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ARTICLE INFO ABSTRACT

Keywords: The volatile composition of wild strawberry (Fragaria vesca) fruit differs from that of the cultivated strawberry,
Fragaria vesca having more intense and fruity aromas. Over the last few years, the diploid F. vesca has been recognized as a
Volatilome model species for genetic studies of cultivated strawberry (F. x ananassa), and here a previously developed F.
wild aroma vesca/F. bucharica Near Isogenic Line collection (NIL) was used to explore genetic variability of fruit quality
K?Lmlame compounds traits. Analysis of fruit volatiles by GC-MS in our NIL collection revealed a complex and highly variable profile.
Sl rogression One hundred compounds were unequivocally identified, including esters, aldehydes, ketones, alcohols, terpe-

noids, furans and lactones. Those in a subset, named key volatile compounds (KVCs), are likely contributors to
the special aroma/flavour of wild strawberry. Genetic analysis revealed 50 major quantitative trait loci (QTL)
including 14 QTL for KVCs, and one segregating as a dominant monogenetic trait for nerolidol. The most de-
terminant regions affecting QTLs for KVCs, were mapped on LG5 and LG7. New candidate genes for the volatile
QTL are proposed, based on differences in gene expression between NILs containing specific fragments of F.
bucharica and the F. vesca recurrent genome. A high percentage of these candidate genes/alleles were colocalized
within the boundaries of introgressed regions that contain QTLs, appearing to affect volatile metabolite accu-
mulation acting in cis. A NIL collection is a good tool for the genetic dissection of volatile accumulation in wild
strawberry fruit and a source of information for genes and alleles which may enhance aroma in cultivated
strawberry.

1. Introduction used. Generally, strawberry fruit volatiles increase with ripening (Goff

and Klee, 2006) and are classified in three main categories according to

Around the past 30 years, strawberry breeding programs have been
directed mainly towards improving agronomical performance, resulting
in varieties which produce high yields of large red and firm fruits, but
fruit aroma is the quality trait with a major impact in consumers (Bruhn
et al., 1991; Schwiterman et al., 2014). Over 350 volatile compounds
have been identified in fruits of Fragaria sp., comprising esters, alde-
hydes, ketones, furanones, alcohols and terpenoids (Latrasse, 1991) but
only a few have been reported to contribute to the strawberry aroma as
perceived by humans (Schieberle and Hofmann, 1997; Ulrich et al.,
1997, 2007).

As with other fruit crops, the biosynthetic pathways, enzymes and
regulation underlying volatile compound accumulation have been
partially elucidated in Fragaria. Fruit volatile profiles are known to
depend on genetic (fruit species and variety), developmental (maturity
stage) and postharvest factors, as well as on the analytical technique

their carbon source: fatty acid, amino acid, and carbohydrate deriva-
tives (reviewed by Schwab et al., 2008; Granell and Rambla, 2013).
Fatty acids are the most important precursors for most fruit aroma
volatiles, including straight-chain aldehydes, alcohols, esters, lactones
and ketones. These compounds are synthesized mainly through the li-
poxygenase (LOX) pathway and a- [-oxidation. In the LOX pathway,
linoleic (18:2) and linolenic (18:3) acid are converted to hydroperoxide
isomers, which are then cleaved by hydroperoxide lyase (HPL) to form
hexanal and (Z)-3-hexenal, respectively. The aldehydes are subse-
quently reduced to the corresponding Cg alcohols by alcohol dehy-
drogenase (ADH). Alcohol acyl transferase (AAT) catalyzes the reaction
between an acyl moiety and an alcohol to form an ester. It has been
proposed that this pathway requires a still-unidentified lipase (Schwab
et al., 2008; Granell and Rambla, 2013). Fatty acids can also be de-
graded via a- and [-oxidation pathways, although the specific
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mechanisms in plants are not well understood. In strawberry, alcohol
acyl transferases (SAAT) with high sequence similarity but different
substrate preferences have been identified: AAT in F. x ananassa (SAAT,
Aharoni et al., 2000) and F. vesca (VAAT, Beekwilder et al., 2004).
Additionally, an omega-6 fatty acid desaturase (FaFAD) has been cor-
related with the presence of y-decalactone (Chambers et al., 2014;
Sanchez-Sevilla et al., 2014).

Amino acid metabolism is known to be an important source of
aroma volatile precursors. This is the case of phenylpropanoid and
benzenoid volatiles that derive from phenylalanine. In strawberry, eu-
genol biosynthesis is mediated by two eugenol synthases (FaEGS1 and
FaEGS2) and controlled by one R2R3 MYB transcription factor
(FaEOBII) (Aragiiez et al., 2013; Medina-Puche et al., 2014). The bio-
synthetic pathways of other volatile benzenoids have not yet been
clearly elucidated. Other branched-chain organic acids and aromatic
amino acids are volatile precursors, however their catabolic pathways
to form volatile compounds also remain unclear (Granell and Rambla,
2013).

Carbohydrates can give rise directly to volatile furanones, without
degradation of the carbon skeleton. In F. x ananassa, the FaOMT en-
zyme transforms furaneol to mesifurane (Zorrilla-Fontanesi et al.,
2012). Volatile terpenoids (mainly mono- and sesqui-terpenoids) are
formed from the basic Cs precursors isopentenyl pyrophosphate (IPP)
and its isomer, dimethylallyl pyrophosphate (DMAPP). IPP and DMAPP
derive from either the plastidic methylerythriol phosphate or the cy-
tosolic mevalonate pathway. These Cs units are condensed to pyr-
ophosphate precursors of terpenoids that are converted to final pro-
ducts by terpene synthases (TPS) (Granell and Rambla, 2013). In
strawberry, the production of the monoterpenoid linalool and the ses-
quiterpenoid nerolidol, and that of the monoterpene a-pinene, have
been shown to be linked to specific alleles of the terpene synthases
FaNES1 and FvPINS respectively (Aharoni et al., 2004).

Major differences in volatile patterns have been observed among
different species within the Fragaria genus. The most common volatile
compounds contributing to strawberry aroma are esters with methyl
butanoate, ethyl butanoate, butyl butanoate, methyl hexanoate, ethyl
hexanoate, butyl acetate and hexyl acetate as important contributors to
the fruity aroma. Methyl 2-aminobenzoate (also known as methyl an-
thranilate) has been reported as the single compound which confers the
typical “wild strawberry-like” aroma of woodland strawberry (F. vesca)
accessions, and is only very rarely found in some commercial varieties
(Ulrich et al., 1997). Methyl cinnamate adds spicy notes and myrtenyl
acetate herbaceous notes (Schieberle and Hofmann, 1997; Ulrich et al.,
1997, 2007; Jetti et al., 2007; Olbricht et al., 2008; Schwieterman et al.,
2014). Furans, specifically furaneol and mesifurane, are considered
important contributors by adding caramel notes (Schieberle and
Hoffmann, 1997; Ulrich et al., 1997, 2007; Jetti et al., 2007), while the
terpenoids linalool and nerolidol, add flowery notes (Ulrich et al., 1997;
Olbricht et al., 2008; Schwieterman et al., 2014), but these compounds
have been detected mainly in octoploid cultivars (F. x ananassa) and not
in diploid wild strawberries (F. vesca) (Aharoni et al., 2004). The so-
called ‘green volatile compounds’, (Z)-3-hexenal, (E)-2-hexenal and (Z)-
3-hexen-1-0l, have been reported to contribute to the aroma char-
acteristics that typically decrease with ripening (Ulrich et al., 1997;
Schieberle and Hoffman, 1997). Another important volatile compound
is y-decalactone, which confers ‘peach-like’ notes (Ulrich et al., 1997;
Jetti et al., 2007; Olbricht et al., 2008).

A distinctive characteristic of volatile composition in F. vesca fruit is
that it is richer in esters and monoterpenes (a-pinene, (-myrcene, o-
terpineol, a-phellandrene) while exhibiting the pleasant and easily
identifiable ‘wild-strawberry-like’ aroma associated with methyl 2-
aminobenzoate. These compounds confer more intense and fruity
aroma characteristics of this wild species and are not found normally in
commercial strawberry fruits (F. x ananassa) (Aharoni et al., 2004;
Ulrich et al., 1997, 2007; Dong et al., 2013). It is important to em-
phasize that large differences have been observed between F. x
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ananassa varieties covering a range of fruit quality phenotypes (Zorrilla-
Fontanesi et al., 2012; Schwieterman et al., 2014).

To date, research has been directed to the characterization of the
aroma profile of different octoploid accessions, mapping populations
resulting from crosses involving commercial and wild material (Jetti
et al., 2007; Olbricht et al., 2008; Zorrilla-Fontanesi et al., 2012;
Schwieterman et al., 2014), and differences in the aroma profiles be-
tween octoploid and diploid strawberries (Aharoni et al., 2004; Ulrich
et al.,, 2007; Dong et al., 2013). It is surprising that, despite the out-
standing organoleptic characteristics of F. vesca, the genetic basis of its
characteristic volatile content have not been yet reported. Given the
very high degree of synteny between F. vesca and the commercial hy-
brid F. x ananassa (Rousseau-Gueutin et al., 2008; Tennessen et al.,
2014), F. vesca is a model for the study of strawberry genetics what
facilitates the transfer of information and alleles to modern varieties. In
addition, the high quality reference genome sequence available
(Shulaev et al., 2011), the transcriptomic analysis re-annotation of the
especies (Darwish et al., 2015) and the recently developed near isogenic
line (NIL) mapping collection (Urrutia et al., 2015) are powerful tools
for the study of genetic traits in strawberry. Specifically, strawberry NIL
collection derived from an inter-specific cross between F. vesca and F.
bucharica. The homozygous introgressions of F. bucharica, an exotic
relative of F. vesca, give phenotypic variability that has been used to
map QTL for agronomical and metabolic traits (Urrutia et al., 2016).

This study provides a detailed profiling and QTL mapping of the
volatile composition of a F. vesca NIL population, as a first step to
identifying the genetic basis of the wild strawberry-like aroma. We
focused on two genome regions that harbor key aroma volatile QTL, a
whole transcriptomic study of the corresponding lines allowed us to
select a number of differentially expressed candidate genes as re-
sponsible for the differences in volatile accumulation.

2. Materials and methods
2.1. Plant material and sample extraction

The volatilome of diploid strawberry ripe fruits was analyzed using
42 lines from a near isogenic line (NIL) collection in F. vesca, its re-
current and donor parents (F. vesca var. ‘Reine des Vallées’ and F. bu-
charica ‘FDP 601’ respectively) and the yellow-fruited variety of F. vesca
named ‘Yellow Wonder’ (YW), which has a very pleasant pineapple-like
aroma. Each line was represented by six to eight individuals in-
dependently grown from seed in two different years (2012 and 2013)
and cultivated in a shaded greenhouse in Caldes de Montbui (latitude:
41° 36'N, longitude: 2° 10’ E, altitude 203 m above sea level, pre-coastal
Mediterranean climate) following the usual agronomical practices for
this crop. Pools of berries from each genotype were collected at harvest
time and immediately frozen in liquid nitrogen as independent biolo-
gical replicates. Three to five biological replicates were harvested,
ground to fine powder and stored at —80 °C prior to gas chromato-
graphy-mass spectrometry (GC-MS) analysis and/or total RNA extrac-
tion. The NIL collection is extensively described in Urrutia et al. (2015).

2.2. Volatile compounds analysis

Volatile compounds were determined in a similar way as described
in Rambla et al. (2015). Each biological replicate was analyzed as an
independent sample. Before the volatile compounds analysis, an aliquot
of 500 mg of frozen fruit powder from each sample was weighed in a
7 mL glass vial and thawed at 30 °C for 5 min. Then 500 pL of a sa-
turated NaCl solution were added and the mixture was homogenized
gently. Five hundred microliters of the resulting paste were transferred
to a 10 mL screw cap headspace vial and analyzed immediately. Vo-
latiles were sampled by HS-SPME (headspace solid phase micro-
extraction) with a 65 pm PDMS/DVB (polydimethylsiloxane/divinyl-
benzene) fiber (Supelco, PA, USA). The vials were first tempered at
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Table 1 (continued)

NIL collection

Recurrent parental (RV)

Family Correlation

Cluster

Pathway

Compound

Code

KvC

2013

2012

2013

2012

range

sd

mean

mean sd mean sd mean sd range

sig.

Ccorr.

5,88
5,83
3,80

0,01
1,00
0,30

1,12
0,77
0,68

1,21
1,20
1,20

3,61
6,73
2,33

0,05
1,00
0,43

0,71
0,94
0,40

1,08
1,24
1,18

0,21
0,00
0,31

0,77
1,00
1,04

0,36
0,00
0,36

1,40
1,00
1,25

0,84

terpenoid

Terpenoids

Nerol

98

0,95

terpenoid

Terpenoids

Nerolidol

0,25 ns

terpenoid

Terpenoids

Terpineol

100

103
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50 °C for 10 min, then volatiles were extracted by exposing the fiber to
the vial headspace for 30 min at 50 °C with agitation at 500 rpm. The
extracted volatiles were desorbed in the GC injection port at 250 °C for
1 min in splitless mode. A Combi-PAL autosampler (CTC Analytics,
Zwingen, Switzerland) was used for incubation, volatile extraction and
desorption. GC-MS was in a 6890N gas chromatograph coupled to a
5975B mass spectrometer (Agilent Technologies, CA, USA). A DB-5ms
column (60 m, 0.25 mm, 1 um) (J&W Scientific, CA, USA) and a
constant helium flow of 1.2 mL min~! were used for chromatographic
separation. Oven programming conditions were: 40 °C for 2 min, 5 °C
min~! ramp to 250 °C, then 5 min at 250 °C. Compounds were mon-
itorized over the mass/charge ratio (m z™hH range of 35-250. Chro-
matograms and mass spectra were analyzed using the Enhanced
ChemStation software (Agilent Technologies, CA, USA). Volatile com-
pounds were unambiguously identified by comparison of both retention
time and mass spectra to those of commercial standards (SIGMA-AI-
drich, MO, USA) run under the same conditions, except four compounds
which were tentatively identified by comparison of their mass spectra
to those in the NIST 05 mass spectral library. These compounds are
marked with a “T” after the chemical name (Table 1). For quantifica-
tion, a specific ion was selected for integration of the area of each of the
identified compounds. Areas were normalized by comparison with the
peak area of the same compound in a reference sample which was in-
jected regularly each five to six samples, in order to correct for varia-
tions in sensitivity and fiber aging. This reference sample consisted of a
homogeneous mix of all the samples analyzed each year.

2.3. Data and mQTL analysis

Volatiles are expressed in relative terms, as a ratio between each
sample and a quality control sample (a mix of all studied samples) to
correct for technical drift. In order to assess normality for statistical
data analysis, ratios were transformed to base 2 logarithm. All the lines
that set fruit were processed and analyzed by GC-MS each year
(Supplemental Table 1). However, for the exploratory analysis, only
those genotypes that produced enough fruits both years were con-
sidered (Urrutia et al., 2016). For the statistical analysis and graphical
representations, the free source software R 2.15.1 (RCoreTeam, 2012)
was used, with the Rstudio 0.92.501 interface (Rstudio, 2012) unless
otherwise specified. Pearson's correlation was calculated using the rcorr
function from the Hmisc package (Harrell, 2014). The Anova function
from the car package (Fox, 2011) was used for analysis of variance
(ANOVA). Omega squared values (w?) were calculated from ANOVA
residuals following the formula: (SS; — df; * MSe,) * (MS; + MSe) "L
For Principal Components Analysis (PCA), the prcomp function and
scaled values were used. The Hierarchical Clustering Analysis (HCA)
was calculated considering Euclidean distance and the complete linkage
clustering method. The Cluster Network Analysis (CNA) was calculated
with the ggraph function from the qgraph R package (Epskamp et al.,
2012). Significance tests were recursively calculated between each NIL
and RV ratio using the t.test function and corrected for multi-testing by
p-adjust (threshold p. adjusted < 0.05) for QTL mapping. QTLs were
mapped to a specific genetic region only when all NILs harboring a
common F. bucharica introgression in this region showed a significant
effect and in the same direction over the ratio for the specific meta-
bolite of study. QTL that were mapped to the same region in two har-
vests were considered stable. Interval mapping analysis with MapQTL
v.6 (Van Ooyen, 2009) was used to confirm these QTL and estimate
their effect. Stable QTL that explained around 20% or more of the
variability and had LOD scores > 1.8 were considered major QTLs.
Non-stable QTL (detected in only one harvest) were considered only if
they accounted for more than 20% of the observed variability that year.
Graphical representation of the mQTLs was using MapChart 2.2
(Voorrips, 2002).



M. Urrutia et al.

2.4. RNA sequencing and analysis

Total RNA was isolated from three selected NILs (Fb5:0-35 and
Fb7:0-10) and the recurrent parental (RV) extracting the nine samples
(three biological replicates per line) following the protocol described by
Liao et al., (2004). A cell lysis step with CTAB buffer, modified with 3%
PVP and 4% [-mercaptoethanol, was followed by: 2-3 cleaning steps
with chloroform-isoamyl alcohol (24:1 v/v), overnight precipitation
with lithium chloride (8 M), 1-2 additional cleaning steps with
chloroform-isoamyl alcohol (24:1 v/v) and precipitation with cold ab-
solute ethanol. RNA was quantified and checked for purity and integrity
in a Bioanalyzer-2100 (Agilent Technologies, CA, USA). The con-
centration and quality threshold was set at 150 ng/?L and RNA in-
tegrity number (RIN) above eight. Further steps in RNA quality control,
library preparation and mRNA paired end (2 X 75bp) sequencing were
carried out at the Centro Nacional de Andlisis Genémico (CNAG), Spain
in a HiSeq2000 sequencer (Illumina, CA, USA). For quality control,
trimming of sequencing adapters and removal of low quality and short
reads (< 40bp), FASTQC v0.10.1 (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc) and Trimmomatic v0.32 (Bolger
et al.,, 2014) were used respectively. Trimmed reads were mapped
against the F. vesca reference genome v1.1 using Tophat v2.0.11 with
default parameters (Trapnell et al., 2010), taking as annotation re-
ference version 2 (a2) (Darwish et al., 2015) and version 1 (al)
(https://www.rosaceae.org/species/fragaria/fragaria_vesca). Mapping
quality was evaluated with the bamgc and rnaseq functions from Qua-
limap v2.1 (Garcia-Alcalde et al., 2012).

2.5. Differential gene expression analysis and functional annotation

Differential expression analysis was first performed using annota-
tions a2 and then complemented, using the same filters and parameters,
with al. Independent tables of counts per gene were first generated
with HTSeq-count with mode union (Anders et al., 2015), considering all
annotated genes from the reference annotation a2 and al respectively.
These tables were provided as input to the DESeq package in R (Anders
and Hubers, 2010) using the newCountDataSetFromHTSeqCount func-
tion. DESeq counts all the reads-pairs mapped to a gene and normalizes
the number of counts between samples, correcting for the library size.
We considered that a gene was expressed in a specific line if at least two
of the three biological replicates had = 1 read-counts for the gene.
Secondly, 40% of the genes with lowest standard deviation were fil-
tered in order to maximize the discovery rate. Differential expression
analyses contrasting each NIL against RV were computed with the
nbinomTest function (Anders and Hubers, 2010). Multi-testing corrected
p-values (p-adjust) were calculated using the Benjamini & Hochberg
method. The significance threshold for a differentially expressed gene
(DEG) was fixed at p-adjust 0.1. Lists of DEGs obtained with a2
(Supplemental Table 6) and al were compared for coincidence. DEG
lists were inquired for predicted protein similarity with other proteins
annotated in plant databases. The mRNA sequence was extracted from
predicted exon coordinates. These mRNA sequences were inquired by
blastx with the GoAnna tool from Agbase (McCarthy et al., 2006)
against the manually annotated protein plant database, with a sig-
nificance threshold of 0.05. Annotated function and gene ontology
terms (GO terms) of best blast hits were assumed as putative functions
by mRNA query. In order to obtain a summarized view of the functional
annotation results we used GoSlimViewer from AgBase (McCarthy et al.,
2006). In addition, functional enrichment analysis to detect metabolic
functions or biological processes that might be over-represented among
the DEGs was carried out using the MetGenMAP online platform (Joung
et al., 2009). Putatively affected metabolic pathways were also ex-
plored using MetGenMAP.
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2.6. Variation calling

SNP and INDEL detection was only carried out for the genomic re-
gions where an introgression of F. bucharica was present. Alignment
files generated by TopHat for each NIL were indexed and then filtered
to contain reads mapping to the respective F. bucharica introgressed
regions, using Samtools (v1.2.0). Further filtering of the alignment files
included removal of duplicate reads (“samtools rmdup”) and additional
steps as described in the “GATK Best Practices workflow for SNP and
indel calling on RNAseq data” (GATK-3.1.1; https://www.
broadinstitute.org/gatk/guide/article?id =3891). Briefly, after re-
moval of the duplicate reads, sequences overhanging the intronic re-
gions were hard-clipped using 'SplitNCigarReads', mapping qualities
(MAPQs) reassigned using 'PrintReads’ and local INDEL realigned using
'RealignerIndelCreator' and 'IndelRealigner'. Clean and reformatted
alignment files were used as input for variant calling with Samtools
(v1.2.0) using default parameters, except for applying a downgrading of
mapping quality for reads containing excessive mismatches (-C 50).

3. Results

3.1. Variability in the profile of fruit volatile compounds in the strawberry
NIL collection

In order to detect genetic regions affecting wild strawberry aroma,
differences in volatile accumulation were evaluated over two years in
ripe fruit of NILs derived from an interspecific Fragaria cross (F. vesca
var. ‘Reine des Vallées’ (RV) as recurrent parent x F. bucharica ‘FDP601’
(FB), as donor parental; Urrutia et al., 2015). Fruits from the RV were
used as a reference for the changes in volatiles observed in the popu-
lation, and fruit from the aromatic white-fruited F. vesca var. Yellow
Wonder (YW) were used as an external control or out-group. Metabolite
profiling by GC-MS analyses and QTL mapping were performed with all
the genotypes that set enough fruit each year, but we only considered
those that were represented by at least three biological replicates in
both years for the statistical analysis (i.e. 25 genotypes, Supplemental
Table 1).

We were able to identify 100 volatile compounds, 96 of which were
unambiguously identified by comparison of both retention time and
mass spectra with those of commercial standards run under the same
conditions, whilst the remaining four compounds were tentatively
identified based on their mass spectra (these are marked with a T at the
end of the chemical name, see Table 1). The unequivocally identified
volatile compounds were 11 alcohols, 16 aldehydes, 46 esters, four
furans, 14 ketones, eight terpenoids and one lactone, and include most
of the compounds described in the literature as contributing to straw-
berry aroma (Schieberle and Hofmann, 1997; Ulrich et al., 1997, 2007).
Here we refer to them as ‘key volatile compounds’ (KVCs), and have
marked them with an arrow symbol in Table 1. KVCs that confer spe-
cific strawberry aroma are 12 esters butyl acetate, butyl butanoate, (E)-
2-hexenyl acetate, ethyl butanoate, ethyl hexanoate, hexyl acetate,
methyl-2-aminobenzoate, methyl butanoate, methyl cinnamate, methyl
hexanoate, myrtenyl acetate and (Z)-3-hexenyl acetate; two aldehydes
(E)-2-hexenal and (Z)-3-hexenal; two furans furaneol and mesifurane;
two terpenoids linalool and nerolidol, and one lactone y-decalactone.

The relative levels (see M & M) for most volatile compounds had
mean ratios around one for RV in both harvests (Table 1) consistent
with the nearly isogenic nature of the NIL collection, which means lines
share much of the common RV genetic background. The variation in-
terval for each volatile (min. and max. ratio) show different ranges of
variation in the NIL indicating that genes involved in accumulation of
the volatile compounds segregated in our NIL collection. More extreme
values were detected for the lower than for the higher ratios, indicating
that, globally, F. bucharica alleles decrease volatile accumulation of
Fragaria berries. Different degrees of variation were detected depending
on the volatile, with decanal (4-fold variation from 0.39 to 1.49 in
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Gotor ey Fig. 1. Hierarchical clustering (HCA) and heatmap of volatile
compounds levels. Ratio values of all studied volatile compounds
per genotype are shown in the heatmap on a blue (negative) to red
(positive) scale. Compounds are numerically codified as specified in

— Table 1. Genotypes include the NILs that were analyzed both years,
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2012) and y-decalactone (10,000-fold variation, ranging from 0.01 to
119.96 in 2013) defining the extremes of the variation range. It is also
noteworthy to mention that nerolidol segregated as a dominant
monogenetic trait in our population, with the F. bucharica alleles con-
ferring the ability to produce nerolidol in the otherwise non-nerolidol
producer F. vesca background (Supplemental Table 1). Dominance of
the F. bucharica nerolidol allele was determined in the F; fruit samples
(hybrid F. vesca RV x F. bucharica), which confirmed their ability to
produce nerolidol (assayed in 2013 only).

3.2. Relations between volatile compounds and NILs

Each NIL had a characteristic volatile profile according to the F.
bucharica introgression, and volatile compounds could be clustered
according to their levels in the different NILs (Fig. 1, Table 1). Volatiles
with similar chemical structure or in the same biosynthetic pathways
tend to be co-regulated and therefore clustered together. Cluster A (16
volatiles) is enriched in long carboxylesters, particularly in octyl-

derived esters. Cluster B (two volatiles) includes (E)-2-hexenyl acetate
and its free alcohol (E)-2-hexen-1-ol. Cluster C (35 volatiles) groups all
the aldehydes (except (E)-2-decenal), and terpenoids (except a-farne-
sene) and most C4 alkyl acetates. Cluster D is divided in two sub-clus-
ters, D1 (7 volatiles) which is enriched in benzenoid-derived volatiles,
including two furans (mesifurane and furaneol), and D2 (40 volatiles),
enriched in esters derived from butanoic and acetic acids, long chain
alcohols and ketones. Compared to F. vesca RV, F. vesca YW presented
quite a different volatile profile which is enriched in esters (clusters A
and D2) and with decreased levels of compounds in clusters B, C and D1
(Fig. 1). The effect of the F. bucharica alleles is obvious in lines with
introgressions at the beginning of LG3 (Fb3:0-8, Fb3:0-15). These lines
are characterized by an over-accumulation of the monoterpenoid lina-
lool (96) and the sesquiterpenoid nerolidol (99), which suggests a more
active terpene synthase allele from F. bucharica associated to this re-
gion. Differences were most prevalent in lines with introgressions in
LG5, indicating that major QTLs for volatile accumulation are located in
LG5. Lines carrying introgressions of F. bucharica in LG7 showed a
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Fig. 2. Cluster network analysis (CNA). Metabolites are represented as nodes colored according to their biosynthetic pathway (if known) or chemical structure as specified by the
legend. Positive (green) and negative (red) correlations with absolute values > |0.5| are shown as links between the nodes. Links representing absolute correlations > |0.8| are wider the

stronger they are and have the maximum color saturation. Absolute correlations < |0.8| are vaguer the weaker they are and have the least width. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

tendency to over-accumulating esters (cluster A) and under-accumu-
lating of aldehydes and terpenoids (cluster C). Mean ratios for all the
samples analyzed each year are provided in Supplemental Table 1.

The patterns of volatile accumulation were quite stable: positive
Pearson's pair-wise significant correlations were detected for 82 of the
100 compounds between 2 years at p-value < 0.05 (75 with an adjusted
p-value < 0.01). This high correlation affected all KVCs except furaneol
and butyl acetate (Table 1).

Compounds belonging to the same biosynthetic pathway tended to
be highly correlated, as can be seen by cluster network analysis (CNA)
in the case of esters and alcohols, fatty acid-derived and phenylalanine-
derived compounds and terpenoids (Fig. 2). Volatiles whose biosyn-
thetic pathways have not been elucidated, were also highly correlated
to other volatile metabolites, which could indicate common regulation.
Individual correlation coefficients and significant values are provided
in Supplemental Table 2.

Variability in volatile levels across the different NIL, RV and YW
fruit samples was also analyzed by principal component analysis (PCA)
(Fig. 3). PCA suggested that variation of most of the volatiles is con-
tinuous, and differences in the aroma pattern between the NILs were
restricted to single or small subsets of metabolites. A closer look to the
PCA shows that NILs samples spread along PC1 according to their in-
trogressed region (Fig. 3A), while PC2 divides the samples again ac-
cording to their genotype but also according to the harvest year, in-
dicating that a higher proportion of the observed variability between
the NILs was due to genotype rather than to environmental factors. This
PCA also indicated that volatile accumulation in NIL with introgres-
sions in LG2 and LG3 were especially susceptible to the environmental
conditions. According to the corresponding loading plots (Fig. 3B), li-
nalool (96), octanal (25) and 6-methyl-5-hepten-2-one (86) together
with most esters and alcohols, were mostly responsible for the

106

variability along PCl. Compounds contributing mostly to variability
across PC2 were Cg lipid derivatives (E)-2-hexenal (17), (E)-2-hexenyl
acetate (43), (E)-2-hexen-1-ol (9) and (Z)-3-hexenal (27), aldehydes (E)-
2-nonenal (18) and (E)-2-heptenal (16), and the terpenoid myrtenol
(97). Among all the samples, YW was the one with the most differ-
entiated volatile profile.

3.3. Genotypic and environmental effect on the accumulation of volatile
compounds

Genotypic (G) and environmental (E) effect on the volatile accu-
mulation was evaluated by analysis of variance (ANOVA) fitting the
model G+E+GxE (years taken as different environments). Several
factor combinations influenced variability depending on the given
compound. G significantly contributed (p-value < 0.05) to variability of
98 out of the 100 studied volatile compounds (Supplemental Table 3).
Among them, 33 compounds were significantly influenced by the three
factors G, E and GxE. Sixteen volatiles were mostly influenced by G and
E but not by the GxE interaction, 33 were influenced by G and GxE but
not by E and, most interestingly, 17 volatile compounds were influ-
enced only by G, including some of the KVCs-like methyl 2-amino-
benzoate, nerolidol, y-decalactone, ethyl butanoate and (Z)-3-hexenal.
Each of the factors also differs in the actual percentage of variability
they account for. In general, genotype has a stronger effect on volatile
variability than the environment (year) or the GxE interaction (Fig. 4;
see also Supplemental Table 3). The G factor accounted for > 50% of
observed variability in 35 compounds (including ten KVCs: 17, 27, 39,
43, 55, 61, 66, 73, 96, 99), but its effect was up to 70% for six volatiles,
including four KVCs ((E)-2-hexenal, (Z)-3-hexenal, (E)-2-hexenyl
acetate and linalool). The E factor was less important and only sur-
passed 20% of the observed variability in the case of five compounds
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coded as specified in Table 1 and colored according to their chemical family as specified in legend. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

(including the KVC mesifurane).

3.4. Volatile QTL analysis

Genetic regions controlling ripe-fruit wild strawberry volatile ac-
cumulation were detected by QTL mapping. A total of 126 QTL were

mapped, 102 of which were stable QTL (detected in two years) and 50
of them were major QTL (stable and explaining > 20% of the varia-
bility and with LOD > 1.8). The QTL corresponded to 81 different
compounds (40 esters, 12 aldehydes, 11 alcohols, eight ketones, seven
terpenoids and three furans). The effect of the F. bucharica alleles on the
F. vesca RV genetic background was positive (producing an increased
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Fig. 4. w2 values. Percentage of the observed variability attributable to each of the factors: genotype (G), environment (E), their interaction (GxE) or to error.

volatile accumulation) in 30 of them and negative (reducing their le-
vels) in 96 of them (Table 2).

Considering the major volatile QTL, 25 corresponded to compounds
that mapped to a single locus. This included nine KVCs (linalool, ner-
olidol, mesifurane, methyl hexanoate, methyl cinnamate, (E)-2-hexenal,
(E)-2-hexenyl acetate, (Z)-3-hexenal and (Z)-3-hexenyl acetate), and
three compounds mapped to two major QTL (the KVCs methyl 2-ami-
nobenzoate, nerol and 3-methyl-2-butenyl acetate: Table 2, Fig. 5).
Genotype had a major effect on most of the volatile compounds for
which major QTL were mapped, but the effect of the environment was
low (Fig. 4). One of the exceptions was mesifurane, which, although
clearly influenced by the environment (38%), the effect of the genotype
(30%) was enough to map a QTL. There were also some compounds,
mainly lipid derivatives including aldehydes (octanal, nonanal, de-
canal, (E)-2-octenal, (E)-2-nonenal and (E)-2-decenal), alcohols (1-
penten-3-ol, 1-hexanol and 2-heptanol) and ketones (1-penten-3-one, 2-
pentanone and 2-nonanone), that only resulted in QTLs that could be
mapped in a single year and therefore were classified as not stable. Most
of these compounds were highly dependent on the environment, with a
low correlation between harvests.

Co-localized QTL may indicate co-regulated compounds. Two re-
gions in the wild strawberry genome harbor the highest number of
major volatile QTL and QTL for KVCs: LG5 and LG7 (Fig. 5). The central
region of LG5 (LG5:11-35 cM) appears to be very important for the wild
strawberry aroma as it had major QTL (negative) for the accumulation
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of nine esters, five of which were KVCs: methyl 2-aminobenzoate,
myrtenyl acetate, methyl butanoate, butyl butanoate and methyl hex-
anoate. The bottom of LG5 (LG5:50-76 cM) harbors QTLs for fatty acid
derived volatiles associated with green-fresh aroma. Positive QTL were
mapped for (Z2)-3-hexenal and (Z)-3-hexenyl acetate, and negative QTL
for their respective trans-2 isomers (E)-2-hexenal and (E)-2-hexenyl
acetate. This suggests that F. bucharica alleles in this region reduce
conversion of (Z)-3-hexenal (synthesized from linolenic acid) to (E)-2-
hexenal, that would lead to a higher accumulation of (Z)-3- derivatives
and a lower accumulation of (E)-2- derivatives (Granell and Rambla,
2013). In addition, three positive QTL for the terpenoid nerol, the
benzenoid eugenol and the aldehyde (E)-2-heptenal, and one negative
QTL for the alcohol (E)-2-hexen-1-ol are localized in the same region.
The top region in LG7 also seems to be important for wild strawberry
scent as it accumulated 13 major QTL, two of which correspond to key
aroma contributors involved in wild strawberry-like aroma (methyl 2-
aminobenzoate at LG7:0-10 ¢cM) and sweet-caramel notes (mesifurane
at LG7:26-43 cM). Additionally, at the top of LG7:0-10 ¢cM we found
four major QTL for the accumulation of long esters and two major QTL
for monoterpenoids (limonene and myrtenol). Another interesting ge-
netic region for key aroma volatiles is LG3:0-8 cM where two major
QTL for nerolidol and linalool accumulation were mapped. Nerolidol
show an absence (RV alleles) - presence (FB alleles) segregating pattern.
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Table 2

QTL for volatile compounds detected in a F. vesca NIL collection.

Detected QTL listed by compound's alphabetical order. The position of the QTL (LG number followed by the start and end position in cM), the positive (up) or negative (down) effect of
the QTL over the metabolite's ratio compared with F. vesca RV, the NIL harboring the shorter F. bucharica introgression (in ¢cM) that includes the QTL, the results of the t-test (corrected p-
value) and interval mapping analysis (LOD score), the percentage of variance explained by the QTL regarding the NIL collection and the stability of the QTL (detected in 1 or 2 harvests)
are provided.
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KvC Compound direction qtl (cM) shorter NIL t-test (corrected p.value) LOD % explained variance stable
(E)-2-decenal down LG7:0-26 Fb7:0-27 < 0,05 4.64 46% 1
(E)-2-decenal down LG7:27-59 Fb7:0-59 < 0,05 6.14 56% 1
(E)-2-heptenal down LG7:0-10 Fb7:0-10 < 0,05 2.10 25% 1
(E)-2-heptenal up LG5:50-76 Fb5:50-76 < 0,05 15.17 46-87% 2
(E)-2-hexen-1-0l down LG5:50-76 Fb5:50-76 < 0,05 15.66 63-88% 2

— (E)-2-hexenal down LG5:50-76 Fb5:50-76 < 0,05 16.04 74-88% 2

— (E)-2-hexenyl acetate down LG5:50-76 Fb5:50-76 < 0,05 16.75 82-89% 2
(E)-2-nonenal down LG5:50-76 Fb5:50-76 < 0,05 4.59 46% 1
(E)-2-octenal down LG7:52-59 Fb7:52-59 < 0,05 2.61 30% 1
(E)-2-pentenal down LG7:0-10 Fb7:0-10 < 0,05 2.91 30-32% 2

- (Z)-3-hexenal up LG5:50-76 Fb5:50-76 < 0,05 14.76 58-86% 2

— (Z)-3-hexenyl acetate up LG5:50-76 Fb5:50-76 < 0,05 5.68 44-53% 2
1-decanol down LG5:0-11 Fb5:0-11 < 0,05 1.86 16-22% 2
1-decanol down LG3:8-15 Fb3:0-15 < 0,05 < 1,80 2-5% 2
1-decanol down LG4:20-44 Fb4:0-44 < 0,05 < 1,80 1-5% 2
1-hexanol up LG5:50-76 Fb5:50-76 < 0,05 1.99 23% 1
1-methylbutyl butanoate down LG5:11-35 Fb5:0-35 < 0,05 < 1,80 10-11% 2
1-methylbutyl butanoate down LG7:0-10 Fb7:0-10 < 0,05 < 1,80 2-3% 2
1-methylhexyl acetate down LG4:9-44 Fb4:0-44 < 0,05 2.68 30% 1
1-methyloctyl butanoate down LG2:0-30 Fb2:0-30 < 0,05 < 1,80 7-13% 2
1-methyloctyl butanoate down LG5:11-35 Fb5:0-35 < 0,05 < 1,80 17-21% 2
1-octanol down LG1:26-61 Fb1:26-61 < 0,05 < 1,80 1-3% 2
1-octanol down LG2:0-30 Fb2:0-30 < 0,05 < 1,80 10-16% 2
1-octanol down LG5:11-35 Fb5:0-35 < 0,05 < 1,80 5-17% 2
1-penten-3-ol down LG7:0-10 Fb7:0-10 < 0,05 5.25 51% 1
1-penten-3-one down LG7:0-10 Fb7:0-10 < 0,05 3.97 42% 1
2,1-pentenyl furan down LG7:0-10 Fb7:0-10 < 0,05 4.45 36-45% 2
2,3-butanedioldiacetate T up LG7:0-10 Fb7:0-10 < 0,05 2.49 6-28% 2
2-heptanol down LG4:9-44 Fb4:0-44 < 0,05 1.94 23% 1
2-methylbutyl acetate down LG7:43-59 Fb7:43-59 < 0,05 < 1,80 7-8% 2
2-nonanol down LG1:26-61 Fb1:26-61 < 0,05 < 1,80 1% 2
2-nonanol down LG5:11-35 Fb5:0-35 < 0,05 < 1,80 13-15% 2
2-nonanol down LG4:9-44 Fb4:0-44 < 0,05 4.95 48% 1
2-nonanone down LG4:9-44 Fb4:0-44 < 0,05 6.48 58% 1
2-pentanone down LG4:9-44 Fb4:0-44 < 0,05 2.09 25% 1
2-pentylfuran down LG7:0-10 Fb7:0-10 < 0,05 3.16 35% 1
2-pentylfuran up LG2:0-30 Fb2:0-30 < 0,05 3.16 21-35% 2
2-tridecanol T down LG3:8-15 Fb3:0-15 < 0,05 < 1,80 3-17% 2
2-undecanol T down LG4:20-44 Fb4:0-44 < 0,05 < 1,80 1-15% 2
2-undecanol T down LG5:11-35 Fb5:0-35 < 0,05 < 1,80 18-20% 2
2-undecanone T down LG4:20-44 Fb4:0-44 < 0,05 < 1,80 2-31% 2
3-methyl-2-butenyl acetate up LG3:54-94 Fb3:54-94 < 0,05 2.07 11-24% 2
3-methyl-2-butenyl acetate up LG2:39-45 Fb2:39-47 < 0,05 5.54 5-49% 2
3-methylbutyl acetate up LG3:54-94 Fb3:54-94 < 0,05 3.29 36% 1
acetone down LG4:9-44 Fb4:0-44 < 0,05 2.24 26% 1
acetone up LG5:50-76 Fb5:50-76 < 0,05 2.99 33% 1
acetophenone down LG3:54-94 Fb3:54-94 < 0,05 1.80 14-21% 2
acetophenone down LG4:0-20 Fb4:0-20 < 0,05 < 1,80 6-15% 2
acetophenone down LG6:101-101 Fb6:101-101 < 0,05 < 1,80 14-20% 2
acetophenone down LG7:0-10 Fb7:0-10 < 0,05 < 1,80 8-19% 2
a-farnesene down LG4:20-44 Fb4:0-44 < 0,05 2.29 10-26% 2
a-farnesene down LG3:8-15 Fb3:0-15 < 0,05 < 1,80 16% 2
a-ionone down LG1:26-61 Fb1:26-61 < 0,05 3.35 16-36% 2
a-pinene up LG5:0-11 Fb5:0-11 < 0,05 4.20 35-42% 2
benzaldehyde up LG2:0-30 Fb2:0-30 < 0,05 <180 13-19% 2
benzyl acetate down LG7:0-10 Fb7:0-10 < 0,05 2.26 15-26% 2
benzyl acetate down LG6:101-101 Fb6:101-101 < 0,05 < 1,80 18-21% 2
b-ionone down LG1:26-61 Fb1:26-61 < 0,05 2.58 18-30% 2

— butyl acetate up LG1:26-61 Fb1:26-61 < 0,05 < 1,80 6-15% 2

— butyl butanoate down LG5:11-35 Fb5:0-35 < 0,05 3.51 30-38% 2

— butyl butanoate down LG7:0-10 Fb7:0-10 < 0,05 < 1,80 1-2% 2
butyl hexanoate down LG5:0-11 Fb5:0-11 < 0,05 3.26 30-35% 2
butyl hexanoate down LG2:0-30 Fb2:0-30 < 0,05 < 1,80 19-20% 2
butyl hexanoate up LG7:0-10 Fb7:0-10 < 0,05 < 1,80 11-14% 2
cinnamyl acetate down LG3:54-94 Fb3:54-94 < 0,05 < 1,80 5-8% 2
cinnamyl acetate down LG7:0-10 Fb7:0-10 < 0,05 < 1,80 4-6% 2
decanal up LG4:0-20 Fb4:0-20 < 0,05 2.51 29% 1
decyl acetate down LG5:11-35 Fb5:0-35 < 0,05 1.80 20-22% 2
decyl acetate down LG4:20-44 Fb4:0-44 < 0,05 < 1,80 1-16% 2
ethanol up LG7:0-10 Fb7:0-10 < 0,05 3.36 36% 1
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Table 2 (continued)
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KvC Compound direction qtl (cM) shorter NIL t-test (corrected p.value) LOD % explained variance stable
ethyl 2-hexenoate down LG5:11-35 Fb5:0-35 < 0,05 < 1,80 15-18% 2
— ethyl butanoate down LG7:0-10 Fb7:0-10 < 0,05 < 1,80 3-10% 2
ethyl decanoate down LG1:26-61 Fb1:26-61 < 0,05 < 1,80 2-4% 2
ethyl decanoate up LG7:0-10 Fb7:0-10 < 0,05 3.59 10-38% 2
ethyl dodecanoate down LG2:0-30 Fb2:0-30 < 0,05 < 1,80 4-15% 2
ethyl dodecanoate up LG7:0-10 Fb7:0-10 < 0,05 3.57 5-38% 2
— ethyl hexanoate down LG1:26-61 Fb1:26-61 < 0,05 < 1,80 1-3% 2
ethyl methylthioacetate T down LG7:0-10 Fb7:0-10 < 0,05 1.84 1-22% 2
ethyl octanoate down LG1:26-61 Fb1:26-61 < 0,05 < 1,80 1-4% 2
ethyl octanoate up LG7:0-10 Fb7:0-10 < 0,05 3.19 10-35% 2
eugenol up LG5:50-76 Fb5:50-76 < 0,05 4.44 33-45% 2
hexanal up LG3:54-94 Fb3:54-94 < 0,05 <180 6-7% 2
hexyl butanoate down LG5:11-35 Fb5:0-35 < 0,05 4.55 34-46% 2
hexyl butanoate down LG7:0-10 Fb7:0-10 < 0,05 < 1,80 1% 2
hexyl hexanoate down LG2:0-30 Fb2:0-30 < 0,05 3.53 27-38% 2
limonene down LG7:0-10 Fb7:0-10 < 0,05 2.03 21-24% 2
— linalool up LG3:0-8 Fb3:0-8 < 0,05 6.64 54-59% 2
- mesifurane down LG7:26-43 Fb7:26-45 < 0,05 7.27 16-62% 2
— methyl 2-aminobenzoate T down LG7:0-10 Fb7:0-10 < 0,05 2.54 8-29% 2
— methyl 2-aminobenzoate T down LG5:11-35 Fb5:0-35 < 0,05 6.79 33-60% 2
methyl 2-hexenoate down LG5:11-35 Fb5:0-35 < 0,05 3.26 14-35% 2
methyl 3-hydroxyoctanoate T down LG3:8-15 Fb3:0-15 < 0,05 <180 4-6% 2
methyl benzoate down LG3:54-94 Fb3:54-94 < 0,05 < 1,80 10-11% 2
methyl benzoate down LG6:101-101 Fb6:101-101 < 0,05 < 1,80 13-15% 2
methyl benzoate down LG7:0-10 Fb7:0-10 < 0,05 < 1,80 11-21% 2
methyl benzoate up LG1:26-61 Fb1:26-61 < 0,05 < 1,80 14-18% 2
— methyl butanoate down LG5:11-35 Fb5:0-35 < 0,05 2.79 16-31% 2
— methyl butanoate down LG7:0-10 Fb7:0-10 < 0,05 < 1,80 1-19% 2
— methyl cinnamate T up LG2:0-30 Fb2:0-30 < 0,05 2.81 18-32% 2
methyl decanoate down LG5:0-11 Fb5:0-11 < 0,05 2.49 24-28% 2
methyl decanoate down LG4:9-44 Fb4:0-44 < 0,05 2.71 31% 1
methyl dodecanoate down LG1:26-61 Fb1:26-61 < 0,05 < 1,80 1% 2
methyl dodecanoate down LG2:0-30 Fb2:0-30 < 0,05 < 1,80 8-18% 2
methyl dodecanoate down LG5:11-35 Fb5:0-35 < 0,05 < 1,80 13-14% 2
methyl dodecanoate up LG7:0-10 Fb7:0-10 < 0,05 2.80 31% 1
— methyl hexanoate down LG5:11-35 Fb5:0-35 < 0,05 5.54 35-52% 2
methyl octanoate down LG5:0-11 Fb5:0-11 < 0,05 4.83 43-48% 2
myrtenol down LG7:0-10 Fb7:0-10 < 0,05 4.32 8-44% 2
myrtenol down LG3:8-15 Fb3:0-15 < 0,05 < 1,80 2-7% 2
myrtenol up LG5:50-76 Fb5:50-76 < 0,05 6.71 60% 1
— myrtenyl acetate down LG5:11-35 Fb5:0-35 < 0,05 4.67 45-47% 2
i myrtenyl acetate down LG6:101-101 Fb6:101-101 < 0,05 <180 1% 2
nerol down LG4:9-20 Fb4:0-20 < 0,05 4.40 17-45% 2
nerol down LG7:43-59 Fb7:43-59 < 0,05 < 1,80 7-11% 2
nerol up LG5:50-76 Fb5:50-76 < 0,05 4.33 38-44% 2
— nerolidol up LG3:0-8 Fb3:0-8 < 0,05 22.38 76-95% 2
nonanal down LG7:43-59 Fb7:43-59 < 0,05 5.16 50% 1
octanal down LG7:43-59 Fb7:43-59 < 0,05 2.85 32% 1
octyl acetate down LG5:11-35 Fb5:0-35 < 0,05 2.40 25-27% 2
octyl butanoate down LG2:0-30 Fb2:0-30 < 0,05 2.11 21-25% 2
octyl hexanoate down LG2:0-30 Fb2:0-30 < 0,05 1.95 21-23% 2
octyl hexanoate down LG1:26-61 Fb1:26-61 < 0,05 < 1,80 1-2% 2
octyl hexanoate down LG5:0-11 Fb5:0-11 < 0,05 < 1,80 13-20% 2
pentyl acetate up LG1:26-61 Fb1:26-61 < 0,05 1.99 8-23% 2
propyl butanoate down LG7:0-10 Fb7:0-10 < 0,05 2.81 5-31% 2
propyl butanoate up LG1:26-61 Fb1:26-61 < 0,05 < 1,80 7-13% 2

3.5. Whole transcriptome analysis of two rich volatile QTL regions

The NILs Fb5:0-35 and Fb7:0-10 (with introgression sizes of 6.51
and 14.20 Mb respectively) carry QTL for key volatile esters in wild
strawberry aroma, namely methyl 2-aminobenzoate but also myrtenyl
acetate, methyl butanoate, butyl butanoate and methyl hexanoate. The
transcriptome of ripe berries from these two NILs were analyzed and
compared with their recurrent parental (RV) transcriptome in order to
identify differences in expression of specific genes that could be linked
to the observed phenotypic changes. Transcriptomes were obtained by
RNAseq approach using three biological replicates (nine samples in
total). A total of 407 million (M) read-pairs were obtained with an
average of 45 M read-pairs per sample (min. 33M, max. 58M). The
quality of raw read pairs was assessed and sequencing adapters and low
quality reads were filtered. A total of 374 M (92%) passed the filter
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cutoff and were kept for further analysis (average of 41.62 M read-pairs
per sample). A high percentage of reads (83-86%) could be mapped to
the reference F. vesca genome v1.1 (Supplemental Table 4). According
to the latest annotation version (Darwish et al., 2015), 73-75% of
mapped reads were located in exons, 9% in introns and the remaining
16-18% in intergenic regions. Differential expression analysis between
the selected NILs (Fb5:0-35 and Fb7:0-10) and the recurrent parental
(RV), showed that the majority of the 31,778 studied genes, 17,906
(56%) were similarly expressed in both NILs and RV. Additionally,
2847 genes were expressed in at least one of the lines, with 388 de-
tected only inFb5:0-35, 663 in Fb7:0-10, and 437 detected only in RV,
while 11,025 (35%) were not expressed in any of the NILs nor in RV
(Fig. 6).

Differential expression analysis revealed 257 differentially ex-
pressed genes (DEGs) between Fb5:0-35 and RV and 442 DEGs between
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Fig. 5. Volatile QTL. Graphical representation of the major QTL mapped. QTL shown were found to be significantly different (corrected p-value < 0.05) from the recurrent parental (F.
vesca RV), in the same direction, in both harvests for all the NILs harboring the introgressed region, and explained around 20% of the variability regarding the NIL collection. QTL names
correspond to the volatile compound affected. Colored bars indicate the biosynthetic pathway (if known) or the chemical structure of the compound as in Fig. 2. The positive or negative
effect of the QTL over the ratio regarding F. vesca RV is represented by the full or empty color bars respectively. For locating the QTL, the LG and position (in cM) of the microsatellites
(SSRs) used for genotyping are given. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fb7:0-10 and RV (DEG significance threshold fixed at p-value = 0.1)
(Table 3, Supplemental Table 5). The large majority of the DEGs were
altered only in one NIL with respect to F. vesca RV. This was expected as
NILs do not share overlapping introgressions. However, there were also
33 genes differentially expressed in both NILs when compared with F.
vesca RV (Fig. 6). Analysis of genome position showed that a high
percentage of the DEGs in each NIL (54% in Fb5:0-35 and 59% in
Fb7:0-10) were located within the boundaries of their introgressed re-
gion, indicating that they are probably acting on cis, that is that the
differences in expression and their effects are likely to be due to allelic

differences of the genes in the region (Fig. 7).
Functional annotation of DEGs resulted in significant blast hits for

around 83% of them. Gene Ontology (GO) categorization for molecular
function and biological process indicated that 48 DEGs were annotated
as involved in metabolic activity (Supplemental Table 6). This suggests
that F. bucharica introgressions are likely to affect fruit metabolism.
In addition, several DEGs were predicted as being involved in
known volatile synthetic pathways in F. vesca (Table 4), such as the
lipoxygenase pathway (13-LOX and 13-HPL pathway) in NIL Fb7:0-10
and terpene synthesis in NIL Fb5:0-35. We carefully selected candidate
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Fig. 6. Venn diagrams. Venn diagram A depicts the number of annotated genes (a2) expressed by each line. Colored ellipses represent analyzed lines (Fb5:0-35, Fb7:0-10 and RV). Venn
diagram B depicts the number of differentially expressed genes detected between each NIL and the recurrent parental (RV). Colored ellipses represent comparisons (NIL vs. RV). Numbers
in intersecting areas indicate that the genes are shared between the lines/comparisons meeting in the area. Non-intersecting areas indicate the number of genes that are specifically
expressed/differentially expressed in a line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Differentially expressed genes (DEG) summary.

Number total, up- and down-regulated DEG obtained with annotation version 2 (a2) for

both contrasting hypothesis (NIL vs. RV).

Table 4
Metabolic pathways affected.

List of known metabolic pathways related to DEG detected in each NIL using
MetGenMAP software.

NIL vs. RV Introgression a2 NIL vs. RV pathway p-value
size (Mb)

DEG blast Up regulated Down Fb5:0-35 glutathione biosynthesis 1.51E-02
homologies regulated Fb5:0-35 B-alanine biosynthesis I 1.58E-02
Fb5:0-35 farnesene biosynthesis 2.22E-02
Fb5:0-35 6.51 257 218 106 151 Fb5:0-35 cis-zeatin biosynthesis 2.26E-02
Fb7:0-10 14.20 442 367 204 234 Fb5:0-35 linalool biosynthesis 3.41E-02
Fb5:0-35 g-glutamyl cycle 4.48E-02
Fb7:0-10 valine degradation I 7.67E-03
genes by combining expression data with the metabolic QTL (Table 5). Fb7:0-10 divinyl ether biosynthesis II (13-LOX) 1.89E-02
The NILs Fb5:50-76 and Fb7:0-10 contain QTL for fatty-acid derived Fb7f0'10 13-LOX and 13-HPL pathway 1.89E-02
N i . ) Fb7:0-10 asparagine degradation I 3.38E-02
volatiles. Differentially expressed lipoxygenases (4) and acyl- Fb7:0-10 homogalacturonan degradation 4.82E-02

transferases (6) were found in Fb7:0-10, and one down-regulated acyl-
transferase was detected in Fb5:0-35. Selected NILs were also found to
harbor several QTL for terpenoids that might be of interest for wild
strawberry aroma (Table 2). A differentially expressed sesquiterpene
synthase was detected in Fb5:0-35 and a terpene synthase in Fb7:0-10
(Table 5).

Several transcription factors (TF) were also differentially expressed
in NIL Fb5:0-35 and Fb7:0-10 with respect to RV. As alterations in TF
can have wide range effects, all of them were considered candidate
genes. A putative MYC2 TF up-regulated in Fb7:0-10 (maker-LG7-snap-
gene-91.103-mRNA-1) is suspected to be associated with terpenoid
biosynthesis as its closest ortholog in A. thaliana, (MYC2_ARATH) has

Fb5:0-35

5o}

. '. I-.,.y.; ‘ T

also been related to sesquiterpene biosynthesis (Hong et al., 2012).
Until now, TF were not related to VOC in fruits.

In addition, it should be mentioned that there were 114 differen-
tially expressed genes whose function could not be assigned by se-
quence similarity. Therefore, we cannot discard these genes may be
involved in the volatile phenotypes (Supplemental Table 5).

3.6. SNPs between NILs Fb5:0-35 and Fb7:0-10

Although none of the accessions used in this work has been

Fb7:0-10

3

Fig. 7. Differentially expressed gene distribution (Manhattan plot). Graphical representation of all genes in their physical position (x-axis), and their associated -1og10 (p-value) from

the differential expression analysis (y-axis).
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Table 5 (continued)

predicted function in reference annotation (al)

blast hit protein description

p-value  p-adjusted blast hit*

log,(fold
change)”

comparison vs. RV gene id"

3-hydroxyisobutyryl-CoA hydrolase 1

HIBC1_ARATH

3.17E-05 2.33E-03

Inf

augustus_masked-LG7-processed-gene-

21.17-mRNA-1

Fb7:0-10

2 Gene id is according to F. vesca annotation version 2 nomenclature.

b Jog2(fold change) values use as reference RV, so negative values indicate down-regulation in NIL and positive values up-regulation in NIL.

¢ Best blast hit found for the DEG predicted proteins. Codes are according to UniProtUK entries.
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Table 6
Polymorphism summary.

Fb5:0-35 Fb7:0-10 total
Introgression cM 35 10
Introgression bp 5.593.948 15.652.556
SNPs vs. RV 6622 10517 17139
Indels vs. RV 191 333 524
total polymorphisms 6813 10850 17663

sequenced, the interspecific nature of the NILs is likely to provide a high
number of polymorphisms between the introgressed regions (from F.
bucharica FDP601) and the recurrent parental (F. vesca var. ‘Reine des
Vallées’). The RNAseq results presented here constitute the first tran-
scriptome for these accessions and therefore the first global view of the
genetic divergence at SNP resolution between them. The transcriptome
of the introgressed region of NIL Fb5:0-35 had 6813 polymorphisms
(6622 SNPs and 191 indels), and Fb7:0-10 10,850 polymorphisms
(10,517 SNPs and 333 indels) with respect to RV (Table 6). A detailed
list of the SNP polymorphisms and position is given in Supplemental
Table 7.

4. Discussion
4.1. Volatile profile particularities of the diploid strawberry

Woodland strawberry (F. vesca) aroma is known to have significant
qualitative and quantitative differences when compared with com-
mercial varieties (F. x ananassa) (Ulrich et al., 2007). F. vesca fruit
produce higher levels of esters and terpenoids and a more intense
aroma, besides the production of specific compounds such as methyl 2-
aminobenzoate (aka methyl anthranilate) that confers the characteristic
‘wild strawberry’ aroma (Ulrich et al., 2007). In this study we profiled
the volatile composition of a NIL collection derived from an inter-spe-
cific cross between F. vesca and F. bucharica (Urrutia et al., 2015). The
genetic background of F. vesca confers stability and homogenicity to the
collection with outstanding organoleptic quality, but the homozygous
introgressions of F. bucharica, an exotic relative of F. vesca, confer im-
portant phenotypic variability that can be used to map QTL for agro-
nomical and metabolic traits (Urrutia et al., 2015, 2016). The alleles of
F. bucharica usually had a negative effect on the volatile compounds, as
there was a decrease in level of most of the volatiles mapped QTL.

The total number of identified volatile compounds was higher in
this F. vesca NIL collection (100) than in previous studies with F. x
ananassa populations (81 in Schwiterman et al. (2014) and 87 in
Zorrilla-Fontanesi et al. (2012)). The F. vesca NIL collection volatile
profiling revealed a very complex composition. One hundred of the
compounds produced were identified, the majority of them being esters
(46%), followed by aldehydes (16%), ketones (14%), alcohols (11%),
and several terpenoids, furans and lactones (13%). These proportions
are in agreement with that described in other studies with octoploid
strawberries (Schwiterman et al., 2014; Zorrilla-Fontanesi et al., 2012).
All the compounds identified in the F. vesca NIL collection have been
previously described in strawberry fruit, and around 20 of them have
been reported to be important for its aroma (Latrasse, 1991; Schieberle
and Hofmann, 1997; Ulrich et al., 1997, 2007).

The identified compounds that were not found in octoploid studies
correspond to esters such as methyl 2-aminobenzoate, methyl acetate,
methyl cinnamate, methyl 3-hydroxyoctanoate, ethyl methylthioace-
tate and 2,3-butanediol diacetate, and to terpenoids such as a-farnesene
and a-pinene (Zorilla-Fontanesi et al., 2012) that might contribute to
the special aroma of wild strawberry. We also identified nerolidol and
linalool segregating within our collection. These compounds have been
reported to be characteristic of octoploid Fragaria species and produced
by a truncated allele of the FaNES gene (Aharoni et al., 2004; Chambers
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et al., 2012). However we found a clear QTL at LG3:0-8 cM (Fig. 5) for
the accumulation of these two compounds that co-locates with the
FaNES gene. The F. vesca RV parental does not produce linalool or
nerolidol, but they were both detected in the hybrid (analyzed only in
2013; Supplemental Table 1). This suggests that the F. bucharica alleles
for the FaNES gene produce linalool and nerolidol. Both parentals in the
NIL collection (F. vesca and F. bucharica), the F; hybrid and the lines in
the collection producing linalool and nerolidol (Fb3:0-8 and Fb3:0-15),
together with a F. x ananassa as a positive control, were genotyped for
FaNES alleles following the method described by Aharoni et al. (2004).
The conclusion from the observed results is that the truncated FaNES
allele is absent in our collection (data not shown). This suggests that
there may be several alleles producing linalool in strawberry and that
some of them may have arisen before octoploidization.

4.2. Volatilome comparison between F. vesca RV and YW

F. vesca YW is a white fruited strawberry known to have a pleasant,
intense fruity aroma with tropical (pineapple-like) notes. Used in this
study as an out-group of the NIL collection, it had a different pattern of
volatile accumulation, enriched in esters and with higher accumulation
ratios than F. vesca RV (Fig. 1). A recent study with the white fruited
octoploid species F. chiloensis, also known for its intense, tropical fruity
aroma, reported that the characteristic tropical fruit aroma came from a
set of six esters, two of which, ethyl hexanoate (49) and hexyl acetate
(52), we detected as associated to F. vesca YW (Fig. 3). The other four
compounds (furfuryl acetate, acetyl acetate, 1-methylethyl dodecanoate
and ethyl tetradecanoate) were not detected under our experimental
conditions. They may be absent in and only detected in other Fragaria
sp. or failed to be detected by our volatile profiling method (Prat et al.,
2014).

4.3. Volatile QTL in strawberry

Significant year to year correlation was detected for most com-
pounds (82 out of 100) although the correlation index and the sig-
nificance threshold varied considerably. The correlation values re-
ported here are higher than those reported for volatile compounds in
other studies (Eduardo et al., 2013). Differences in the relative volatile
accumulation pattern in each NIL in the two studied harvests appear to
be mainly associated to their genotypes (Fig. 4) and to a lower extent to
the environment. This is in contrast to what has been reported in other
studies with octoploid strawberry (Forney et al., 2000; Zorrilla-
Fontanesi et al., 2012) and peach (Prunus persica) (Eduardo et al., 2013;
Sanchez et al., 2014), where the effect of the environment was more
relevant. The special configuration of our mapping population, as near
isogenic lines, may be responsible for such stability, avoiding epistatic
effects among different QTL. The fact that all lines share a common
genetic background, in contrast to other mapping populations where
genetic differences between lines is wider, may highlight the effect of
the genotype, caused by exotic introgressions, and buffer the effect of
the environment over the phenotypic traits, as all lines may respond in
a similar way. In fact, stability of the lines has been previously proved
with a (poly)-phenolic profiling of the NIL collection (Urrutia et al.,
2016), and although the correlation between genotypes according to
volatile profiling is lower, the median of all genotypes is above 0.70.

QTL mapping revealed 50 major stable QTL that accounted for a
high proportion of the variability of 47 compounds, including 14 major
QTL identified for 13 KVCs: (E)-2-hexenal, (Z)-3-hexenal, (E)-2-hexenyl
acetate, (Z)-3-hexenyl acetate, butyl butanoate, methyl-2-amino-
benzoate (2), methyl butanoate, methyl cinnamate, methyl hexanoate,
myrtenyl acetate, mesifurane, linalool and nerolidol. Many of the QTL
cluster in a few genetic regions, suggesting that the compounds are co-
regulated and controlled by a reduced number of loci. LG5 and LG7
seem to be the most determinant regions controlling volatile com-
pounds synthesis as they accumulate the largest number of QTL and
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harbor nine and two major QTL for KVCs, respectively. Some of the
detected QTLs were in agreement with those described by Zorrilla-
Fontanesi et al. (2012) as they co-locate according to synteny studies
(Rousseau-Gueutin et al., 2008; Tennessen et al., 2014). A QTL for
methyl benzoate was located at LG1:26-61 cM in F. vesca and at LGI-
F.1:38 cM in F. x ananassa. A QTL for benzyl acetate was located at
LG7:0-10 cM in F. vesca and at LGVII-F.1¢:9 cM in F. x ananassa. A QTL
for ethyl decanoate was mapped to LG3:8-15 cM for F. vesca, and to
LGIII-F.1:4 ¢cM and LGIII-M.1:8 ¢M in F. x ananassa. A QTL for mesi-
furane was located at LG7:27-43 cM in F. vesca, and to LGVII-F.2:18 cM
and LGVII-M.2:65 cM in F. x ananassa. The latter QTL is associated with
the FaOMT gene responsible for its accumulation that also co-locates
with our QTL (Zorrilla-Fontanesi et al., 2012).

There were also QTLs located previously in different regions in F. x
ananassa and F. vesca and volatile compounds that showed significant
variability in one population and not in the other, highlighting that
different genetic backgrounds and environments can reveal different
genetic traits. As an example of this, we found two QTLs controlling the
accumulation of methyl 2-aminobenzoate, which is characteristic of F.
vesca aroma and was not detected in F. x ananassa. Previous reports
have mapped a QTL for the accumulation of y-decalactone in the
homeolog LGIII-M.2:50-54 cM (Zorrilla-Fontanesi et al., 2012) and a
candidate gene FaFAD1 with an eQTL co-localized (Sanchez-Sevilla
et al., 2014). However, we found no significant QTL for y-decalactone
in our collection. Although data suggests that there might be an in-
crease in the production of this compound in lines with introgressions
at the end of LG5, this increase is not enough to report a significant
effect (Supplemental Table 1). However, this suggests there may be
other genetic regions controlling y-decalactone accumulation in F.
vesca.

Cs compounds from the lipoxygenase pathway and the corre-
sponding acetate esters ((E)-2-hexen-1-ol, (E)-2-hexenal, (E)-2-hexenyl
acetate, (Z2)-3-hexenal and (Z)-3-hexenyl acetate) are commonly de-
scribed as ‘green volatile compounds’ and are usually considered too
variable within genotypes or varieties to be used as discriminative
compounds (Ulrich et al., 1997). However, a recent studies in peach
(Prunus persica) reported stable QTLs for (E)-2-hexenyl acetate and (Z)-
3-hexenyl acetate (Eduardo et al., 2013) and in tomato for (Z)-3-hex-
enal and (E)-2-hexenal (Rambla et al., 2016). Our data revealed a high
year to year correlation between these compounds (Table 1) and QTLs
that co-localize for all of them at LG5:50-76 cM, suggesting that these
compounds were stable and co-regulated under our conditions. By
differential expression analysis of the red ripe fruits it was possible to
highlight genes differentially expressed between the NILs and the re-
current parental RV, that might contribute to the observed QTL. NILs
Fb5:0-35 and Fb7:0-10 are interesting for further studies in fruity and
wild strawberry-like aroma as they harbor QTL for methyl 2-amino-
benzoate and several other esters. Differentially-expressed genes in-
clude terpene synthases and acyl-transferases, which catalyze the main
steps in terpenoid and ester formation, and lipoxygenases, which par-
ticipate in fatty acid degradation and consequently in FA-derived vo-
latiles.

In-depth characterization of the volatiles emitted by ripe strawberry
fruit in a F. vesca NIL mapping collection revealed a complex mixture of
100 compounds, varying in relative abundance across the population
presumably because of the effect of F. bucharica alleles. The high ge-
netic effect on the accumulation of many compounds (35 com-
pounds > 50% G effect) allowed 50 major QTL to be mapped, including
14 QTL for compounds considered of extreme importance for straw-
berry aroma. Some, such as methyl 2-aminobenzoate and mesifurane,
are only rarely found in commercial varieties (F. x ananassa) and are of
great interest for breeding programs. Therefore, here we set the ground
for further studies on the inheritance of the woodland strawberry aroma
that may lead to improved aroma and marketability of new strawberry
varieties. Further studies for positional cloning of the QTLs in combi-
nation with reverse genetics will shed light on the causal genes of the
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