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Abstract: Four studies under preclinical and clinical conditions were performed to evaluate the effi-
cacy of a new trivalent vaccine against Porcine circovirus 2 (PCV-2) infection. The product contained
inactivated PCV-1/PCV-2a (cPCV-2a) and PCV-1/PCV-2b (cPCV-2b) chimeras, plus M. hyopneumoniae
inactivated cell-free antigens, which was administered to piglets in a two-dose regime at 3 days
of age and 3 weeks later. The overall results of preclinical and clinical studies show a significant
reduction in PCV-2 viraemia and faecal excretion, and lower histopathological lymphoid lesions and
PCV-2 immunohistochemistry scores in vaccinated pigs when compared to non-vaccinated ones.
Furthermore, in field trial A, a statistically significant reduction in the incidence of PCV-2-subclinical
infection, an increase in body weight from 16 weeks of age to slaughterhouse and an average daily
weight gain over the whole period (from 3 days of age to slaughterhouse) was detected in the vacci-
nated group when compared to the non-vaccinated one. Circulation of PCV-2a in field trial A, and
PCV-2b plus PCV-2d in field trial B was confirmed by virus sequencing. In conclusion, a double
immunization with a cPCV-2a/cPCV-2b/M. hyopneumoniae vaccine was efficacious against PCV-2
infection by reducing the number of histopathological lymphoid lesions and PCV-2 detection in
tissues, serum, and faeces, as well as reducing losses in productive parameters.

Keywords: swine; porcine circovirus 2; porcine circovirus 2-systemic disease; Mycoplasma hyopneumoniae;
porcine respiratory disease complex; trivalent vaccine; efficacy

1. Introduction

Porcine circovirus 2 (PCV-2) is the causative agent of the so-called Porcine Circovirus
Diseases (PCVD) [1]. PCVD are composed of four main conditions: PCV-2-systemic
disease (PCV-2-SD), PCV-2-subclinical infection (PCV-2-SI), PCV-2-reproductive disease
(PCV-2-RD) and porcine dermatitis and nephropathy syndrome (PDNS) [2]. PCV-2 has
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also been associated with respiratory [3] and enteric [4] diseases, although they have lately
been considered as being part of PCV-2-SD [5,6].

Up to now, nine genotypes of PCV-2 have been proposed (PCV-2a to PCV-2i) [7,8].
PCV-2a, PCV-2b and PCV-2d are distributed worldwide while the other genotypes are
sporadically detected [9]. PCV-2a was the most prevalent genotype during the 1990s, until
PCV-2b became predominant around 2000 and, since 2014–15, PCV-2d has become the
predominant PCV-2 genotype in North America and Europe [10,11].

Vaccination is a very successful and efficacious tool in controlling PCV-2 infections,
and there are numerous commercial PCV-2 vaccines available worldwide [12]. In Europe,
all of them are based on inactivated virus or recombinant subunits based on PCV-2a alone
or a combination of PCV-2a and PCV-2b [10,13,14], being in some cases combined with a
Mycoplasma hyopneumoniae (M. hyopneumoniae) bacterin. This combined vaccine strategy is
frequently preferred as it reduces pig stress and decreases labour cost [15].

The success of commercial PCV-2 vaccines has been endorsed by a reduction in
mortality and cull rates in PCV-2-SD [16], a significant increase in the average daily weight
gain (ADWG) and a reduction in the frequency of co-infections [17–21]. Moreover, a
reduction in PCV-2 viraemia and lymphoid lesions caused by PCV-2 infection has been
also demonstrated [14,17,19]. In the case of a PCV-2-SI scenario, several field trials have
demonstrated that PCV-2 piglet vaccination is able to improve the following production
parameters: ADWG, percentage of runts, body condition and carcass weight [22].

PCV-2 vaccine efficacy in piglets has also been demonstrated in the face of mater-
nally derived antibody (MDA) against PCV-2 [23]. However, the potential interference
on vaccine efficacy produced by MDA has not been demonstrated under normal field
conditions [24–26]. Interestingly, some studies have reported MDA interference with the de-
velopment of a humoral response after vaccination [14,27–30], while others have not [17,20].

The present work aimed to elucidate the efficacy of a novel trivalent vaccine contain-
ing inactivated Porcine Circovirus 1 (PCV-1)/PCV-2a chimera (cPCV-2a), PCV-1/PCV-2b
chimera (cPCV-2b) and M. hyopneumoniae bacterin administered in pigs in a two-dose
regime at 3 days of age and 3 weeks later. For this purpose, four independent preclinical
and clinical studies were performed.

2. Materials and Methods

The preclinical and clinical studies presented in this work were performed indepen-
dently and evaluated by different regulatory agencies. Therefore, some of the analyses
performed used different techniques with different lecture windows.

2.1. Preclinical Studies

The efficacy of the vaccine was evaluated under preclinical conditions in two different
studies, in which seropositive and seronegative pigs were vaccinated and challenged with
either PCV-2a or PCV-2b (Table 1). Preclinical studies were approved by the corresponding
institutional animal care and use committees (IACUC) from Zoetis and RTI-LCC CRO prior
to initiation.

2.1.1. PCV-2a Challenge Study

A total of 90 3-day-old clinically healthy piglets were included in the study. Animals
were allotted to their respective treatment group based on sow serological status. Then, at
study day (SD) -1, PCV-2 S/P ratio (optical density [OD] of sample/OD of positive control
for each Enzyme-Linked ImmunoSorbent Assay [ELISA] plate) values of the piglets were
determined and if animals were not seropositive, they were removed from the study. At
SD0, one group received an experimental vaccine containing an M. hyopneumoniae bacterin
adjuvanted with 10% SP Oil as a control product (representing the non-PCV-2 vaccinated
group, NV group). The other experimental group tested the investigational veterinary
product (V group). The investigational veterinary product (IVP) contained cPCV-2a and
cPCV-2b killed viruses and M. hyopneumoniae bacterin adjuvanted with 10% SP Oil in a total
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volume of 1 mL (equivalent to Fostera Gold® and CircoMax Myco®). The IVP represented
the most-likely herd conditions, in which certain moderate levels of MDA were present at
the time of PCV-2 vaccination.

Table 1. Experimental study design and vaccination schedule of pre-clinical studies.

Experimental
Groups

Pre-Clinical Studies

PCV-2a Challenge PCV-2b Challenge

PCV-2 MDA
(Mean S/P
Ratio ± SE)

at SD0 *

N * NV/V
Administration Challenge Necropsy

PCV-2 MDA
(Mean S/P
Ratio ± SE)

at SD0

N ** NV/V
Administration Challenge Necropsy

NV 0.63 ± 0.01
(seropositive) 45

3 and
24 days old

8 weeks
of age

approx.
(SD52)

10–11
weeks
of age
(SD74)

0.67 ± 0.02
(seropositive) 34

3 and
24 days old

7–8 weeks
of age

(SD49-50)

10–11
weeks
of age

(SD70-72)V 0.64 ± 0.01
(seropositive) 45 0.69 ± 0.02

(seropositive) 35

NV: Control Product (M. hyopneumoniae bacterin only); V: Investigational Veterinary Product; MDA: Maternal
derived antibodies; SD: Study day; SE: Standard Error; N: number of animals included. * Thirteen animals
from NV group and ten animals from V were removed from the study because they were laid on or due to an
unacceptable PCV-2 antibody value in a retrospective piglet serology. ** Seventeen animals from NV group and
fifteen animals from V group were removed from the study because their sow was found dead or due to an
unacceptable PCV-2 antibody value in a retrospective piglet serology.

The pigs were intramuscularly (IM) injected with 1 mL of the control or IVP product
at 3 and 24 days of age, corresponding to SD0 and SD22, respectively. The challenge time
point was determined when the NV mean MDA titre was below S/P 0.2 to ensure that most
of the animals were below the ELISA cut-off (0.5 S/P ratio), ensuring maximal susceptibility
to viral infection. This value was obtained by SD52, and all pigs were challenged with
4 mL: 2 mL via intranasal (IN) route (1 mL per nostril) and 2 mL IM of a PCV-2a isolate.
All pigs were euthanized three weeks after challenge (SD74).

Serum and faecal swabs were collected prior to challenge and twice weekly post-
challenge until necropsy and were tested for PCV-2 viraemia and faecal shedding via
real-time quantitative PCR (qPCR). PCV-2 antibodies were also measured in serum by
ELISA at SD0 and at weekly intervals post-challenge. At necropsy, four lymphoid tissues
(tracheobronchial, mesenteric, inguinal lymph nodes and tonsil) were collected from each
pig and fixed by immersion in 10% buffered formalin and processed for histopathology
and PCV-2 immunohistochemistry (IHC) as indicated in Section 2.3.3.

2.1.2. PCV-2b Challenge Study

The same experimental design indicated above was applied to the preclinical PCV-2b
challenge study. Specifically, a total of 69 pigs were randomly allocated into the abovemen-
tioned two treatment groups and vaccinated at 3 and 24 days of age.

As mentioned in the previous preclinical study, the challenge time point was deter-
mined when the NV mean MDA titre was below S/P 0.2, ensuring maximal susceptibility to
viral infection. This value was obtained around SD49/50 and all pigs were then challenged
with 2 mL IN (1 mL per nostril) and 2 mL IM of a PCV-2b isolate. All pigs were euthanized
three weeks after challenge (around SD71).

Sampling and analyses were performed as described in Section 2.1.1.

2.1.3. PCV-2 Challenge Strains

The PCV-2a isolate 40895, diluted 1:2 in Optimem (Gibco), was used for the PCV-2a
challenge. The final stock material had a viral titer of 106.0 TCID50/mL.

The PCV-2b isolate FD07, diluted 1:2 in Optimem (Gibco), was used for the PCV-2b
challenge. The final challenge material had a viral titer of 104.7 TCID50/mL.
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2.2. Field Trials
2.2.1. Farm Selection

Two different field trials were conducted in two commercial farms located in North-
Eastern Spain. The farms were selected based on the existence of problems with PCVD or a
history of PCVD in the previous two and a half years.

Farm A was a two-site commercial farm. Sites I + II (breeding and gestation + nursery)
had 2660 sows with a weekly farrowing batch system; piglet weaning was performed at
approximately 27 days of age. The sow farm was seropositive against M. hyopneumoniae,
Porcine reproductive and respiratory syndrome virus (PRRSV) and seronegative to Au-
jeszky’s disease virus (ADV). The gilts and sows were crossbred (Duroc × Landrace). The
sow and gilt vaccination farm program included PRRSV, Porcine parvovirus, Erysipelothrix
rhusiopathiae, Swine Influenza Virus (SIV), Actinobacillus pleuropneumoniae and PCV-2 (at
weaning, 6 months of age and post-partum) immunizations. At the fattening facilities, pigs
were vaccinated twice against ADV.

Farm B was a farrow-to-finish commercial farm with 10,500 sows with a weekly far-
rowing batch system; piglet weaning was performed at approximately 25 days of age. The
sow farm was seropositive against M. hyopneumoniae and PRRSV, and seronegative to ADV.
The gilts and sows were of the Pietrain breed. The sow and gilt vaccination farm program
included immunization against PRRSV, SIV, Porcine parvovirus, Erysipelothrix rhusiopathiae,
Escherichia coli, Clostridium perfringens type C, atrophic rhinitis, ADV, M. hyopneumoniae and
PCV-2 (at 3 and 6 weeks of age). The gilts were also vaccinated against PCV-2 at 2.5, 6 and
7 months of age. The piglets were vaccinated against PRRSV before weaning and against
ADV, PRRSV and SIV at fattening.

2.2.2. Study Design

These clinical studies were blinded, randomized and controlled trials. A total of
3973 male and female pigs (1983 V and 1990 NV) were enrolled in these studies (Table 2).

Table 2. Experimental study design and vaccination schedule of clinical studies.

Field Trial Farm Treatment Num. of Animals Doses and Volume Age at Vaccination

Field trial A Farm A
V 1017 2; 1 mL

2–4 and 23–25 days of age
NV 1021 2; 1 mL

Field trial B Farm B
V 966 2; 1 mL

2–5 and 23–25 days of age
NV 969 2; 1 mL

V: Vaccinated (IVP); NV: Non-vaccinated (PBS).

Animals from Farm A (field trial A) came from three different batches and animals
from Farm B (field trial B) came from one single batch. The studied pigs were selected
within each batch during the first three days of life and were randomly distributed (blocked
by gender) in two groups: vaccinated (V) and non-vaccinated (NV).

The pigs were vaccinated twice (two doses) by IM injection (neck muscle) with Circo-
Max Myco® (Zoetis Inc., Lincoln, NE, USA) at 2–5 days and at 23–25 days of age. NV pigs
received 1 mL of phosphate buffer saline (PBS) IM at each vaccine administration timing.
The pigs from each treatment group were housed comingled within the same pens and
barns during the study. Males and females were comingled in the maternity and nursery
phase, but genders were separated by pen at fattening.

General health observation of the animals was carried out daily throughout the study.
Moreover, blood samples from the piglets were collected at six different time points (be-
fore first vaccination and at 7, 11, 16, 20 and 25 weeks of age, approximately) for PCV-2
antibody testing by ELISA and to quantify virus levels by qPCR. Faecal swabs were col-
lected at the same time points (but before vaccination) and tested by qPCR. Body weight
was recorded 3 times during the study: before the first vaccination, at 16 weeks of age
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approximately and before going to the slaughterhouse (around 25 weeks of age). The
number of animals weighed was not the same at each timepoint due to deviations occur-
ring during the study (death of animals or animals not found at the weighing moment)
(Supplementary Materials Table S1); therefore, extra animals not selected at the beginning
but from the same treatment group were weighed and included in the study.

Dead animals or pigs euthanized for welfare reasons from weaning until the slaugh-
terhouse were necropsied to determine the cause of death. Lymphoid samples (tracheo-
bronchial, mesenteric, superficial inguinal lymph nodes and tonsil) for monitoring PCV-2
associated lesions and antigens were collected at each necropsy and fixed by immersion
in 10% buffered formalin and processed for histopathology and PCV-2 IHC as indicated
in Section 2.3.3. Moderate to severe histological lesions together with a moderate or high
amount of PCV-2 antigens in lymphoid tissues were diagnosed as PCV-2-SD. Pathological
analyses were performed in real time, so, when the first PCV-2-SD case was diagnosed,
60 animals (30 animals per treatment group) were randomly selected and necropsied to
obtain lymphoid tissues to assess PCV-2 associated lesions and antigen detection by IHQ.

These clinical studies were approved by the Olot Animal Welfare Committee (ID
PJ023) and carried out according to the Guidelines on Good Clinical Practices [31].

2.2.3. PCV-2 Genotyping

To ascertain the PCV-2 genotype/s circulating in the farms, Cap gene (ORF2) from
19 serum samples with the highest PCV-2 viral load (6.6–8.3 log10 DNA copies/mL) be-
longing to NV groups was sequenced. Total DNA was extracted from serum samples
using the MagMAXTM Pathogen RNA/DNA Kit (Applied Biosystems) following the
manufacturer’s instructions. PCV-2 Cap gene was amplified using the primers PCV-2all_F
(5′ GGGTCTTTAAGATTAAATYC 3′) and PCV-2all_R (5′ ATGACGTATCCAAGGAG 3′),
and the procedure described by Oliver-Ferrando et al. [32] was followed. PCV-2 ampli-
cons were purified with ExoSAP-IT™ (Thermo Fisher Scientific, Vilnius, Lithuania) kit
and sequenced by the Sanger method (BigDye® Terminator v3.1 Cycle Sequencing Kit,
Foster City, CA, USA) with the ABI PRISM 3130xl Genetic Analyzer (Applied Biosystem®,
Foster City, CA, USA) at Servei de Genòmica, Universitat Autònoma de Barcelona (Spain).
The quality of the sequences was checked using the Finch TV program and trimmed with
BioEdit software 7.2.6 (BioEdit, Manchester, UK) [33].

The phylogenetic analysis of the PCV-2 amplicon sequences obtained followed the
proposed classification by Franzo and Segalés [7]. The amplicons of the PCV-2 ORF2 gene
obtained herein were aligned against the representative strains of the proposed PCV-2
genotypes using MAFFT software [34]. A neighbour-joining method using the p-distance
model was used to build the phylogenetic tree with 1000 bootstraps. The phylogenetic tree
was further edited using the iTOL software [35] where bootstrap values higher than 70%
were maintained.

2.3. Laboratory Methods of Preclinical and Field Studies
2.3.1. DNA Extraction and PCV-2 qPCR

DNA from serum and faecal samples collected from preclinical studies were extracted
and tested by a non-commercial in-house qPCR following the procedure described by
Mancera Gracia, et al. [36]. All Ct values detected were reported as positives and no
threshold were applied.

DNA from serum and faecal samples collected from clinical studies was extracted
by using the BioSprint 96 DNA Blood Kit following the manufacturer´s instructions.
PCV-2 DNA quantification was performed as described in Oliver-Ferrando et al. [37]
using a commercial kit (LSI VetMAX Porcine Circovirus Type 2, Life Technologies, Lissieu,
France). The limit of detection (LOD) of the technique in serum samples was 4 × 103 DNA
copies/mL and in faecal swabs was 1 × 104 DNA copies/mL. The limit of quantification
(LOQ) in serum samples and faecal swabs was 1 × 104 DNA copies/mL. qPCR results
were log10 transformed and interpreted as described below:
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Negative results or values below LOD were given a value equal to half of the LOD,
this being 3.3 copies/mL for serum samples and 3.7 copies/mL for faecal swabs.

Values between LOD and LOQ were considered positive and were given a value equal
to LOQ (4.0 for serum samples and faecal swabs).

Values over LOQ were considered positive and were given the log10 qPCR result.

2.3.2. Serology to Detect PCV-2 Antibodies

PCV-2 antibodies from preclinical and clinical studies were detected using a validated
in-house PCV-2 antibody ELISA. The in-house ELISA test procedure consisted of a modified
indirect ELISA based on recombinant baculovirus-expressed PCV-2 capsid protein [38]. The
PCV-2 antigen-coated plate was washed three times using a PBST washing buffer (0.1 M
PBS-pH7.2 and 0.3% Tween 20). The sera were diluted 1:6000 in 5% milk diluent, and 100 µL
of each diluted serum was incubated with positive and negative antigens at 36 ± 2 ◦C for
1 h. Excess antibodies were removed by washing 3 times with PBST buffer. Then, 100 µL of
diluted peroxidase-labelled anti-pig IgG was added to each well and incubated at 36 ± 2 ◦C
for 1 h. After 3 washings, 100 µL of 3,3′,5,5′ tetramethylbenzidine (TMB) substrate was
added and incubated for 20 min at 36 ± 2 ◦C. The OD value was measured at 650 nm and
490 nm using a microplate reader and their difference per tested serum was reported as the
sample/positive control (S/P) ratio (OD sample–OD negative control/OD positive control–
OD negative control). Sera samples with S/P ratio values ≥ 0.5 were considered positive.

2.3.3. Histopathology and PCV-2 IHC

Tissue samples collected at each necropsy (tracheobronchial lymph node, mesenteric
lymph node, superficial inguinal lymph node and tonsil) were fixed by immersion in 10%
buffered formalin. Then, the fixed tissue samples were dehydrated and embedded in
paraffin blocks. From each paraffin block, two consecutive 4 µm thick sections were cut.
One section was stained with haematoxylin-eosin (HE) stain and examined for lesions
compatible with PCV-2, including lymphocyte depletion [LD] and histiocytic replacement
[HR]. The other section was processed by IHC for PCV-2 antigen detection. These lymphoid
samples were scored for microscopic lesions associated to PCV-2 (LD and HR) and the
presence of PCV-2 antigens by IHC [39]. Briefly, LD, HR and the amount of PCV-2 antigen
were scored from 0 (no lesions/no staining) to 3 (severe lesions/widespread antigen
distribution) for each lymphoid tissue collected.

In clinical studies, any pig that died or was euthanized beyond weaning age was
classified as PCV-2-SD or PCV-2-SI, if they complied with the following diagnostic criteria:

1. Presence of at least one of the following clinical signs: wasting, weight loss, paleness of
the skin, dyspnoea, diarrhoea, jaundice and/or inguinal superficial lymphadenopathy
(only applicable to PCV-2-SD cases).

2. LD and/or HR of lymphoid tissues (PCV-2-SI: LD and HR ≤ 1; PCV-2-SD: LD and
HR > 1).

3. PCV-2 in lymphoid tissues (PCV-2-SI: IHC ≤ 1; PCV-2-SD: IHC > 1).

2.4. Statistical Analyses

Statistical analyses were carried out using the software SAS/STAT (User’s Version 9.4,
or higher, SAS Institute, Cary, NC, USA) for both preclinical and field trials. When needed,
a logarithm transformation was applied to the data before statistical analyses were carried
out. Comparisons were performed between the treatment groups (V vs. NV) from each
field trial.

A generalized linear repeated measures mixed model was performed to analyze
the following variables from preclinical and field studies after the corresponding data
transformation in each study: sera and faecal qPCR results, serology and body weight.
When the mixed model did not converge, Fisher’s Exact test was used for analysis.

Linear functions of the least-squares mean for body weights were used to calculate
estimates of the ADWG for each period. Moreover, a Pearson Correlation Coefficient was
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also calculated to evaluate the correlation between PCV-2 antibodies before vaccination
and the ADWG during the whole study.

A generalized linear mixed model was performed to analyze the following variables
from preclinical and field studies after the corresponding data transformation in each study:
ever positive (detected positive on at least one sampling point) for viraemia/shedding,
mortality, LD, HR and IHC results separately, and diagnosis of PCV-2-SD or PCV-SI. When
the mixed model did not converge, Fisher’s Exact test was used for analysis.

The MDA effect on seroconversion due to vaccination in piglets from field trials was
evaluated by calculating a Pearson Correlation Coefficient for the correlation between
PCV-2 antibodies before vaccination and the increase in PCV-2 antibodies at 7 weeks of age
(Delta value) after natural logarithm data transformation.

The significance level (α) was set at p ≤ 0.05 for all statistical analyses.

3. Results
3.1. Preclinical Studies
3.1.1. PCV-2a Challenge Study
Clinical Evaluation

No clinical signs nor mortality were recorded in any studied group.

PCV-2 Antibody Detection

Mean ELISA S/P ratios results obtained during the study are represented in Figure 1A.
The least-square mean of the S/P ratio declined from SD-1 to SD22 in all treatment groups.
There was a significant difference (p < 0.01) in the S/P ratios (NV vs. V groups) on SD43
and SD50. After challenge, S/P ratios in the V group were significantly higher (p ≤ 0.05)
than the NV group on each of the days tested.

PCV-2 Viraemia and Faecal Shedding

All pigs were negative for PCV-2 qPCR prior to challenge. From SD57 through SD74,
viraemia in the V group was significantly lower (p < 0.01) than in the NV (Figure 1B). In
addition, the percentage of ever-viraemic pigs was significantly less (p < 0.01) in the V
group than in the NV group (Table 3).

Table 3. Proportion and percentage of ever-PCV-2-viraemic or ever-PCV-2 faecal-shedding pigs in
PCV-2a and PCV-2b challenge studies.

Group

PCV-2a Challenge Study PCV-2b Challenge Study

Percentage of Ever
Viraemic Pigs

Percentage of Ever
Faecal Shedding Pigs

Percentage of Ever
Viraemic Pigs

Percentage of Ever
Faecal Shedding Pigs

NV 31/32 (96.9%) a 30/32 (93.8%) a 17/17 (100.0%) a 17/17 (100.0%) a

V 1/35 (2.9%) b 19/35 (54.3%) b 7/20 (35.0) b 15/20 (75.0) b

NV: Control Product (M. hyopneumoniae bacterin only); V: Investigational Veterinary Product (IVP). Different
letters indicate significant differences among experimental groups NV and V (p ≤ 0.05).

All pigs were negative for PCV-2 faecal shedding prior to challenge (data not shown).
From SD60 through SD71, faecal shedding in the V group was significantly lower (p < 0.01)
than in the NV group (Figure 1C). The percentage of ever-faecal-shedding pigs was signifi-
cantly lower (p ≤ 0.01) in the V group than in the NV group (Table 3).

PCV-2 Detection in Lymphoid Tissues and Microscopic Lymphoid Lesions

The percentage of pigs with HR (p ≤ 0.01) and LD (p = 0.01) scores and detection of
PCV-2 within lesions by IHC (p = 0.01) in the V group was significantly lower than those of
the NV group (Table 4).
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3.1.2. PCV-2b Challenge Study
Clinical Evaluation

No clinical signs nor mortality were recorded in any studied group.
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Table 4. Histopathology (histiocytic replacement [HR], lymphoid depletion [LD]) and immunohisto-
chemistry [IHC]) results (score > 0) in any of the four lymphoid tissues evaluated (mesenteric lymph
node, inguinal superficial lymph node, tracheobronchial lymph node and tonsil) from the PCV-2a
and PCV-2b challenge studies.

Group
PCV-2a Challenge Study PCV-2b Challenge Study

HR LD IHC HR LD IHC

NV 16/32
(50.0%) a

20/32
(62.5%) a

15/32
(46.9%) a

13/17
(76.50%) a

15/17
(88.2%) a

12/17
(70.6%) a

V 5/35
(14.3%) b

9/35
(25.7%) b

1/35
(2.9%) b

6/20
(30.0) b

12/20
(60.0%) a

3/20
(1.5%) b

NV: Control Product (M. hyopneumoniae bacterin only); V: Investigational Veterinary Product (IVP). Different
letters indicate significant differences among experimental groups (p ≤ 0.05).
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PCV-2 Antibody Detection

The mean PCV-2 ELISA S/P ratio results obtained during the study are represented
in Figure 2A. All piglets in the NV and V groups were PCV-2 serologically positive
(S/P ≥ 0.50) on SD0. Pigs in the V group had significantly higher (p ≤ 0.01) PCV-2 ELISA
S/P ratios after challenge (SD 56/57–SD 70–72) compared to those from the NV group.
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Viraemia and Faecal Shedding

All pigs were negative for PCV-2 viraemia prior to challenge. The V group animals
had a significantly less viral load in serum (p < 0.01) compared to those from the NV group
at SD 56/57 to SD 70–72 (Figure 2B). The percentage of pigs ever-viraemic was significantly
less (p < 0.01) in the V group compared to pigs from the NV group (Table 3).

All pigs were negative for PCV-2 in faecal swabs prior to challenge. The V group had
significantly less (p ≤ 0.01) PCV-2 faecal shedding than the NV group from SD 56/57 to
SD 70–72 (Figure 2C). The percentage of pigs ever-faecal-shedding was significantly lower
(p = 0.05) in the V group compared to the NV one (Table 3).

PCV-2 Detection in Lymphoid Tissues and Microscopic Lymphoid Lesions

The percentage of PCV-2 IHC positive pigs was significantly lower (p ≤ 0.01) in the
group V compared to the NV one. In addition, there was a significantly lower (p = 0.01)
percentage of pigs with HR in the V group compared to the NV group (Table 4). No
significant differences in LD scores were observed between both groups.
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3.2. Field Trials A and B
3.2.1. Clinical Evaluation

Body weight results, ADWG and mortality are represented in Table 5.

Table 5. Mean body weight (kg ± SE), ADWG (kg/day) and mortality for each field trial. Different
letters indicate significant differences among experimental groups (p ≤ 0.05) for each field trial.

Study Group

Body Weight (Kg ± SE) ADWG (Kg/Day) Mortality

<1 WOA
(Vac) 16 WOA 24–27 WOA <1 WOA to

16 WOA
16 WOA to
24–27 WOA

<1 WOA to
24–27 WOA Each Treatment Group Total

Field trial A
V 2.2 ± 1.73 a 56.4 ± 1.73 a 114.3 ± 1.73 a 0.47 a 0.90 a 0.63 a 108/896 (12.1%) 221/1801

(12.3%)NV 2.1 ± 1.74 a 55.0 ± 1.74 b 112.2 ± 1.73 b 0.46 a 0.89 a 0.62 b 113/905 (12.5%)

Field trial B
V 1.5 ± 0.52 a 45.6 ± 0.48 a 103.4 ± 0.47 a 0.39 a 0.72 a 0.53 a 259/806 (32.1%) 565/1652

(34.2%)NV 1.5 ± 0.48 a 44.7 ± 0.45 a 102.4 ± 0.45 a 0.39 a 0.72 a 0.53 a 306/846 (36.2%)

V: Vaccinated; NV: Non-vaccinated; WOA: Weeks of age.

In field trial A, a significantly higher (p ≤ 0.04) body weight was observed in the V
group at 16 and 24–27 weeks of age compared to the NV group. Moreover, the ADWG
was significantly higher (p = 0.02) in the V group animals compared to the NV group ones
during the whole study period.

In field trial B, no statistically significant differences in body weight nor in ADWG
were detected.

It is worth noting that no significant correlation between PCV-2 ELISA S/P ratios
before vaccination and ADWG were detected in the V and NV groups of both field trials.

Moreover, no statistically significant differences were detected in mortality between
treatment groups from each field trial.

According to the macroscopic lesions detected in the necropsy of animals from field
trial B, the high mortality was likely related to an outbreak of Streptococcus suis or Glaesserella
parasuis (no bacteriological investigations were conducted, but those are the most likely
agents for cases of fibrinous polyserositis, fibrinous pericarditis and polyarthritis, as we
observed in a significant number of necropsies).

3.2.2. PCV-2 Viraemia

All tested pigs from both trials (n = 188) were PCV-2 qPCR negative before vaccination.
In field trial A, significantly lower (p ≤ 0.05) viral loads in serum were detected in

the V group pigs from 11 to 25 weeks of age compared to the NV group ones. In addition,
a significantly lower (p ≤ 0.01) percentage of PCV-2 viraemic pigs was detected in the V
group animals at 20 and 25 weeks of age compared to the NV group ones (Figure 3A).
Regarding field trial B, a statistically significant lower (p < 0.01) PCV-2 load in serum was
observed in the V group pigs at 16 and 20 weeks of age compared to the NV group pigs
(Figure 4A).

In addition, the percentage of pigs ever-viraemic (detected positive at least at one
sampling point) in both studies were significantly lower (p < 0.05) in the V group than in
the NV one (Table 6).

Table 6. Proportion and percentage of PCV-2 qPCR positive pigs (>3.3 log10 DNA copies/mL) at least
in one sample point for each experimental group and field trial. Different letters indicate significant
differences among experimental groups (p ≤ 0.05) for each field trial.

Study Group
Proportion (%) of Pigs Detected Viraemic Per Sampling Point Total Proportion (%) of Ever

Viraemic Pigs *<1 WOA (Vac) 7 WOA 11 WOA 16 WOA 20 WOA 25 WOA

Field trial A
V 0/47

(0.0%) a
0/42

(0.0%) a
7/44

(15.9%) a
22/44

(50.0%) a
12/42

(28.6%) a
3/39

(7.7%) a
30/43

(69.8%) a

NV 0/50
(0.0%) a

0/44
(0.0%) a

13/43
(30.2%) a

23/41
(56.1%) a

27/39
(69.2%) b

21/40
(52.5%) b

39/43
(90.7%) b
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Table 6. Cont.

Study Group
Proportion (%) of Pigs Detected Viraemic Per Sampling Point Total Proportion (%) of Ever

Viraemic Pigs *<1 WOA (Vac) 7 WOA 11 WOA 16 WOA 20 WOA 25 WOA

Field trial B
V 0/43

(0.0%) a
0/30

(0.0%) a
14/42

(33.3%) a
25/40

(62.5%) a
17/41

(41.5%) a
5/48

(10.4%) a
33/52

(63.5%) a

NV 0/48
(0.0%) a

0/31
(0.0%) a

15/46
(32.6%) a

42/42
(100%) a

27/37
(73.0%) a

20/53
(37.7%) a

51/65
(78.5%) b

V: Vaccinated; NV: Non-vaccinated; WOA: weeks of age. * Negative animals with a missing value in any of the
time points were excluded from the analysis.
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3.2.3. PCV-2 Faecal Shedding

In field trial A, statistically significantly lower (p < 0.01) PCV-2 loads in faecal swabs
was observed in the V group animals from both studies at 20 and 25 weeks of age compared
to the NV group (Figure 3B).

In field trial B, statistically lower (p = 0.04) PCV-2 faecal shedding in the V group pigs
was also detected at 16 weeks of age compared to the NV group (Figure 4B).

Regarding the percentage of positive faecal swabs detected at least in one sampling
point, no statistical differences were detected in any of the two studies between the V group
pigs (41/44 [93.2%] and 51/57 [89.5%] from field trials A and B, respectively) and the NV
group animals (42/43 [97.7%] and 56/66 [84.8%] from field trials A and B, respectively).

3.2.4. PCV-2 Genotyping

The 19 PCV-2 qPCR-positive samples with the highest viral load (6.6–8.3 log10 DNA
copies/mL), 10 and 9 from field trials A and B, respectively and belonging to the NV groups
from both field trials were sequenced to elucidate the main PCV-2 genotype/s circulating
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in the farms during the study periods (Supplementary Materials Figure S1). In field trial A,
the PCV-2b genotype was found in 6 out of 10 sera analyzed, while PCV-2d was detected
in 2 sera; no sequences were obtained in the 2 other samples. In addition, in field trial B,
genotype PCV-2a was found in 8 out of 9 serum samples, and no sequence was obtained in
1 serum sample. One single genotype was found per sequenced serum.
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Figure 4. Field trial B results: PCV-2 IgG ELISA S/P results (mean ± SE) in serum samples at
different time points (panel A). Treatment comparisons for each gender were performed due to a
significant treatment interaction effect on serological results. Moreover, PCV-2 viraemia evolution
(mean log10 genomic copies/mL ± SE) (panel B) and PCV-2 qPCR results (mean log10 genomic
copies/swab ± SE) in faecal samples (panel C) at different time points are shown. Different letters
indicate significant differences among experimental groups (p ≤ 0.05).

3.2.5. PCV-2 Antibody Detection

No statistically significant differences between treatment groups in mean PCV-2 ELISA
S/P ratios before the time of treatment administration were found in both studies.

In field trial A, piglets from the V group showed higher (p < 0.05) mean PCV-2 ELISA
S/P ratios from 7 until 20 weeks of age compared with those from the NV group (Figure 3C).

In field trial B, the gender had a significant treatment interaction effect on serological
results; therefore, treatment comparisons for each gender were performed. The vaccinated
female pigs showed higher (p ≤ 0.01) PCV-2 ELISA S/P ratios at 16 weeks of age compared
to the NV ones. In contrast, the V group male pigs had significantly lower (p ≤ 0.05) mean
PCV-2 ELISA S/P ratios at 20 and 25 weeks of age compared to the NV group (Figure 4C).

The correlation between PCV-2 ELISA S/P ratios of the V group animals before first
immunization and the increase in PCV-2 antibody titres at 7 weeks of age (Delta value) is
represented in Figure 5. A significantly (p ≤ 0.01) negative correlation between the PCV-2
ELISA S/P ratios at first vaccination timing and 7 weeks of age was detected in the V
groups from both field trials, indicating that the higher the MDA at vaccination time, the
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lower the PCV-2 antibody at 7 weeks of age. No significant correlation was obtained for
the NV groups in both field trials (data not shown).
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Table 7 summarizes the histopathology and IHC results of studied lymphoid tissues
in dead or euthanized pigs during the field trials’ duration.

Table 7. Proportion of animals with histopathology (histiocytic replacement [HR] and lymphoid
depletion [LD]) and immunohistochemistry (IHC) results scores >0 in at least one of the four lymphoid
tissues evaluated (mesenteric lymph node, superficial inguinal lymph node, tracheobronchial lymph
node and tonsil) corresponding to pigs which died or were euthanized during the study.

Study Group HR LD IHC

Field trial A
V 6/81 (7.4%) a 13/81 (16.0%) a 8/81 (9.9%) a

NV 10/91 (11.0%) a 16/91 (17.6%) a 22/91 (24.2%) b

Field trial B*
V 0/172 (0.0%) a 24/171 (14.0%) a 3/192 (1.6%) a

NV 1/220 (1.0%) a 55/221 (24.9%) b 4/241 (1.7%) a

V: Vaccinated; NV: Non-vaccinated. Some tissue samples were not scored by histopathology because the samples
were not evaluable. Different letters indicate significant differences among experimental groups (p ≤ 0.05) within
each field trial.

In field trial A, the percentage of animals diagnosed as PCV-2-SD was 2.2% (2 out
of 91 pigs) in the NV group and 0.0% (0 out of 81 pigs) in the V group. In contrast, a
significantly higher (p = 0.03) proportion of the NV group animals were diagnosed as
PCV-2-SI (20 out of 89 [22.5%]) compared to the V group (8 out of 81 [9.9%]). Regarding
pathological findings, the NV group animals had a significantly higher (p = 0.02) positive
PCV-2 IHC scoring compared to that of the V group ones, but no significant differences for
the rest of the variables among both studied groups were found.

In field trial B, no PCV-2-SD was detected in any of the studied animals, and no
statistical differences in cases of PCV-2-SI were detected between the V and NV groups
(NV: PCV-2-SI was detected in 4 pigs out of 220 dead/euthanized pigs [1.8%] and V:
PCV-2-SI was detected in 3 pigs out of 171 dead/euthanized pigs [1.8%]). Regarding
histopathological findings, a significantly higher (p = 0.01) incidence of LD was detected in
the NV group pigs compared to the V group pigs, but no significant differences for the rest
of the variables among both studied groups were found.

4. Discussion

PCVDs are important diseases in swine production worldwide and, since the last
decade, vaccination is the main tool for disease prevention [40], these being the main
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commercial vaccines available, derived from PCV-2a genotype [40,41]. Although PCV-2
vaccines are responsible for PCVD reduction in pig herds, they do not confer full protection
and do not eliminate virus replication and transmission [10]. Due to this, PCV-2 vaccination
may induce vaccine-escape variants, causing the overall prevalence of PCV-2 positive herds
to become unchangeable [10,40,42], and promoting wild-type strains that can circulate in
a less susceptible population [43]. Moreover, it has been shown that PCV-2 monovalent
vaccines induce protection against a homologous infection but with a lack of full cross-
protection against other PCV-2 genotypes [41,43]. Taken together, a bivalent vaccine
containing PCV-2a and PCV-2b genotypes would be an interesting option to protect the
population against the most clinically relevant PCV-2 genotypes [44]. Hence, the present
work reports the efficacy of the results against PCV-2 infection of a new trivalent vaccine
containing inactivated cPCV-2a, cPCV-2b and M. hyopneumoniae bacterin, administered in
a two-dose regimen. This vaccine is built on a current porcine circovirus, Type 1–Type 2
chimera, inactivated virus and M. Hyopneumoniae bacterin product, also known as Suvaxyn
Combo Circo + MH RTU, with the addition of a PCV-2b capsid protein utilizing the cPCV-2b
construct (CircoMax Myco®, Zoetis Inc., Lincoln, NE, USA), to provide protection against
emerging strains of PCV-2.

The studies presented here were developed independently, these being the preclinical
ones performed in the USA and the clinical ones in the EU. Since the results obtained were
evaluated by different regulatory agencies and by the requirement of each of the agencies,
the data of qPCR were expressed differently in the preclinical and clinical studies. However,
the authors consider that this fact does not alter the interpretation of the overall results
since the comparison between the preclinical and clinical studies was not the objective of
the present article. Moreover, the fact that two different qPCR techniques were used did not
interfere with the global assessment of vaccine efficacy on parameters such as productive,
serological, viraemia, virus excretion and pathological parameters.

In field trial A, a statistically significant greater body weight and ADWG was observed.
Although these differences on body weight were not statistically significant in field trial B,
they show a remarkable tendency for improvement of approximately 0.9 kg live weight
at 16 weeks of age and 1.0 kg at slaughter, which is notably important from a financial
viewpoint [45]. In addition, no correlation between MDA and ADWG was observed in
the V group animals. This result suggests that the ADWG was independent of the MDA
present at the time of vaccination, as described in other studies [17,46]. Moreover, the
global mortality rate from the field studies were lower in the V group piglets than in the NV
group ones, although they were not statistically significant. This could be related to the fact
that the V group and NV group animals were comingled in the same pen/room. In such a
scenario (not frequent under field conditions), the infectious pressure of non-vaccinated
piglets may have hindered the vaccine efficacy [47].

A reduction in the amount of PCV-2 positive cells by IHC and lymphoid tissue le-
sions in the V group animals from preclinical studies was observed. This reduction was
statistically significant for the HR and LD variables of the PCV-2a challenge study and for
the HR one of the PCV-2b challenge study (only numerical differences were noticed for
the LD of the PCV-2b challenge one). These results were corroborated in the field trials,
where the vaccinated pigs with the trivalent vaccine had a lower percentage (although
non-significant) of animals with lymphoid tissue lesions (HR and LD), and a significantly
lower amount of PCV-2 positive cells by IHC, compared to the NV pigs. Based on these
pathological results, the incidences of PCV-2-SD and PCV-2-SI were higher in the NV group,
but only significantly for PCV-2-SI. These findings confirm previous studies, which have
indicated that vaccination reduces microscopic PCV-2-associated lesions and reduces the
amount of PCV-2 antigen [48–51]. In the case of field trial B, the percentage of animals
with LD was significantly higher in the NV group, although no statistically significant
differences were observed in PCV-2-SD nor PCV-2-SI. These subtle differences are probably
due to the low PCV-2 pressure detected at the time of the study performance, showing no
PCVD-compatible clinical signs during this study. However, these results are in agreement
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with those studies reporting that PCV-2 piglet vaccination is effective despite the PCVD
farm status (PCV-2-SD or-PCV-2-SI) [13].

The present work demonstrates the ability of a vaccination in a two-dose regimen
to stimulate the development of IgG in the presence of MDA or, more evidently, subse-
quently after a PCV-2 challenge with different genotypes (in both preclinical studies) or
natural infection (in case of field trial A). Such immunization would result in a reduction
in the PCV-2 loads in serum, faecal excretion, percentage of PCV-2-viraemic pigs (this
stands only for field trial A) and percentages of ever-viraemic pigs. These results are in
concordance with several published experimental studies where animals were infected
with PCV-2 after vaccination at different ages (5 days of age, 10 days of age, 3 and/or
6–7 weeks of age), where a higher PCV-2 antibody response plus a reduction in PCV-2 viral
load [14,15,27,28,49,52–55] and faecal excretion [14,28] were also observed. As indicated
above, no significant differences were detected in the percentage of PCV-2-viraemic pigs
at each of the sampling time points in field trial B (although significant differences were
detected in ever-viraemic pigs at any time point analysis). This result can be explained by
the low PCV-2 natural infection, since in this study no PCV-2-SD was detected and only
PCV-2-SI was observed.

MDAs are essential for the neonate’s immune response, and it is also an important
component that can have an impact on the success of immunization [56]. In the present
work, a PCV-2 antibody response of the vaccine dependent on MDA titres was suggested in
the field studies, since a statistically significant negative correlation was detected between
PCV-2 IgG antibodies before vaccination and PCV-2 IgG antibody evolution up to 7 weeks
of age in the V group animals from both field studies. These results are in line with several
studies in which a clear interference of MDA in vaccine efficacy in terms of seroconversion
has been shown [25,28,29,46,57]. However, a negative MDA effect on humoral immune
response in piglets is suggested to be not related to a negative impact on vaccine efficacy
except for those cases where MDA titres are high (≥8 log2 IPMA antibodies) [26]. In
addition, PCV-2 vaccines induce not only humoral immunity, but also a cellular immune
response [13,30]. Therefore, PCVD protection in the absence of a specific serologic response
can be due to cellular immunity [58], and consequently, the absence of seroconversion after
vaccination in the presence of MDA should not be assessed as any negative indicator for
the effectiveness as it has been observed in some studies [25,28,59–61].

Different PCV-2 genotypes were detected (PCV-2a, PCV-2b and PCV-2d) in the two
commercial farms where field studies were performed. In fact, co-infection of several PCV-2
genotypes in the same farm is not rare [62–64]. Although several experimental studies
have shown cross-protection between the major genotypes worldwide (PCV-2a, PCV-2b
and PCV-2d) [14,40,65–68], a closer epitopic relationship between PCV-2b and PCV-2d than
between PCV-2a and PCV-2d genotypes [10,68,69] has been detected. Although this needs
to be demonstrated at an efficacy level, these data may suggest that PCV2b-based vaccines
could offer better protection against PCV-2d compared to PCV-2a-based vaccines [70]. In
fact, in a recent study by Bandrick et al. [43], animals vaccinated with a cPCV-2a/cPCV-2b
bivalent vaccine showed higher levels of protection compared to PCV-2a and PCV-2b
monovalent vaccines against PCV-2a and PCV-2b challenges. Animals treated with the
bivalent vaccine showed less (although non-significant) PCV-2 shedding in faeces, ever-
shed PCV-2 in their faeces, viraemia and ever-viraemic pigs compared to animals treated
with the monovalent vaccine. These results are in concordance with the new vaccine used
in the present study containing cPCV-2a and cPCV-2b genotypes, therefore expanding the
epitopic repertoire of the vaccine product and potentially inducing a wider protection than
monovalent vaccines against heterologous PCV-2.

5. Conclusions

According to the results of the present preclinical and field studies, a double im-
munization at 3 days of age and 3 weeks later with the novel trivalent cPCV-2a/cPCV-
2b/M. hyopneumoniae vaccine was effective against PCV-2 infection by reducing the number
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of histopathological lymphoid tissue lesions and PCV-2 detection in tissues (IHC), serum
and faeces (qPCR), as well as reducing losses in productive parameters (BW and ADWG).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/vaccines10081234/s1, Table S1: Number of animals en-
rolled per each action and timepoint performed in clinical studies. Figure S1: Phylogenetic tree
derived from PCV-2 capsid protein (ORF2) sequences. Sequences from this study are indicated as
Filed trial A or B plus the sample identification.
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