsection 5.2), comparison among459

the performance of different prediction models (subsection 5.3), the method460

stability with the muscles (subsection 5.4) and the computational time of the461

different stages of the procedure (subsection 5.5).462
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5.1. Extraction of ROIs463

We tested the performance of the automatic algorithm to extract square464

ROIs, of size 64 × 64 pixels, for each muscle described in section 3.1, by465

using the measures described in eq. 2 of section 4 between the true muscle466

and the extracted ROI for each muscle m. We compared the results with467

the extraction done for experiment 2, in which the ROI is extracted from468

the centroid of the irregular region (muscle) annotated by the expert (see469

section 2.3). This extraction is normally satisfactory: in experiment 2, an470

overlapping of 100% is achieved for the 47% of images, and the overlapping471

is below 80% for only the 8% of the images. In experiment 3, the extraction472

is perfect for the 52% of images and the overlapping is lower than 80% for473

only the 12% of the images. Figure 7 shows some examples of suboptimal474

ROI extraction: for the ROI extraction using centroid (experiment 2), the475

causes of suboptimal extraction are muscles smaller than the ROI size (figure476

7a) and muscles not rounded (figure 7c). For the automatic ROI extraction477

(experiment 3), the causes of failure are: i) suboptimal extraction (figure 7d)478

and ii) exchange SM and ST muscles due to artefacts in the ham slice (figure479

7b). Table 3 shows the OPm achieved by the ROI extraction algorithm for480

each muscle m in both experiments.481

5.2. Marbling prediction482

The texture features described in section 3.2 are computed for all the ham483

slices. In the experiment 1, the texture features are computed on the irregular484
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OPm

Muscle (m) #images Experiment 3 Experiment 2
Biceps femoris 351 93.79 98.54
Semimembranosus 335 89.92 89.20
Semitendinosus 55 94.76 99.84

Table 3: Average percentage of overlapping pixels of the automatic extracted ROI (col-
umn Experiment 3) and the extraction from the centroid (column Experiment 2) with
the true muscle annotated by the experts used in the experiment 1 for every muscle.

a b c d

Figure 7: Examples of square ROI extraction, in cyan the muscle contour, in pink the
square ROI extracted in the centroid, in white, yellow and green the square ROI auto-
matically extracted for BF, SM and ST muscles respectively: a) ROI bigger than the BF
muscle; b) the automatic ROI extractor fails in SM muscle; c) and d) suboptimal ROIs
for SM and ST, respectively.

region, Ri, defined by each muscle and annotated by the food technology485

experts. So, Gabor and wavelet features were not computed because they486

must be applied on a square image. In experiment 2, squared regions RSi of487

size 64× 64 pixels are extracted from the centroid of Ri and all the texture488

features were computed. In experiment 3, the texture features were computed489

on the square regions automatically extracted from the ham slice using the490
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algorithm described in the section 3.1.491

Experiment 1 Experiment 2 Experiment 3
Feature vector R MAE R MAE R MAE

Pure color features
CMRGB 0.85 0.62 0.79 0.70 0.72 0.79
CMab 0.69 0.82 0.63 0.86 0.58 0.93
CMVRGB 0.90 0.50 0.86 0.57 0.81 0.67
CMVab 0.74 0.75 0.66 0.83 0.68 0.86
FOSRGB 0.91 0.47 0.87 0.54 0.84 0.63
FOSab 0.81 0.68 0.74 0.76 0.71 0.78

Grey-level texture features
HarRGB 0.91 0.49 0.88 0.56 0.80 0.72
HarLab 0.90 0.50 0.85 0.61 0.77 0.76
mlbpRGB 0.93 0.43 0.83 0.62 0.73 0.79
mlbpLab 0.92 0.45 0.81 0.66 0.71 0.80
WTrgbHaarLL – – 0.85 0.57 0.80 0.67
WTrgbHaarAll – – 0.88 0.54 0.80 0.66
WTlabHaarLL – – 0.85 0.57 0.80 0.67
WTlabHaarAll – – 0.88 0.54 0.82 0.65
WTrgbDb4LL – – 0.86 0.58 0.79 0.70
WTrgbDb4All – – 0.88 0.53 0.79 0.70
WTlabDb4LL – – 0.87 0.57 0.80 0.70
WTlabDb4All – – 0.89 0.53 0.79 0.70
GaborRGB – – 0.89 0.54 0.80 0.70
GaborLab – – 0.88 0.55 0.80 0.71

Color texture features
CMVHarRGB 0.95 0.38 0.91 0.47 0.84 0.64
FOSHarRGB 0.95 0.39 0.92 0.46 0.83 0.63
CMVmlbpRGB 0.93 0.41 0.89 0.51 0.79 0.68
FOSmlbpRGB 0.94 0.40 0.90 0.48 0.80 0.67
CMVWTLabHaarAll – – 0.89 0.53 0.82 0.65
FOSWTLabHaarAll – – 0.89 0.51 0.83 0.62
CMVGaborRGB – – 0.91 0.48 0.82 0.65
FOSGaborRGB – – 0.91 0.48 0.82 0.64

Table 4: Correlation (column R) and mean absolute error (column MAE) for the marbling
prediction using pure color features (upper part of the table), grey level texture features
(middle part of the table) and color texture features (lower part of the table) using the
support vector regression (svr) for the three experiments.

Table 4 shows the correlation (R) and the mean absolute error (MAE) for492

marbling prediction using the support vector regression (svr) for the three493
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experiments. The feature vector FOSRGB achieved the highest R and lowest494

MAE among all pure color features (upper part of the table), with R=0.91,495

0.87 and 0.84 in experiments 1, 2 and 3, respectively. As expected, when the496

performance of the automatic detection degrades, the regression accuracy497

decreases. But, it is still quite high for the third experiment, very good to498

excellent following the Colton’s criteria. In relation with grey-level texture499

features (middle part of table), the use of irregular regions of the muscle500

(experiment 1) achieves the highest performance (R=0.93 and MAE=0.43501

using the texture vector mlbpRGB). In general, the performance achieved in502

experiment 2 is higher than the experiment 3 for all the features vectors used,503

noting the loss of information in the automatic selection of the ROIs. Com-504

paring the different families of grey-level texture features for square ROIs, the505

wavelet features achieve the highest performance for experiment 3 (R=0.82506

and MAE=0.65) followed very close by the Haralick’s coeficients and Ga-507

bor features (R=0.80), which means that the model is also from good to508

excellent. From the color space point of view, although the best results with509

wavelet features are achieved using the Lab color space, the difference with510

the use of RGB color space is not significant and the highest performance511

with the remaining feature vectors is better using RGB color space.512

We developed experiments combining the best pure color features (vectors513

FOSRGB and CMVRGB) with the best grey-level texture features of each514

texture features families. Specifically, we chose the grey-level texture vectors515

HarRGB for Haralick’s coeficients, mlbpRGB for local binary patterns, WT-516
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LabHaarAll for wavelet features and GaborRGB for Gabor features. The517

results are shown in the lower part of table 4. The performance increases 0.2518

for the first experiment (from R=0.93 for mlbpRGB to R=0.95 for CMVHar-519

RGB) and 0.3 for the experiment 2 (from R=0.89 for GaborRGB to R=0.92520

for FosHarRGB), but R does not increase in experiment 3. In all the cases,521

the best results were achived combining the color information (CMVRGB522

or FOSRGB vectors) and the grey-level texture information provided by the523

Haralick’s or LBP coeficients (vector HarRGB and mlbpRGB). The MAE524

is a performance measure easier to interpret than R from the point of view525

of food technology experts. Figure 8 shows the reliability of the prediction526

using the svr regressor for experiments 1 (left panel) and rf regressor for527

experiment 3 (right panel) for the best feature vectors. The blue line rep-528

resents the true marbling for each ham slice provided by the experts. The529

red points represent the predicted marbling by svr or rf for each ham slice.530

The average difference between the blue and red values for each ham slice531

is the MAE (0.38 and 0.60 in the left and right panels, respectively). This532

means that the prediction of the computer is the true value ± MAE in aver-533

age. Taking in mind that the expert’s tolerance in the sensorial analysis to534

establish the marbling is 0.5, the prediction of the computer is comparable535

with the precision of the experts.536
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Figure 8: Graphical representation of the true (blue line) and predicted (red points) ham
marbling (vertical axis) for all ham slices (horizontal axis) using the svr regressor: (left
panel) using the CMVHarRGB vector in the experiment 1 and (right panel) using the
FOSRGB plus LBPRGB vector in the experiment 3.
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Figure 9: Box plots showing the correlation R for the different regressors (horizontal axis)
considering all the experiments together (left panel) and only the experiment 3 (right
panel).

5.3. Comparing different regressors for marbling prediction537

In order to find the best prediction of marbling score, we applied the538

regressors described in section 3.3 to the color texture features described in539

section 3.2 for the three experiments. Figure 9 shows the box plots com-540
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paring the correlation for all regressors considering all feature vectors in the541

experiments 1, 2 and 3 (left panel) and only in experiment 3 (right panel).542

The upper and lower edges of each box indicate the 25th and 75th percentiles,543

respectively, the upper and lower blue segments enclose the remaining data544

and the red crosses are the data considered outliers. The red line inside the545

box is the median of the data. In both panels, there are not large difference546

among regressors. Considering the tree experiments (left panel), svr, rf and547

cubist have the highest medians, and svr has the smaller box, similar to rf548

but with higher median. In experiment 3 (right panel), the rf box shows the549

best median, followed by svr with a shorter box. Table 5 shows the color550

texture vector that achieved the highest correlation R, with the standard551

deviation over the K folds in the cross validation, for each regressor on the552

first (irregular regions for each muscle) and third experiments (square regions553

for each muscle). In experiment 3, the highest values of R are achieved by554

the rf regressor using the feature vector FOSmlbpRGB (R = 0.846± 0.008).555

Considering that the MAE values (0.38 and 0.60) reflect the dispersion of the556

computer marbling prediction from the true marbling values, the computer557

predictions fall near the experts’ tolerance, which is 0.5. Hence, for the first558

experiment, the computer predicts correctly the 90.4% (67.8% for the third559

experiment) of samples within a tolerance of ±0.5 (the expert’s tolerance)560

and within a tolerance of ±1, the 99.3% (88.8% for the third experiment).561
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Experiment 1 Experiment 3
Regressor Feature R Feature R

lm CMVmlbpRGB 0.932 ± 0.003 FOSHarRGB 0.831 ± 0.014
svr CMVHarRGB 0.948 ± 0.004 CMVHarRGB 0.839 ± 0.005

m5 FOSmlbpRGB 0.940 ± 0.003 FOSHarRGB 0.834 ± 0.017
cubist FOSmlbpRGB 0.943 ± 0.007 FOSHarRGB 0.838 ± 0.012
gbm FOSmlbpRGB 0.934 ± 0.001 FOSRGB 0.829 ± 0.013
rf FOSmlbpRGB 0.938 ± 0.004 FOSmlbpRGB 0.846 ± 0.008

Table 5: Correlation (R) for the marbling prediction using all the regressors and the best
feature vector (column Feature) for the first and third experiments.

5.4. Comparing performance for different muscles562

In order to test if the regressor behaviour is stable over the different563

muscles, we create two datasets with images belonging to the third experi-564

ment: 1) BFData for images of Biceps femoris (BF) muscle; and 2) SMData565

for images of Semimembranosus (SM) muscle. Semitendinosus muscle is not566

analysed because there are few images. For BF muscle, the best performance567

is achieved by the feature vector FOSGaborRGB using the cubist regres-568

sor (R=0.80 and MAE=0.50). For the SM muscle, the best performance is569

achieved by the feature vector FOSmlbpRGB using also the cubist regressor570

(R=0.74 and MAE=0.55). Although the correlation loss is 0.12 (0.92−0.80)571

and 0.18 (0.92−0.74) for the BF and SM muscles respectively, the loss in572

MAE is only 0.04 (0.50−0.46) and 0.09 (0.55−0.46) respectively. Thus, the573

computer predictions with a tolerance of ±1 are correct for the 93.5% of BF574

and 94.1% of SM muscles. This facts lead to conclude that our system is575

stable with the different muscles.576
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5.5. Computation time577

In order to design a computer system to predict the marbling from a578

ham slice, which should operate in real time in the meat industry, it is very579

important the computational time needed by the different stages of the pro-580

cess. The experiments were performed on a desktop computer with Intel®581

CoreTM i7-9700 processor at 3.6GHz and 64GB RAM memory under Ubuntu582

20.04. The algorithm for the extraction of a square ROIs for the different583

muscles was done in the C++ programming language using the computer vi-584

sion library OpenCV6 and the remaining processing was done using Matlab585

2021a7. The average computational time to extract the ROIs was 18.7, 18.4586

and 19.9 miliseconds for biceps, semimembranosus and semitendinosus mus-587

cles, respectively. The time required to compute the color texture features588

depends on the method used and the type of experiment (irregular regions589

in experiment 1 and square regions in experiments 2 and 3). For square590

regions of 64× 64 pixels, the average computational time for each family of591

features was: 1) for pure color features the time ranges from 0.48 ms. for592

CMRGB to 2.21 ms. for FOSLab; 2) for Haralick’s features: 7.59 and 9.20593

ms. for HarRGB and HarLab, respectively; 3) for LBP texture features,594

the time is 170.03 ms. for mlbpRGB and 172.20 ms. for mlbpLab; 4) for595

wavelet features (vectors WTijk, where i = {Haar,Daub}, j = {RGB,Lab}596

and k = {LL,All}) the time ranges from 1.17 ms. for WTrgbHaarLL to 2.73597

6https://opencv.org
7https://mathworks.com
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ms for WTLabDb4All; and 5) for Gabor texture features: 19.17 and 20.99598

ms. for GaborRGB and GaborLab, respectively. The time spent by the599

svr regressor to predict the marbling using the texture feature vector is less600

than 1 milisecond per image. Overall, the computational time required by601

the whole process depicted in figure 4, discarding the acquisition of the ham602

slice image, can be estimated as 19 ms. for the automatic ROI extraction,603

plus less than 10 ms. for color texture feature computation, plus 1 ms. for604

regression model, summarized approximately 30 ms.605

6. Conclusions and future work606

This paper proposes a system to predict the marbling of dry-cured ham607

from a ham slice image. After the acquisition of ham image, a square ROI of608

the semimembranosus (SM), semitendinosus (ST) and biceps femoris (BF)609

muscles is automatically extracted using the procedure described by algo-610

rithm 1. The overlapping of the ROIs extracted by this method with the611

true muscle area is, in average, higher than 90% for all the muscles. The612

prediction of ham marbling using the support vector regression is: 1) a cor-613

relation R of 0.95 using the true ham muscles areas annotated by experts614

(experiment 1) and the feature vector CMVHarRGB, composed by the mean615

and variance of each channel of RGB color image combined with the Har-616

alick’s coeficients of the grey-level image; and 2) R=0.85 for square ROIs617

automatically extracted, in the experiment 3, using the feature vector FOS-618

mlpbRGB (statistics of each channel of RGB color image combined with the619
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MLBP texture features of the grey-level image). The MAE achieved is 0.38620

in the first case and 0.60 in the second one. These values are comparable to621

0.5, which is the estimated standard deviation of the panelists. This leads622

to think that the computer system can perform the prediction similarly to623

a human expert. The computational time to do the prediction (without the624

image acquisition time) is approximatly 30 miliseconds to extract the square625

ROI, compute the color texture features and predict the marbling in a general626

purpose personal computer.627

The good results and high speed of the marbling prediction for sliced dry-628

cured ham suggest that this application could be deployed in the dry-cured629

ham industry. Future work will be the development of a software to predict630

the marbling and other dry-cured sensorial measures.631
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L. Liu, M. Ngadi, S. Prasher, C. Gariépy, Objective determination of pork697

marbling scores using the wide line detector, J Food Engin 110 (2012)698

497–504. doi:https://doi.org/10.1016/j.jfoodeng.2011.11.008.699

H. Huang, L. Liu, M. Ngadi, C. Gariépy, Prediction of pork marbling700
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