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Abstract: Multispectral satellite remote sensing imagery, together with appropriate modeling, have
been proven to provide chlorophyll-a maps that are useful to evaluate the suitability of coastal areas
for carrying out shellfish aquaculture. However, current approaches used for chlorophyll-a estimation
in very shallow coastal areas often fail in their accuracy. To overcome this limitation, an algorithm
that provides an accurate estimation of chlorophyll-a concentration in the coastal areas of the Ebro
delta (North Western Mediterranean) using atmospherically corrected Sentinel 2 (S2) remote sensing
reflectances (Rrs) has been calibrated and validated. The derived chlorophyll-a maps created have
been used in a dynamic carrying capacity model that covers areas from very rich waters inside the
embayment to the more oligotrophic waters in the open sea. The use of carrying capacity models is
recommended to evaluate the potential of marine coastal areas for bivalve mollusk aquaculture. In
this context, the depletion of chlorophyll-a is an indicator of negative environmental impact and thus
a continuous monitoring of chlorophyll-a is key. The proposed methodology allows estimation of
chlorophyll-a concentration from Sentinel-2 with an accuracy higher than 70% in most cases. The
carrying capacity and the suitability of the external areas of the Ebro delta have been determined. The
results show that these areas can hold a significant mussel production. The methodology presented
in this study aims to provide a tool to the shellfish aquaculture industry.

Keywords: sentinel-2; aquaculture; carrying capacity; chlorophyll-a; shellfish; bivalves; water quality

1. Introduction

Remote sensing enables the evaluation of the spatial and temporal variability of water
quality worldwide, overcoming the lack of data from new, remote, or large marine areas.
This has led to several applications of remote sensing in bivalve mollusk aquaculture,
including spatial planning [1–5], early detection of harmful algal blooms [6–11], and de-
tection of microbial contamination [12,13]. Among the different water quality parameters
of interest that can be measured by sensors from satellites, chlorophyll-a concentration is
commonly used in bivalve mollusk aquaculture because it is considered the best proxy of
phytoplankton biomass [14], which is one of the ecosystem component Essential Ocean
Variables (EOVs) [15,16]. The retrieval of water quality parameters (such as chlorophyll-a)
using satellite remote sensing imagery and appropriate modelling is still challenging in
coastal waters, especially in case-2 waters [17,18]. Although many approaches have been
proposed, there is not yet any standardized approach. In case-2 waters, inorganic and/or
organic sediments represent an important or dominant contribution to the optical proper-
ties [19], requiring high accuracy and precision in the atmospheric correction algorithms to
successfully retrieve water constituents. Recently, several advances concerning enhanced

Remote Sens. 2022, 14, 5235. https://doi.org/10.3390/rs14205235 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14205235
https://doi.org/10.3390/rs14205235
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2875-1135
https://orcid.org/0000-0001-7321-4825
https://doi.org/10.3390/rs14205235
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14205235?type=check_update&version=2


Remote Sens. 2022, 14, 5235 2 of 21

modelling have been proposed to solve atmospheric correction [20], but their performances
differ depending on the scenario (sun and observation geometry, atmospheric, optical) and
site-specific conditions. The lack of a common approach and performance makes it neces-
sary to continue validating different atmospheric correction approaches as well as water
quality retrieval methods with in situ data accounting for a wide variety of water types
and environmental conditions. Therefore, the estimation of chlorophyll-a concentration in
coastal waters still has some difficulties in comparison to oceanic waters due to the more
complex optical properties and to high spatial variability. Atmospheric correction and the
correction of scale effects are necessary to accurately estimate chlorophyll-a concentration
in coastal waters [21], where the retrieval of chlorophyll-a concentration through remote
sensing has many applications, such as the evaluation of the environmental status of these
water masses [17] or spatial planning for bivalve aquaculture [1].

Global aquaculture production in 2020 reached 17.7 million tons of mollusks, with
bivalve aquaculture accounting for a high percentage of total aquaculture production
in several countries such as New Zealand, France, Spain, republic of Korea, Italy, and
Japan [22], with China being the main producer [23]. Bivalves do not require artificial
feeds; they graze on phytoplankton communities present in marine waters [24]. Bivalve
aquaculture, together with the cultivation of macroalgae and some herbivorous fish species,
utilizes low trophic marine species that can provide alternatives for food production with
lower environmental impacts [25]. Bivalve aquaculture is carried out in coastal waters,
mainly in estuaries and embayments where phytoplankton biomass is higher than in
offshore waters. The global production of bivalves is expected to continue growing [26];
however, seawater temperature in shallow coastal areas is currently reaching thresholds
that are limiting the survival of some bivalve species.

Heat waves have been affecting, in recent years, shellfish species in different geo-
graphical areas such as the Pacific Northwest in 2021 [27,28], the eastern English channel
in 2018 [29], and the coast of California in 2004 [30]. In the Mediterranean Sea, the warm-
ing trend in Sea Surface Temperature (SST) during the period 1992–2020 was 0.038 +/−
0.002 ◦C/year [31]. Marine heat wave (MHW) events in the Mediterranean Sea are increas-
ing in intensity, duration, and frequency [32]. High seawater temperature in shallow coastal
areas during MHW events produces high rates of mortality of Mytilus galloprovincialis [33],
one of the main species in shellfish aquaculture in the Mediterranean Sea. These issues
revealed the need for seeking new shellfish growing areas located in cooler waters, which
requires the assessment of the production potential of new culture areas, with a sustainable
approach. In this context, the coupling of remote sensing data and carrying capacity models
has demonstrated a great potential for monitoring shellfish aquaculture and supporting
management strategies [34,35].

Carrying capacity models are used to determine the total bivalve biomass supported
by a given ecosystem as a function of the water residence time, primary production,
and bivalve clearance rate [36,37]. Among them, the Dynamic Energy Budget (DEB)
theory based on Kooijman [38] has been applied to model shellfish growth [39–42] in
order to evaluate food limitation for different bivalve species such as Macoma balthica,
Mya arenaria, Cerastoderma edule, Mytilus edulis, and Crassostrea gigas [43], and for Mytilus
galloprovincialis [44], and to predict the impact of environmental changes on shellfish
populations [45]. Used alone, or coupled with other biogeochemical [46], ecophysiological,
and box models [47], DEB models have been proven to be a valid methodology to determine
the quality of an area for shellfish aquaculture [34,35]. DEB models allow one to calculate
the amount of energy used for shellfish growth and reproduction through the ingestion of
the available food, thus they benefit from remote sensing estimates [48–52].
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The Ebro delta, located in the western Mediterranean Sea, is a natural protected area
where agriculture, fisheries, aquaculture, and tourism are the main economic activities. The
aquaculture industry in the Ebro delta produces 3400 Tn of mussels and 300 Tn of oysters
per year (average 2010–2021 [53]). Shellfish aquaculture is carried out in the two coastal
embayments located in the northern (Fangar Bay) and the southern (Alfacs Bay) shores.
The hydrodynamics in these embayments is highly sensitive to wind variability, which
affects circulation patterns, water exchange times [54], and phytoplankton dynamics [55].
Drainage channels discharge freshwater from the rice fields into the embayments; the flow
of freshwater is variable during the rice growing season from May to September, and it is
almost negligible during the rest of the year. Shallowness and large water renewal times,
coupled with the exacerbation of MHW events, is limiting the development of aquaculture
in these embayments. Previous studies have focused on estimating chlorophyll-a concen-
tration inside the embayments from remote sensing data (i.e., Sentinel-2 MultiSpectral
imagery), either for monitoring phytoplankton biomass [56], or to evaluate the impact of
coastal storms on water quality [57]. None of them have attempted to model the carrying
capacity of the embayments or to evaluate the suitability of the nearby Mediterranean wa-
ters for shellfish aquaculture. These are crucial topics for the future of shellfish aquaculture
in the region of the Ebro delta and other Mediterranean areas.

This study focuses on the development of a methodology to create, calibrate, and
validate an algorithm that provides an accurate estimation of chlorophyll-a concentration
in the coastal areas of the Ebro delta (NW Mediterranean) using atmospherically corrected
Sentinel 2 (S2) remote sensing reflectances (Rrs) and a tool to calculate the carrying capacity
of the potential new aquaculture areas and to evaluate its suitability. For this purpose, the
DEB model has been implemented using two-year estimates of chlorophyll-a concentration
derived from Sentinel-2 imagery and additional site-specific auxiliary data. The proposed
approach is based on open-source data and open-source software tools. The use of remote
sensing data will help the low trophic aquaculture industry to expand their activities to
new suitable areas.

2. Materials and Methods
2.1. Study Area

The Ebro delta extends 25 km from the mainland and forms two embayments, Alfacs
and Fangar (Figure 1). Fangar Bay, located in the north, has an extension of 12 km2 and
a mean depth of 2 m, it contains 16 × 106 m3 of seawater, and the mouth of the Bay is
1 km wide. Alfacs Bay is in the south, its extension is 50 km2, the mean depth is 4 m, it
contains 200 × 106 m3 of seawater, and its mouth is 3 km wide. Seawater temperature
inside the embayments presents wide fluctuations in comparison to open waters. Both bays
receive freshwater inputs from the agriculture drainage channels, favoring stratification
during calm conditions [58]. The average salinity is similar in both bays: 34.6 in Fangar
Bay and 34.8 in Alfacs. Freshwater inputs are 228 × 106 m3/year and 365 × 106 m3/year in
Fangar and Alfacs, respectively. Water renewal time is approximately 1–2 days in Fangar
and 10 days in Alfacs Bay [58]. Chlorophyll-a concentration increases during wind events
due to horizontal mixing and bottom resuspension [55]. Both embayments currently hold
mussel and oyster production; the location of mussels and oyster rafts is shown in Figure 2.



Remote Sens. 2022, 14, 5235 4 of 21
Remote Sens. 2022, 14, 5235 4 of 23 

Figure 1. Map showing the location of the sampling stations that were visited for in situ measure-
ments and collection of water samples. Sampling stations in the southern area are numbered from 
1 to 10, sampling stations in the northern area are numbered from 11 to 20. 

Figure 2. Map showing the extent of the area of study divided in the area inside (AI, FI) and outside 
the coastal embayments. The external area is divided into different polygons (A1–A6, F1–F6). 
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Figure 1. Map showing the location of the sampling stations that were visited for in situ measurements
and collection of water samples. Sampling stations in the southern area are numbered from 1 to 10,
sampling stations in the northern area are numbered from 11 to 20.
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Figure 2. Map showing the extent of the area of study divided in the area inside (AI, FI) and outside
the coastal embayments. The external area is divided into different polygons (A1–A6, F1–F6).
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2.2. In Situ Measurements

Sampling cruises were conducted, coinciding with a Sentinel-2 (S2) pass when the
weather forecast was favorable. A total of 17 sampling cruises were carried out during the
period 2 September 2020 to 27 October 2021, 9 of them covering the northern area and 8 for
the southern area of the Ebro delta (western Mediterranean). Ten sampling stations were
visited during each cruise, including waters inside and outside the bays. The location of
the 20 sampling stations is shown in Figure 1. At each station, bottom depth, and the Secchi
disk depth (ZSD) were measured; the profiles of temperature and salinity were obtained
using a SeaBird19plus CTD and water samples were taken for chlorophyll-a analysis. Upon
arrival at the laboratory, water samples were filtered through Whatman® glass microfiber
filters, Grade GF/F (0.7 µm) 47 mm, using low vacuum. The filters were maintained at
-80◦C until analysis. Filter contents were extracted in acetone 90%, the absorbance of the
extract was measured in a Shimadzu UV-1800 UV/Visible Scanning Spectrophotometer,
and the chlorophyll-a concentration was calculated using the formula Chlorophyll-a = 11.85
E664 − 1.54 E647 − 0.08 E630 [59].

2.3. Maps of Chlorophyll-a from Sentinel-2

The Sentinel-2 (S2) constellation consists of two satellites (S2A and S2B) operated
by The European Space Agency (ESA). Each satellite has on-board the MultiSpectral
Instrument (S2-MSI). The S2-MSI Level-1 (L1C, Top of atmosphere) imagery includes 13
spectral bands centered at different wavelengths from 443 nm to 2200 nm with different
spatial resolutions (10, 20, and 60 m). All available S2-L1C images between 1 October
2019 and 30 September 2021 were downloaded from the Copernicus Services Data Hub
(https://cophub.copernicus.eu/dhus/#/home, accessed on 14 July 2022). The only orbit
completely covering the study area was orbit #51. Every day the data from this orbit were
available, the four tiles needed to cover the area were downloaded. This amounted to a
total of 560 images (140 images per tile), covering a surface of 100 × 100 km2 for each tile.

Each image was visually checked for clouds and shadows over the region of study,
leading to the rejection of 350 images (62.5%), implying the rejection of 46% of dates with
chlorophyll-a in situ data. Due to project administrative deadlines, only images until
September 2021 were used to accomplish the study.

The pre-processing of S2 imagery was performed through the Graphic Processing
Tool (GTP) of SNAP v8.0 [60] and Rcore 3.6 [61]. For atmospheric correction of S2-MSI
L1C imagery, the Case 2 Regional Coast Colour (C2RCC) and the C2X-COMPLEX (C2XC)
processors (C2-Nets) [62] included in SNAP were applied on all valid S2 images. These
processors are based on a multi-sensor per-pixel artificial neural network (NN) method,
and differ in their training ranges of inherent optical properties [63]. The parametrization
for the atmospheric correction of each image included: (a) pressure (hPa) from NCEP/DOE
Reanalysis II data provided by the NOAA PSL, Boulder, Colorado, USA, from their website
at https://psl.noaa.gov (accessed on 16 July 2022) [64]; (b) atmospheric ozone in Dobson
units (DU) from the Aura OMI NASA dataset [65], downloaded for each location and date
from https://oceancolor.gsfc.nasa.gov/ (accessed on 17 July 2022) [66]. Surface seawater
temperature and salinity were obtained from the sampling cruises. For land/water segmen-
tation, the valid pixel expression was set as a threshold on the short-wave infrared (SWIR)
band of S2-MSI L1C images centered at 1600 nm (B11). The threshold was defined inde-
pendently for each image with the triangle threshold method. From each C2-Net, remote
sensing reflectance (Rrs) of visible and near infrared bands and the pigment absorption
product (apig) were generated. C2-Nets flags, which include codes for quality control of
pixels, were also exported. For C2RCC and C2XC, independently, images from the same
date were merged when more than one tile were available.

A procedure to select match-ups between chlorophyll-a concentration measured from
water samples and S2 Rrs was performed for the two C2-Nets. This procedure involves sev-
eral steps. Firstly a 3 × 3 pixel window, centered at the coordinates of in situ measurements,
was extracted for each date and sampling location, and C2-nets were quality-checked in all

https://cophub.copernicus.eu/dhus/#/home
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extracted pixels by applying the recommended flags [67]. Then, flagged pixels as well as
pixels with negative Rrs at bands B1, B2, B3, and B4 were removed from the analysis, as
recommended by Cui et al. [68]. The number of remaining pixels within each pixel window
was checked; windows with less than 5 remaining pixels were removed from the analysis.
Outliers were defined through Boxplot analysis applied to each available pixel window
and spectral band (B1-B7 and B8A). Finally, the remaining pixel windows with less than
5 valid pixels were removed from the analysis.

A set of band combinations in the form of spectral indices were computed for all
valid Rrs match-ups (Table 1). These spectral indices include visible and red edge S2
spectral bands (B1 to B6; ~443 nm to ~740 nm), exploiting specific chlorophyll-a absorption
peaks in the blue and red spectral regions. The red edge bands are used for mitigating the
effect of absorption by non-algal particles, yellow substances, and backscattering. For each
C2-Net, chlorophyll-a was modelled with all the computed spectral indices and the apig
band. Seventy percent of the data were used for model calibration (cal) and 30% for model
validation (val). The cal/val datasets were generated randomly. Models were developed
for raw and log-transformed Rrs/apig and chlorophyll-a data. Linear, linear piecewise
(1 breakpoint), polynomial (2nd, 3rd, and 4th order), logarithmic, power, and exponential
models were tested. The entire process was iterated 100 times with varying cal/val datasets.
For each model (C2-Net × Band Combination × Type of fitting), performance was evaluated
by means of the following statistics: mean average error (MAE), root mean squared error
(RMSE), average percentage difference (APD), BIAS, and Pearson’s r.

Table 1. Spectral bands and spectral combinations tested for chlorophyll-a estimation.

Bands Combination References Equations

Red to Green ratio (RG) [69] Rrs(B4)/Rrs(B3)
Blue to Green ratio (BG) Based on OC2 [70] Rrs (B2)/Rrs(B3)

Blue to Green ratio 2 (BG2) Based on OC3 [70] max (Rrs (B1), Rrs (B2))/Rrs(B3)
Red Edge 1 to Blue (REB1) [70] Rrs (B5)/Rrs(B2)

Red Edge 1 to Green (REG1) [69] Rrs (B5)/Rrs(B3)
Red Edge 1 to Red (RER) [69,71] Rrs (B5)/Rrs(B4)

Red Edge 2 to Green (REG2) [69] Rrs (B6)/Rrs(B3)
GIT (3 band model) [71] (1/Rrs(B4) − 1/Rrs(B5)) × Rrs(B6)

Normalized Difference Chlorophyll Index (NDCI) [72] (Rrs(B6) − Rrs(B5))/(Rrs(B6) + Rrs(B5))
apig (apig) [73] apig

To generate the maps of chlorophyll-a, all flagged pixels (atmospheric correction
flagging) were removed, as were pixels with negative Rrs in any of the spectral bands of
each valid S2 image processed with the C2-Nets. The best performant model was selected
according to lowest MAE, APD, RMSE, and BIAS, in this order, and it was applied to all
valid images and pixels. Pixels with negative chlorophyll-a values were set to 0 mg/m3 and
pixels with unreliably high chlorophyll-a concentration (>30 mg/m3) were removed. Pixels
corresponding to the mussel farm structures or rafts were masked out using an available
shapefile to mitigate/avoid pixel mixing problems.

2.4. Carrying Capacity Model

For the analysis and extraction of data from the generated images, QGIS 3.24 was
used [74]. The area of interest corresponding to the masked images was divided into 2
different regions inside and outside the two coastal embayments (Figure 2). The studied
area comprises 37.5 km2 inside and 37.8 km2 outside Alfacs Bay (southern area) and 2.7 km2

inside and 19.7 km2 outside Fangar Bay (northern area). The external area was divided
into 12 polygons, 6 outside each embayment (Figure 2). The area inside each polygon was
5.5, 7.5, 7, 6.8, 4.8, 6.1 km2 for A1–A6 and 1.8, 2.5, 2.6, 2.9, 3.8, 6.1 km2 for F1–F6. Monthly
chlorophyll-a concentration was averaged for each area of study, combining the available
images for the period. The external areas were divided into different parts (polygons) to
evaluate the gradient in chlorophyll-a concentration at different distances from the mouth
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of the bay. Each polygon was divided into three parts to evaluate the impact of the distance
to the shore on the chlorophyll-a concentration.

The chlorophyll-a concentration, retrieved from the S2-L1C images treated with the
algorithm calibrated and validated in this study, was used to determine the suitability of
the different areas and their carrying capacity. To determine the suitability of each polygon
for mussel aquaculture, the DEB model was applied. The model allows us to calculate the
amount of energy used for growth and reproduction through the ingestion of the available
food using the version from Rosland et al. [75] and the notation from Kooijman [76]. Mussel
ingestion rate is proportional to the surface of the mussel, expressed as structural volume.

.
Px =

{ .
pXm

}
f Td V

2
3 (1)

f =
χ

χ + χk
(2)

χk =

{ .
pXm

}
V

2
3

Cf CR
(3)

L =
V1/3

δm
(4)

Td =
exp

(
TA
TI

− TA
T

)
1 + exp

(
TAL

T − TAL
TL

)
+ exp

(
TAH
TH

− TAH
T

) (5)

where
.
Px is the ingestion rate; the values used for each parameter were obtained from

van der Veer et al. [77] and are shown in Table 2. Clearance rates (CR) were obtained from
Galimany et al. [78]. The measured in situ seawater temperature (◦C) at 1 m depth was
converted to Kelvin degrees (K). In Equation (2), f is the Michaelis–Menten Equation to
scale the ingestion rate to the food concentrations (X); this term scales the amount of food
ingested as a function of the food (chlorophyll-a) available. In Equation (4), L is mussel
length (cm), where δM is the dimensionless shape coefficient. Td in Equation (5) is the
Arrhenius temperature function. The model (Equations (1)–(5)) was computed in Python.

Table 2. Values used for the DEB model.

Parameter Unit Definition Value{ .
pXm

}
J cm−2 d−1 Maximum Surface area-specific assimilation rate 273

χk mg C m−3 Half saturation coefficient calculated 1

TA K Arrhenius temperature 5800
TI K Reference temperature 289
TL K Lower boundary of tolerance range 275
TH K Upper boundary of tolerance range 296
TAL K Arrhenius temperature for rate of decrease at lower boundary 45,430
TAH K Arrhenius temperature for rate of decrease at upper boundary 31,376
δm Shape coefficient 0.29
V cm3 Bivalve volume 0.06
Cf Jµg−1 chla 0.419

1 Calculated using Formula (3).

In a previous study [79], the DEB model was found to better reflect field observations
of mussel ingestion in Alfacs Bay, in comparison with the Scope for Growth (SFG).

Carrying capacity was calculated by applying the recommendations of the Aquacul-
ture Stewardship Council [80]. This standard provides indicators for a first approach to
characterize the potential of an area. In the present study, the carrying capacity was defined
as the number of rafts/ropes/mussels that can be grown in each area and was calculated as
a function of the food availability measured through the chlorophyll-a concentration and
the renewal time of the water masses. Chlorophyll-a concentration was obtained from the
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S2 images treated with the algorithm in this study, and the renewal time was calculated
using the current speed at the different external areas.

CC(mussels) =

[
Chla(mg)×0.75

Cr( l
h , date)mussels×Chla(mg

l , date) .

]
Tr(h)

(6)

CC(ropes) =
CC(mussels)

rope
(7)

In Formula (6), Tr(h) is the renewal time of the water in each area, Chla(mg) is the
total amount of chlorophyll-a in the whole volume of each area, and Chla

(mg
l
)

is the
chlorophyll-a concentration of each area obtained from the Satellite images.

Chla(mg) = Volume (l)× Chla
(mg

l

)
(8)

Different values of clearance rate, Cr
(

l
h , date

)
mussels

, were applied by selecting the
corresponding values for each time of the year. The percentage of chlorophyll-a available
for the cultivated mussels was assumed to be 0.75, and 0.25 was the remnant percentage.
A standardized length of 3 m per rope that holds 1250 mussels was also used. These
are the usual characteristics of the mussel ropes used in the Ebro delta. For the external
areas, the average renewal times were calculated from the Copernicus Marine Service [81]
using data from the years 2019 to 2021. For all areas, the volume was calculated for 3 m
of depth as standard length of mussel ropes. The renewal times used for the areas inside
the embayments were obtained from the bibliography [82]. We have not included primary
production time because renewal times are short in the external areas.

The following diagram (Figure 3) shows the relation between in situ data, remote
sensing data, and the different models used in this study.
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3. Results
3.1. In Situ Measurements

The results from the in situ measurements in October 2021 were not used for the cali-
bration and validation of the satellite images but are included here to provide a wider view
of the in situ environmental conditions of the area. The average depth of the 16 sampling sta-
tions was 7.7 ± 0.2 m (Mean ± Std. Error) and the range was 3.7–14.8 m. The average Secchi
depth was 3.5 ± 0.2 m (Mean ± Std. Error) and the range was 1.3–10.4 m (Figure S1). The av-
erage chlorophyll-a concentration in the water samples was 2.4 ± 0.1 mg/m3 (Mean ± Std.
Error) and the range was 0.1-8.9 mg/m3 (Figure 4). There was a statistically significant
difference in chlorophyll-a concentration and Secchi disk depth (p ≤ 0.001) between the
interior and the exterior sampling stations from the whole studied area (Kruskal–Wallis
One Way Analysis of Variance on Ranks). In the southern area, there was no statistically
significant difference in the mean values of chlorophyll-a concentration among the different
sampling stations (p = 0.118) and dates (p = 0.251) (Two Way Analysis of Variance). In the
northern area, there was a statistically significant difference (p ≤ 0.001) between sampling
stations and dates.
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Figure 4. Concentration of chlorophyll-a (mg/m3) at the different sampling stations.

The range in seawater temperature was 10.9–28.2 ◦C in the northern area outside
Fangar Bay and 11.7–29.2 ◦C in the southern area outside Alfacs Bay. Minimum values
were registered in January 2020 and maximum values in August 2020 (Figure 5). Higher
temperature is measured in the southern area in comparison to the northern area.
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3.2. Maps of Chlorophyll-a from Sentinel-2

Models performed better with C2XC than with C2RCC, particularly coupled with
band combinations including spectral bands in the blue or green, and red or red edge
regions. The best performance models for each C2-Net and band combinations are shown
in Table 3. The best model for chlorophyll-a estimation was found with the C2XC processor,
applying the REB1 band ratio (see Table 3) with a 2nd polynomial fitting ([chlorophyll-a] =
−0.615 + 10.88 × REB1 + 8.704 × REB12).
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Table 3. Best performing models per C2-Net and spectral band combination.

Bands
Combination C2-Nets FIT 1 MAE

(mg/m3) APD (%) RMSE
(mg/m3)

BIAS
(mg/m3) r

RG C2RCC Pm4 0.736 39.843 1.107 −0.075 0.820
RG C2XC Pm4 0.703 59.572 0.949 0.083 0.870
BG C2RCC Lm 0.726 39.815 1.107 −0.070 0.817
BG C2XC LLPm3 0.734 39.634 1.120 −0.102 0.816

BG2 C2RCC Lm 0.751 59.752 1.013 −0.061 0.850
BG2 C2XC LLPm3 0.734 39.634 1.120 −0.102 0.816

REB1 C2RCC Lm 0.741 39.530 1.101 0.018 0.820
REB1 C2XC Pm2 0.598 36.216 0.887 0.054 0.887
REG1 C2RCC Lm 0.738 38.898 1.097 −0.027 0.820
REG1 C2XC Pm4 0.616 42.844 0.878 −0.022 0.889
RER C2RCC Lm 0.745 51.303 1.090 −0.056 0.825
RER C2XC LLPm4 1.005 73.194 1.428 −0.263 0.682

REG2 C2RCC Lm 0.742 51.294 1.047 0.039 0.839
REG2 C2XC LLPm2 0.669 50.039 0.947 −0.048 0.870
GIT C2RCC Lm 0.748 54.933 1.038 0.019 0.842
GIT C2XC LLPm4 1.052 79.078 1.486 −0.223 0.644

NDCI C2RCC Lm 0.749 42.445 1.104 0.095 0.820
NDCI C2XC Pm4 1.358 113.510 1.880 −0.297 0.251
apig C2RCC Lm 0.753 59.581 1.010 −0.017 0.850
apig C2XC LLPm4 1.064 78.601 1.483 −0.193 0.661

1 Lm: Linear model; PmX: X degree polynomial; LLPmX: Log–Log X degree polynomial.

The calibration and validation plots, as well as the fit between observed and estimated
chlorophyll-a concentration values, are presented in Figure 6.
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Maps of chlorophyll-a concentration from 56 different dates (Figure 7) along the
period of study were generated using the methodology described in Section 2.3. A good
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agreement between estimated and observed chlorophyll-a concentration was observed
within the sampling dates and the dynamic range of in situ data. However, unreliable
high chlorophyll-a concentration was retrieved in some scenarios, such as the image of the
5 February 2020 (Figure 7), captured ~2 weeks after an extreme coastal storm. In those
scenarios, dark brownish waters were visible in the RGB image composite, suggesting
greater total suspended matter concentration and turbidity, leading to more optically
complex waters.
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3.3. Carrying Capacity Model

Monthly averages of chlorophyll-a concentration for the areas AI, A1–A6 together and
FI, F1–F6 together are shown in Figure 8. Higher values of chlorophyll-a concentration
were observed inside the two coastal embayments in comparison to the external area.
The highest values occurred in Fangar Bay during autumn (13.6 mg/m3) and summer
(8.5 mg/m3).
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Figure 8. Monthly chlorophyll-a concentration (Average ± Std. Error), from Sentinel-2 images, inside
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Fangar exterior).

In the north (F1–F6), the maximum averaged chlorophyll-a value per area and date
(13.8 mg/m3) was detected in November 2019 in F1; in the south (A1–A6) it was detected in
A2 in December 2019 (12.1 mg/m3). There are statistical differences between the different
areas (Chi-square = 122, DF = 3, p < 0.001). The differences are between FI vs. AE, FI vs.
FE, FI vs. AI, AI vs. AE, and AI vs. FE (Tukey test p < 0.05), but not between FE vs. AE
(Tukey test p > 0.05). The averaged concentration of chlorophyll-a per date and polygon
outside the embayments is shown in Figure S2. The minimum of the averaged values per
image, external area, and date (0.12 mg/m3) was measured in July 2021 in A6 (southern
area). In the same image, clouds where present in some of the areas, while in other areas of
the same image the chlorophyll-a concentration could be measured. There are statistical
differences between the different polygons (Tukey test p < 0.05); the results of the statistical
analysis are shown in Figure S3. The gradient in chlorophyll-a concentration in the external
areas at different distances from the bay’s mouth can be observed in Figure S4.

In the northern area outside Fangar Bay, apart from the gradient observed in chlorophyll-a
at different distances from the mouth, a second gradient is observed inside each of the
external areas at different distances from the shore, the closest areas to the shore being
the richest in chlorophyll-a (Figure S3). A gradient is also observed in the southern areas,
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but in the opposite way. In polygons A1–A4, the areas closest to the shore contain less
chlorophyll-a than those farther from the shore, except in polygons A5–A6, where the same
pattern observed in the northern area occurs.

Ingestion rates (
.

Px) from October 2019 to September 2021 for the different polygons of
the southern area and from November 2019 to September 2021 for the northern area are
shown in Figure 9. In the external southern area, the mean value of Px was 8.7 ± 0.3 Jd−1

and the range was 1.6–14.2 Jd−1. The highest Px occurred from October 2019 to June 2020,
when the range was 6.8–14.2 Jd−1; it decreased to values ≤ 8 Jd−1 from July to September
2020, increasing in October 2020 to values > 8 Jd−1 until May 2021, and decreasing again
in June to September 2021 to values ≤ 8 Jd−1. In the external northern area, the mean
value of Px was 7.7 ± 3.1 Jd−1 and the range was 1.7–12.5 Jd−1. In this area, the range
was 6–12.5 Jd−1 from November 2019 to June 2020, decreasing to values < 6 Jd−1 from
July to September 2020, increasing in October 2020 to values > 6 Jd−1 until May to June
2021, decreasing another time in July to September 2021. In both the northern and the
southern area, there was a statistically significant difference (p ≤ 0.001; Two Way Analysis
of Variance, General Linear Model) among the values for different dates and polygons.
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The carrying capacity (CC) calculated for each area is shown in Table 4 as the number
of mussel rafts that can be held; a standardized raft in this study contains 1100 ropes of
mussels that are 3 m in length. The renewal time for each area and the clearance rate time
(h) calculated for the number of mussels and the chlorophyll-a stock of the area are also
shown in Table 4. Renewal times are shorter than the clearance rate calculated because
0.75 of the chlorophyll-a stock was selected as available for CC. The renewal time used in
Table 4 is the averaged renewal time for the year in each area. Because the renewal time is
variable over the year, the CC was also modeled for different renewal times (Figure 10). We
can observe that CC tends to stabilize at higher renewal times, depending on the internal
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areas below 50 rafts and the external areas below 200 rafts. The shaded red area in Figure 10
corresponds to the renewal time range described in previous studies and the red line is the
CC calculated for this renewal time. In the external areas we observed the same exponential
decreasing result.

Table 4. Carrying capacity (CC) calculated for each area together with the corresponding surface and
renewal times (Tr) and Clearance rate times. Note that the surface in AI and FI corresponds to the
masked areas not to the whole surface of the embayments.

Area Code Surface (m2) Tr (h) CC (Number of Mussel Rafts) Cr (h)

AI 3.7 × 107 240.5 114 331
A1 5.5 × 106 20.9 194 29
A2 7.5 × 106 16.1 352 19
A3 7 × 106 11.1 478 15
A4 6.8 × 106 10.3 494 14
A5 4.8 × 106 7.3 460 10
A6 6.1 × 106 9.2 437 14
FI 2.7 × 106 24.5 85 64
F1 1.8 × 106 13 107 17
F2 2.5 × 106 15.5 120 21
F3 2.6 × 106 13.8 107 15
F4 2.9 × 106 12.5 174 17
F5 3.8 × 106 11.4 223 17
F6 6.1 × 106 12.9 325 19Remote Sens. 2022, 14, 5235 16 of 23 
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Figure 10. Modeled number of rafts that each area can hold depending on the renewal time (h). The
interior areas (FI, AI) are shown at the top of the image and the external areas (F1–F6, A1–A6) at
the bottom. The horizontal red line represents the carrying capacity (CC) calculated for the average
renewal time in hours (Tr) of the areas (FI, AI). The shaded area in FI, AI corresponds to the average
renewal time of each embayment. The dots on the lines at the bottom of the figure correspond to the
CC calculated for the average renewal time of each external area (F1–F6, A1–A6).
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4. Discussion

The values of in situ Secchi disk depth and chlorophyll-a concentration measured in
this study (2019–2021) differed slightly from those found in a previous study [82] conducted
during the period 1982–1983. The Secchi disk depth (ZSD), at that time, was measured at
some of the same sampling stations used for our study. The values obtained in [82] were
0.7–1.9 m deeper than our measurements when comparing the average values for each
station. The same authors measured chlorophyll-a concentration and found yearly averages
for the inner areas of 3.2 mg/m3 for AI and 3.44 mg/m3 for FI; these values are slightly
lower than those found in our study: 5.2 mg/m3 for AI and 4 mg/m3 for FI. Therefore, the
differences in Secchi disk depth can be partially explained by differences in chlorophyll-a
concentration. Secchi disk depth (ZSD) is influenced by the phytoplankton biomass and
other optical variables such as the colored dissolved organic matter (CDOM) and suspended
particulate matter (SPM). Resuspension of sediments and the brownification of coastal
waters influence ZSD, and therefore its relationship with chlorophyll-a concentration is not
a straight inverse relation. The same authors detected maximum chlorophyll-a values in
June–July (3.5–11 mg/m3) and September–October (25 mg/m3), and values in the range of
1–3.7 mg/m3 for the rest of the year. The maximum chlorophyll-a concentration in water
samples measured in our study was 8.9 mg/m3 in December 2020 (AI). Higher values
were observed from the satellite images. It is important to highlight that the values of
chlorophyll-a retrieved from the Sentinel-2 images for the different polygons located at
different distances from the mouth of the bays reflect the gradients observed in the in situ
measurements of chlorophyll-a concentration.

Different methods exist for atmospheric correction in coastal waters, and some of
them (C2-Nets, iCOR) are available in open-source tools such as SNAP. This feature opens
the door to non-specialized users to generate atmospherically corrected S2 images by
using this tool and following the proposed methodology. The model proposed here for
mapping chlorophyll-a concentration, and the pixels quality control procedure, can also be
implemented using the band-math’s functions provided by this tool.

The proposed methodology allows one to estimate chlorophyll-a concentration from
Sentinel-2 with an accuracy higher than 70% in most cases (Table 3 and Figure 6). The
best performant model was achieved with C2XC, which showed more consistent and
accurate Rrs estimates than C2RCC in prior research [20]. However, empirical algorithms,
such as the one used, can be expected to perform well only inside their range and for
the area they were derived for. They are also limited in their ability to discriminate
between non-unique signals from parameters that may be covariant, for example TSM
and chlorophyll-a concentration [83]. The developed model is less reliable in conditions
of high concentration of TSM and/or CDOM, which may occur after strong winds or
storms (increased water turbulence, sediment resuspension, land runoff), as observed
on 5 February 2020 (Figure 7). In these cases, the selected model tends to overestimate
chlorophyll-a concentration because the red edge reflectance increases at high TSM values
overlapping the absorption of chlorophyll-a in the blue region of the spectrum, which
is also affected by greater CDOM concentration (CDOM strongly absorbs light up to
500 nm) [73,84]. In these cases, other empirical or semi-analytical algorithms may be more
accurate. Further research should focus on the development of a multi-algorithm blending
approach, which has proven to be more suitable across different types of water optical
properties [85], albeit it will involve a more complex procedure. The development of an
algorithm switching-based method requires the accurate definition of the optical water type
pixel by pixel, accounting for the spectral shape, magnitude, and distinctive Rrs spectral
features [86,87] and considering the uncertainty of the Rrs retrieval from C2-Nets across
different optical water types [20]. In addition, in situ data covering all different scenarios
are desirable, which may be difficult to reach due to complex logistics and meteorological
limitations (i.e., cloud coverage), as occurred in our study.

The gradient observed in chlorophyll-a concentration from the inner areas towards
the open sea is also observed in the values of ingestion rate (

.
Px). The values of

.
Px integrate
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the effect of chlorophyll-a concentration and seawater temperature on mussel physiology.
Lower seawater temperature in summer in open waters in comparison to the inner areas
could compensate the effect of having less phytoplankton available in these waters, ob-
taining similar or even better growth when high seawater temperature decreases mussel
filtration rates. When we observe the mean values for the period of study in each area, in
the north, we can see that the gradient decreases from 9.1 Jd−1 to 6.7 Jd−1 from area F1 to
area F5, and it increases slightly to 6.9 Jd−1 in area F6. The gradient is less stepped in the
southern area, from 9.3 Jd−1 in A1 to 8.3 Jd−1 in A6. We can employ the value of

.
Px to rank

the suitability of the different polygons for mussel aquaculture; the most suitable would be
those with the highest

.
Px, which are A1 and F1 followed by A2–5. The less suitable would

be F3–6. We have based our model on the chlorophyll-a concentration measured in each
area. The DEB model reflects well the decrease in food ingestion during summer months
due to limiting seawater temperatures [88]. The use of chlorophyll-a as a proxy does not
consider changes in food quality due, for example, to the presence of certain phytoplankton
species with a different nutritional value. Some authors have detected gaps in DEB model
parametrization and proposed to improve seston characterization [89,90], which should be
tackled in further research.

A shellfish farm may exceed the ecological carrying capacity when the removal of
phytoplankton biomass exceeds the renewal, resulting in a phytoplankton depleted water
mass. In the proposed CC model, the renewal time of each area is shorter than the clearance
rate time, thus complying with the ASC bivalve standard [80] that recommends comparing
how long it takes to clear the body (CT) of water with the renewal time (RT), the ratio
CT/RT should be >1. The same standard recommends that in locations where CT < RT, then
the ratio CT/PPT should be >3. PPT is the number of days required for the replacement
of phytoplankton biomass (PB) in the water body considering phytoplankton growth
(PB/PPP; PPP = phytoplankton primary production). When the clearance rate is higher
than the renewal rate plus the primary production, the body of water is depleted of
phytoplankton and the bivalve stock will have less food available. Other authors suggest
employing the regulation ratio defined as a fraction of the phytoplankton turnover rate
RR = (1/CT)/(1/PT), where PT is the time it takes to renew the phytoplankton stock in an
area [36,91]. We have applied the same formula for CC in the internal and external areas
without considering primary production time. Renewal time in the internal areas is longer
and it would be appropriate to include primary production time in the calculations. There
are already mussel and oyster farms inside the embayments, therefore the chlorophyll-a
concentration measured is affected already by the consumption of the bivalves from these
farms. More complex models are needed to assess, with more detail, the carrying capacity
inside the embayments. Renewal times are not uniform inside the embayments where
hydrodynamic models are coupled with biological models such as the Regional Ocean
Model System (ROMS) coupled to a biogeochemical nutrient-phytoplankton-zooplankton-
detritus model (NPZD) such as in Dabrowski et al. [92]. Hydrodynamical modeling
coupled to ecological modeling has been applied in other geographical areas to decide the
most appropriate locations of the bivalve farms inside an embayment to avoid negative
consequences for the ecosystem [93]. We have shown how small changes in renewal time
affect the carrying capacity of the different water bodies in our study. The standard from
the Aquaculture Stewardship Council [80] recommends to used retention time calculated as
the number of days for tides to flush a volume of water equal to the volume of the area. In
the Mediterranean Sea, tides have low amplitude, and so flushing time has to be calculated
by other means.

The results on the modeled number of rafts in each area show that these external
areas can hold a significant production of mussels in waters that are less impacted by
warm events in summer. Mussel growth in these areas may be slower in comparison to
the embayments due to lower chlorophyll-a concentration. The differences in seawater
temperature measured during this study in summer were 1–2 ◦C for the same day and
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depth between internal and external areas; this small difference may be crucial to reduce
mussel mortality in summer.

5. Conclusions

The proposed methodology can be reproduced using open-source tools such as SNAP
software, enabling end-users to obtain their own maps of chlorophyll-a concentration from
Sentinel-2 images. This methodology allows one to estimate chlorophyll-a concentration
from Sentinel-2 with an accuracy higher than 70% in most cases. The best performant model
was achieved with C2XC for atmospheric correction of S2-MSI L1C imagery. We have
shown that the application of the DEB theory using multispectral remote sensing imagery
allows one to rank the suitability of the different areas for shellfish aquaculture. It also
allows one to determine the periods of the year with favorable and unfavorable conditions
for shellfish growth. The results presented in this study show that the carrying capacity of
the different areas is highly variable depending on the renewal times of the water, which at
the same time are highly variable during the year. Nevertheless, the external areas located
close to the Ebro delta embayments can hold a significant mussel production that would
allow the reduction of mussel mortality during summer months due to the lower seawater
temperature in these areas. This study shows the potential of the combined use of satellite
remote sensing, in situ sampling, and carrying capacity models as a tool for helping the
low trophic aquaculture industry to expand their activities to new suitable areas.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14205235/s1, Figure S1. Secchi depth (m) at the different sampling
stations. Note that the axis of sampling stations is reversed in the graphs showing chlorophyll-
a concentration from Figure 3. Figure S2. Chlorophyll-a concentration, from Sentinel-2 images,
averaged for each polygon and date outside the embayments. Figure S3. Matrix showing the results
of the statistical analysis used to detect differences on the chlorophyll-a concentration, from Sentinel-2
images, averaged for each polygon and date outside the embayments. The squares colored in green
correspond to polygons where statistical significant differences have been found, red color is for
polygons where no differences have been detected, orange is for those polygons where no significant
differences were found although they may exist. Figure S4. Chlorophyll-a concentration, from
Sentinel-2 images, averaged for each of the 3 parts of each polygon outside the embayments, A-C are
areas at different distances from the shore inside each polygon.
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