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Abstract 49 

The contribution of microRNAs (miRNAs) to mRNA post-transcriptional regulation has 50 

often been explored by post hoc selection of downregulated genes and determining 51 

whether they harbor binding sites for miRNAs of interest. This approach, however, does 52 

not discriminate whether these mRNAs are also downregulated at the transcriptional 53 

level. Here, we have characterized the transcriptional and post-transcriptional changes of 54 

mRNA expression in two porcine tissues: gluteus medius muscle of fasted and fed Duroc 55 

gilts and adipose tissue of lean and obese Duroc-Göttingen minipigs. Exon-intron split 56 

analysis (EISA) of RNA-seq data allowed us to identify downregulated mRNAs with high 57 

post-transcriptional signals in fed or obese states, and we assessed whether they harbor 58 

binding sites for upregulated miRNAs in any of these two physiological states. We found 59 

26 downregulated mRNAs with high post-transcriptional signals in the muscle of fed gilts 60 

and 21 of these were predicted targets of upregulated miRNAs also in fed pigs. For 61 

adipose tissue, 44 downregulated mRNAs in obese minipigs displayed high post-62 

transcriptional signals, and 25 of these were predicted targets of miRNAs upregulated in 63 

the obese state. These results suggest that the contribution of miRNAs to mRNA 64 

repression is more prominent in the skeletal muscle system. Finally, we identified several 65 

genes that may play relevant roles in the energy homeostasis of the pig skeletal muscle 66 

(DKK2 and PDK4) and adipose (SESN3 and ESRRG) tissues. By differentiating 67 

transcriptional from post-transcriptional changes in mRNA expression, EISA provides a 68 

valuable view about the regulation of gene expression, complementary to canonical 69 

differential expression analyses. 70 

 71 

Keywords: Exon-intron split analysis, microRNA, pigs, energy homeostasis. 72 

 73 



4 
 

Introduction 74 

The post-transcriptional regulation of gene expression plays a fundamental role towards 75 

shaping fine-tuned biological responses to environmental changes (Schaefke et al. 2018). 76 

Such regulation can take place at multiple levels including splicing, 3’-cleavage and 77 

polyadenylation, decay or translation, and its main effectors are RNA binding proteins 78 

and non-coding RNAs (Schaefke et al. 2018). Of particular importance are microRNAs 79 

(miRNAs), which are primarily engaged in the post-transcriptional control of gene 80 

expression through inhibition of translation and/or degradation of target mRNAs (Bartel, 81 

2018).  82 

Multiple differential expression studies have been performed in pigs during the last 83 

decade (Pérez-Montarelo et al. 2013; Óvilo et al. 2014; Pilcher et al. 2015; Horodyska et 84 

al. 2018; Benítez et al. 2019). One of the main limitations of these studies is that the 85 

transcriptional and post-transcriptional components of gene regulation are not 86 

independently analyzed. This means that genes that are transcriptionally upregulated and 87 

post-transcriptionally downregulated, or vice versa, might not be detected as significantly 88 

differentially expressed. Another disadvantage of this approach is that it does not provide 89 

insights about the causes of the observed downregulation of RNA transcripts. For 90 

instance, studies have typically focused on specific sets of downregulated genes harboring 91 

binding sites for miRNAs, in order to disentangle regulatory functions driven by miRNAs 92 

(Han et al. 2017; Xie et al. 2019; Ali et al. 2021). This approach, however, cannot 93 

distinguish between transcriptional or post-transcriptional repression, which is essential 94 

to understand at which level of the mRNA life-cycle regulation is taking place.  95 

To overcome this important limitation, Gaidatzis et al. (2015) devised the exon-intron 96 

split analysis (EISA), which separates the transcriptional and post-transcriptional 97 

components of gene regulation by comparing the amounts of exonic and intronic reads 98 
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from expressed mRNA transcripts. The main assumption of this method is that intronic 99 

reads are predominantly derived from nascent unprocessed mRNAs or pre-mRNAs, so 100 

they reflect transcriptional changes, while post-transcriptional changes can be inferred 101 

from differences between the levels of the exonic and intronic fractions (Ameur et al. 102 

2011; Gaidatzis et al. 2015). For instance, a gene showing little to no differences in the 103 

number of sequenced intronic reads, but a strong downregulation of exonic reads after a 104 

certain treatment or challenge (nutrition, infection, temperature etc.), could be subjected 105 

to post-transcriptional repression (Gaidatzis et al. 2015; Cursons et al. 2018; Pillman et 106 

al. 2019). Recent developments on this principle have also been applied to infer the 107 

transcriptional fate of cells (La Manno et al. 2018). 108 

The main goal of the present study was to investigate the contribution of miRNAs to post-109 

transcriptional regulatory responses using the EISA methodology, combined with in 110 

silico prediction of miRNA-mRNA interactions and covariation analyses in porcine 111 

skeletal muscle and adipose tissues. 112 

 113 

 114 

Materials and methods 115 

Experimental design, sampling and processing 116 

Two experimental systems were used: 117 

(i) Duroc pigs: Twenty-three gilts were subjected to two fasting/feeding regimes, i.e. 11 118 

gilts (AL-T0) were slaughtered in fasting condition, while 12 gilts (AL-T2) were 119 

slaughtered after 7 h of having access to food (Cardoso et al. 2017; Ballester et al. 2018; 120 

Mármol-Sánchez et al. 2020). Immediately after slaughtering, gluteus medius (GM) 121 

skeletal muscle samples were collected and snap-frozen at -80°C. 122 



6 
 

(ii) Duroc-Göttingen minipig F2 inter-cross: Ten individuals fed ad libitum with divergent 123 

fatness profiles according to their body mass index (BMI, 5 lean and 5 obese) were 124 

selected from the UNIK resource population (Kogelman et al. 2013; Jacobsen et al. 125 

2019). Retroperitoneal adipose tissue was collected at slaughter and mature adipocytes 126 

were subsequently isolated as previously reported (Jacobsen et al. 2019). UNIK minipigs 127 

BMI profiles are detailed in Table S1. 128 

RNA-seq and small RNA-seq expression data generated in the framework of these two 129 

experimental systems have been described previously (Cardoso et al. 2017; Jacobsen et 130 

al. 2019; Mármol-Sánchez et al. 2020). Briefly, sequencing reads from the RNA-seq and 131 

small RNA-seq datasets were trimmed with the Cutadapt software (Martin, 2011). RNA-132 

seq reads were then mapped with the HISAT2 aligner (Kim et al. 2019) using default 133 

parameters. The Bowtie v.1.2.1.1 software (Langmead et al. 2009) was used to align small 134 

RNA-seq reads by considering small sequence reads specifications (bowtie -n 0 -m 20 -k 135 

1 --best). The Sscrofa11.1 porcine reference assembly (Warr et al. 2020) was used for 136 

mapping. 137 

 138 

Exon/Intron quantification 139 

We generated exonic and intronic-specific annotations spanning all available genes by 140 

using the Sscrofa.11.1 v.103 gene annotation (Ensembl repositories: 141 

http://ftp.ensembl.org/pub/release-103/gtf/sus_scrofa/). Overlapping intronic/exonic 142 

regions (10 bp at both ends of introns), as well as singleton positions were removed 143 

(Lawrence et al. 2013). We then used the featureCounts tool (Liao et al. 2014) to 144 

independently quantify exon and intron expression levels for each mRNA encoding gene, 145 

as well as expression levels of mature miRNAs. 146 

 147 

http://ftp.ensembl.org/pub/release-103/gtf/sus_scrofa/
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Differential expression analyses 148 

Canonical differential expression analyses were carried out with the edgeR tool 149 

(Robinson et al. 2010) by considering only the exonic counts of mRNAs and the mature 150 

miRNA expression levels measured in the two experimental systems under study. Only 151 

genes showing average expression values above 1 count-per-million in at least 50% of 152 

animals within each treatment group (AL-T0 and AL-T2 for GM tissue and lean and obese 153 

for adipocyte isolates) were retained for further analyses. Expression filtered raw counts 154 

for exonic mRNA and miRNA reads were normalized with the trimmed mean of M-155 

values normalization (TMM) method (Robinson & Oshlack 2010) and the statistical 156 

significance of mean expression differences was tested with a quasi-likelihood F-test 157 

(Robinson et al. 2010). Multiple hypothesis testing correction was implemented with the 158 

false discovery rate method (Benjamini & Hochberg 1995). Messenger RNAs were 159 

considered to be significantly differentially expressed when the absolute value of the fold-160 

change (FC) was higher than 2 (|FC| > 2) and the q-value < 0.05. Fasting Duroc gilts (AL-161 

T0) as well as UNIK obese minipigs were classified as baseline controls in differential 162 

expression analyses, i.e. any given upregulation represents and overexpression of the 163 

corresponding gene in fed (AL-T2) Duroc gilts or lean UNIK minipigs with respect to 164 

their fasting (AL-T0) and obese counterparts, respectively. 165 

Since changes in the expression of miRNAs are often subtler than those of mRNAs, the 166 

thresholds to consider a miRNA as significantly differentially expressed were set to |FC| 167 

> 1.5 and q-value < 0.05 (Guo et al. 2015) for fasted (AL-T0) vs fed (AL-T2) Duroc gilts. 168 

Given the relatively low statistical significance of miRNA expression changes observed 169 

in obese vs lean UNIK minipigs, we considered, as potential miRNA regulators, those 170 

that were significantly (FC < -1.5; q-value < 0.05) and suggestively (FC > 1.5 and P-171 

value < 0.01) upregulated in lean minipigs.  172 
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 173 

Exon/intron split analysis (EISA). 174 

We applied EISA to differentiate transcriptional from post-transcriptional changes in 175 

mRNA expression in our two experimental systems (muscle and fat). Normalization was 176 

performed independently for exon and intron counts as described by Gaidatzis et al. 177 

(2015). Exonic and intronic gene abundances were subsequently log2 transformed, adding 178 

a pseudo-count of 1 and averaged within each considered treatment group. 179 

Only genes for which both exonic and intronic read counts were successfully quantified 180 

were further considered. Observed differences in each ith gene were expressed as the 181 

increment of exonic/intronic counts in fed (AL-T2) and obese animals with respect to 182 

fasting (AL-T0) and lean animals, respectively. In this way, the increment of intronic and 183 

exonic counts was calculated considering ΔInt = Int2i – Int1i and ΔEx = Ex2i – Ex1i, 184 

respectively. The magnitudes of the transcriptional (Tc) and post-transcriptional (PTc) 185 

changes in mRNA expression were then calculated. The Tc contribution to the observed 186 

counts is explained by ΔInt (Pillman et al. 2019), while PTc can be deduced from ΔEx – 187 

ΔInt. In this way, the significance of Tc scores was assessed as in canonical differential 188 

expression analyses but using the intronic fraction as input. Moreover, we took advantage 189 

of the generalized linear model framework from edgeR tool to assess the significance of 190 

PTc scores by introducing an interaction term between the fraction type (exonic or 191 

intronic) and condition type (fasting AL-T0 vs fed AL-T2 or obese vs lean). Both Tc and 192 

PTc components were z-scored to make ΔEx and ΔInt estimates comparable. Tc and PTc 193 

scores were considered significant when |FC| > 2 and q-value < 0.05. Multiple hypothesis 194 

testing correction was implemented by using the false discovery rate approach (Benjamini 195 

& Hochberg 1995). 196 
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In order to obtain a prioritized list of genes showing high post-transcriptional regulation 197 

signals, the top 5% of expressed genes with the most negative PTc scores were retrieved 198 

(irrespective of their statistical significance after multiple testing correction). From these, 199 

we only focused on genes showing strongly reduced ΔEx values of at least 2-fold in both 200 

experimental systems (i.e. ΔEx < -1 in the log2 scale). All implemented analyses have 201 

been summarized in Fig. S1. A ready-to-use modular pipeline for running EISA is 202 

publicly available at https://github.com/emarmolsanchez/EISAcompR. 203 

 204 

miRNA target prediction 205 

Putative interactions between the seed of expressed miRNAs (2nd-8th 5’ nts) and the 3’-206 

UTRs of expressed mRNAs were predicted on the basis of sequence identity using the 207 

Sscrofa11.1 reference assembly and the seedVicious v1.1 tool (Marco 2018). The 208 

annotated 3’-UTRs longer than 30 nts from porcine mRNAs were retrieved from 209 

http://www.ensembl.org/biomart, while mature porcine miRNA sequences were obtained 210 

from miRBase (Kozomara et al. 2019). Redundant miRNA seeds were removed, and 211 

8mer, 7mer-m8 and 7mer-A1 miRNA-mRNA interactions were taken into account 212 

(Bartel 2018).  213 

Based on Grimson et al. (2007), in silico-predicted miRNA-mRNA interactions matching 214 

any of the following criteria were removed: (i) Binding sites located in 3’-UTRs at less 215 

than 15 nts close to the end of the open reading frame (and the stop codon) or less than 216 

15 nts close to the end of the 3’-UTR and the beginning of the terminal poly(A) tail (E 217 

criterion), (ii) binding sites located in the middle of the 3’-UTR in a range comprising 45-218 

55% of the central region of the non-coding sequence (M criterion), and (iii) binding sites 219 

that lack AU-rich sequences in their immediate upstream and downstream flanking 220 

https://github.com/emarmolsanchez/EISAcompR
http://www.ensembl.org/biomart
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regions comprising 30 nts each (AU criterion). A schematic representation of such criteria 221 

is available at Fig. S2. 222 

Covariation patterns between miRNAs and their predicted mRNA targets were assessed 223 

by computing Spearman’s correlation coefficients (ρ) with the TMM normalized and log2 224 

transformed expression profiles of the exonic fraction of mRNA and miRNA genes. 225 

 226 

miRNA target enrichment analyses 227 

We predicted which downregulated mRNA genes, from those with highly negative post-228 

transcriptional signals, are putatively targeted by at least one of the significantly 229 

upregulated miRNAs. Subsequently, we investigated whether the sets of mRNA genes 230 

identified in this way were enriched in being targets of upregulated miRNAs, compared 231 

to the whole set of expressed mRNAs genes with available 3’-UTRs (control 232 

background). Enrichment analyses were carried out using the Fisher’s exact test in R. 233 

Significance level was set at a nominal P-value < 0.05. 234 

We also tested whether downregulated mRNA genes with highly negative post-235 

transcriptional signals were significantly enriched to be targets of at least one of the top 236 

5% most highly expressed miRNA genes (considering their overall average expression 237 

and excluding significantly upregulated miRNAs), as well as of significantly 238 

downregulated miRNAs. 239 

As an additional randomized control test for enrichment analyses, we generated 100 240 

random sets of 10 expressed mature miRNA genes without seed redundancy. In this way, 241 

we predicted which downregulated mRNA genes, from those with highly negative post-242 

transcriptional signals, were putatively targeted by at least one miRNA from the random 243 

sets defined. The distribution of odds ratios obtained after enrichment tests over each 244 
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random set of miRNAs (N = 100) were then compared with the observed odds ratios 245 

obtained with enrichment analyses using the set of significantly upregulated miRNAs. 246 

The P-value for the significance of the deviation of observed odds ratios against the 247 

bootstrapped odds ratios distribution was defined as: 248 

 𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 1 −  
𝑟+1

𝑘+1
, where r is the number of permuted odds ratios with values 249 

equal or higher than the observed odds ratio, and k is the number of permutations (N = 250 

100). 251 

 252 

Gene covariation network and covariation enrichment score 253 

We used edgeR to identify mRNA genes in the AL-T0 vs AL-T2 and obese vs lean 254 

comparisons showing q-value < 0.05, after multiple testing correction. Then, the 255 

normalized exonic and intronic estimates in the log2 scale obtained from EISA were 256 

independently used to compute Spearman’s correlation coefficients (ρ). Significant 257 

correlations were identified with the Partial Correlation with Information Theory (PCIT) 258 

algorithm (Reverter & Chan 2008) implemented in the pcit R package (Watson-Haigh et 259 

al. 2010). In this way, we calculated a covariation enrichment score (CES), as reported 260 

by Tarbier et al. (2020), to assess the potential contribution of miRNAs to the observed 261 

differences in covariation. This test compares the number of overall significant pairwise 262 

correlations with those obtained when only considering the set of downregulated mRNA 263 

genes with highly negative post-transcriptional signals and putatively targeted by 264 

significantly upregulated miRNAs. Further details about the algorithm used to calculate 265 

the CES values and control tests can be found in Supplementary Methods. Significant 266 

differences among the set of exonic, intronic and control CES values were tested with a 267 

Mann-Whitney U non-parametric test (Mann & Whitney 1947).  268 

 269 
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Verification of RNA-seq expression profiles by qPCR 270 

By using qPCR, we have verified that the expression profiles of selected mRNAs and 271 

miRNAs highlighted in the adipose tissue experiment were in accordance with those 272 

obtained with RNA-seq and small RNA-seq data. Since this experiment is just a control 273 

of the quality of expression estimates, further details are reported in Supplementary 274 

Methods. Primers for mRNA and miRNA qPCR expression profiling are available at 275 

Table S2. Raw Cq values for each assay are available at Table S3. 276 

 277 

 278 

Results 279 

The analysis of post-transcriptional regulation in muscle samples from fasting and 280 

fed Duroc gilts 281 

Differential expression and EISA 282 

Total RNA and small RNA were independently sequenced in GM muscle samples from 283 

fasting (AL-T0) and fed (AL-T2) Duroc gilts. About 45.2 million reads (93%) per sample 284 

from protein coding and non-coding genes were successfully mapped against the 285 

Sscrofa.11.1 assembly when analyzing the RNA-seq data. Besides, around 2.2 million 286 

reads per sample (42%) obtained from the small RNA-seq experiment were successfully 287 

mapped to 370 annotated porcine miRNA genes. 288 

A total of 30,322 (based on exonic reads) and 22,769 (based on intronic reads) genes were 289 

successfully quantified after splitting the reference genome assembly between exonic and 290 

intronic features. Exonic counts were ~23 fold more abundant than those corresponding 291 

to intronic regions. 292 

By using edgeR, we detected 454 mRNA genes with q-value < 0.05 (Table S4a). Among 293 

these, only genes with |FC| > 2 were retained, resulting in 52 upregulated and 80 294 



13 
 

downregulated genes (Table S4a in bold and Fig. S3a). The analysis of small RNA-seq 295 

data with edgeR revealed 16 miRNAs significantly differentially expressed, of which 8 296 

were upregulated in AL-T2 gilts. These 8 miRNAs, which represented 6 unique miRNA 297 

seeds (ssc-miR-148a-3p, ssc-miR-7-5p, ssc-miR-30-3p, ssc-miR-151-3p, ssc-miR-374a-298 

3p and ssc-miR-421-5p; Table S5 in bold), were selected as potential post-transcriptional 299 

regulators of mRNA genes.  300 

On the other hand, EISA highlighted 26 mRNA genes displaying the top 5% negative 301 

PTc scores with at least 2-fold ΔEx reduction (Table 1 and Fig. S3b). Eighteen out of 302 

these 26 genes (69.23%) appeared as significantly downregulated (FC < -2; q-value < 303 

0.05, Table 1 and Table S4b in bold) according to canonical differential expression 304 

analyses. The whole list of expressed mRNA genes after canonical differential expression 305 

analyses is available at Table S4c.  306 

Also, we detected 133 mRNA genes with significant PTc scores (|FC| > 2; q-value < 0.05, 307 

Table S6a), of which three experienced at least a 2-fold reduction of their ΔEx fraction 308 

(Table S6a in bold). Two out from these three mRNA genes ranked within those with the 309 

top 5% negative PTc scores (Table 1 and Table S6a). Among this set of 133 genes, only 310 

seven (5.26%) were also significantly differentially expressed (Table S6a). Moreover, 311 

with EISA we detected 344 genes displaying significant Tc scores (|FC| > 2; q-value < 312 

0.05, Table S6b) and among these, 71 (20.63%) were also significantly differentially 313 

expressed (Tables S6b). Besides, 91 out of these 344 genes (26.45%) also showed 314 

significant PTc scores (Table S6b in bold), but none of them were among the mRNA 315 

genes displaying the top 5% negative PTc scores with at least 2-fold ΔEx reduction (N = 316 

26, Table 1). The whole lists of expressed mRNA genes after EISA and their PTc and Tc 317 

scores are available at Table S6c and S6d, respectively.  318 

 319 
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Context-based pruning of predicted miRNA-mRNA interactions removes unreliable 320 

target events 321 

Before making in silico predictions of miRNA-mRNA interactions, we investigated their 322 

reliability. To do so, we first evaluated the enrichment in the number of genes with 323 

binding sites for at least one of the 6 non-redundant miRNAs upregulated in the GM 324 

muscle of AL-T2 gilts (ssc-miR-148a-3p, ssc-miR-7-5p, ssc-miR-30-3p, ssc-miR-151-3p, 325 

ssc-miR-374a-3p and ssc-miR-421-5p) over a background of all expressed genes with no 326 

context-based removal of predicted binding sites (see Methods). Introducing additional 327 

context-based filtering criteria to remove unreliable binding site predictions resulted in 328 

an overall increased enrichment of target genes within the list of the top 1% (N = 13 329 

genes, Fig. S4a) and 5% (N = 26 genes, Fig. S4b) genes with negative PTc scores and 330 

displaying at least 2-fold ΔEx reduction. This enrichment was more evident when using 331 

the AU criterion, as shown in Fig. S4a. 332 

 333 

Several genes with relevant post-transcriptional signals detected with EISA are predicted 334 

to be targets of upregulated miRNAs 335 

Target prediction and context-based pruning of miRNA-mRNA interactions for mRNA 336 

genes displaying the top 5% negative PTc scores and at least 2-fold reduction in the ΔEx 337 

exonic fraction (N = 26, Table 1, Fig. 1a) made possible to detect 11 8mer, 21 7mer-m8 338 

and 22 7mer-A1 miRNA binding sites for the six non-redundant seeds of miRNAs 339 

significantly upregulated in AL-T2 gilts (Table S5 in bold) in 21 out of the 26 analyzed 340 

mRNAs (80.77%, Table S7). Moreover, 14 out of these 21 genes (66.67%) were also 341 

significantly differentially expressed (Table 1 and Table S4b in bold).  342 

This set of 21 mRNA genes with putative post-transcriptional repression mediated by 343 

miRNAs showed a significant enrichment in 8mer, 7mer-m8 and 7mer-A1 sites for the 6 344 



15 
 

miRNAs significantly upregulated in AL-T2 gilts, especially when combining the three 345 

types of miRNA binding sites considered (Fig. 1b). The miRNAs with the highest number 346 

of significant miRNA-mRNA interactions were ssc-miR-30a-3p and ssc-miR-421-5p, 347 

which showed nine and eight significant interactions, followed by ssc-miR-148-3p with 348 

four significant interactions (Table S7). 349 

We also evaluated the enrichment of the number of mRNA genes within the list of the 350 

top 5% negative PTc scores and at least 2-fold ΔEx reduction (N = 26, Table 1) to be 351 

targets of at least one of the following: (i) miRNAs downregulated in AL-T2 fed gilts 352 

(Table S5), (ii) top 5% most expressed miRNAs, excluding those significantly 353 

upregulated (ssc-miR-1, ssc-miR-133a-3p, ssc-miR-26a, ssc-miR-10b, ssc-miR-378, ssc-354 

miR-99a-5p, ssc-miR-27b-3p, ssc-miR-30d, ssc-miR-486 and ssc-let-7f-5p), and (iii) 355 

random sets (N = 100) of 10 expressed miRNAs, as a control test. We did not detect a 356 

significant enrichment in any of these three additional analyses (Fig. 1b).  357 

The mRNA with the highest negative and most significant PTc score was the Dickkopf 358 

WNT Signaling Pathway Inhibitor 2 (DKK2), being a strong candidate to be repressed by 359 

miRNAs (Table 1). Indeed, DKK2 was the only gene harboring two 8mer binding sites 360 

(Table S7). Interestingly, this locus was almost significantly differentially expressed 361 

(Table 1 and Table S4b). The discordance between EISA and canonical differential 362 

expression results can be fully appreciated when comparing Fig. 1a (genes with high post-363 

transcriptional repression after EISA) and Fig. 1c (canonical differential expression 364 

analyses), where only 18 out of the 26 mRNA genes detected with EISA appeared as 365 

significantly downregulated in the edgeR-based differential expression analyses (Table 366 

1). Although several of the mRNA genes shown in Table 1 were highly downregulated 367 

(Table S4b), the majority were mildly to slightly downregulated or not significantly 368 

differentially expressed. 369 
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 370 

Genes showing post-transcriptional regulatory signals predominantly covary at the 371 

exonic level 372 

To further elucidate whether the set of 21 mRNA genes with putative post-transcriptional 373 

repression mediated by upregulated miRNAs showed covarying expression profiles, we 374 

evaluated the number of significant co-expressed pairs among them and among the whole 375 

set of mRNA genes with q-value < 0.05, including those from the set of 21 mRNA genes 376 

with q-value > 0.05 after canonical differential expression analyses (Table 4b). 377 

By calculating CES values for both exonic and intronic fractions (see Methods) of the 21 378 

genes putatively targeted by the 6 significantly upregulated miRNAs in fed gilts, our 379 

analyses revealed that 19 out of these 21 genes showed increased covariation in their 380 

exonic fraction when compared to their intronic fraction (Table S8, Fig. 1d), and DKK2 381 

was again the gene with the strongest exonic covariation fold change compared to its 382 

intronic covariation (Table S8). As expected, control random sets of genes (N = 1,000) 383 

displayed CES ≈ 1, indicative of no covariation (Fig. 1d). The observed CES distributions 384 

of exonic and intronic sets were significantly different (P-value = 3.663E-06) after 385 

running non-parametric tests (Fig. 1d), thus supporting that the majority of these 21 genes 386 

might be indeed co-regulated at the post-transcriptional level by upregulated miRNAs. 387 

 388 

Studying post-transcriptional signals in adipose tissue using the UNIK minipig 389 

population 390 

After pre-processing and filtering of sequenced reads from adipocyte samples, we were 391 

able to retrieve ~98.1 and ~0.87 million mRNA and small RNA reads per sample, and 392 

~96.5% and ~73.4% of these reads mapped to annotated porcine mRNAs and mature 393 

miRNAs, respectively. Canonical differential expression analyses revealed a total of 299 394 
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genes with q-value < 0.05, of which 52 and 95 were significantly downregulated and 395 

upregulated (FC > |2|; q-value < 0.05), respectively (Table S9a in bold). Only one 396 

miRNA (ssc-miR-92b-3p) was significantly upregulated in lean minipigs (Table S10), 397 

while six additional miRNAs showed suggestive differential expression (P-value < 0.01), 398 

of which four were upregulated (ssc-miR-148a-3p, ssc-miR-204, ssc-miR-92a and ssc-399 

miR-214-3p; Table S10 in bold). 400 

After running EISA, only the sestrin 3 (SESN3) gene showed a significant PTc score, 401 

having the second highest negative PTc score (Table 2 and Table S11a). Moreover, 402 

SESN3 was also detected as the most significantly downregulated gene by edgeR (Table 403 

S9a). A total of 44 downregulated mRNAs in lean minipigs displayed the top 5% PTc 404 

scores with reduced ΔEx of at least 2-fold (Table 2 and Fig. 2a). Among them, only 12 405 

(27.27%) appeared as significantly downregulated (FC < -2; q-value < 0.05, Table 2 and 406 

Table S9b in bold). The whole list of expressed genes after differential expression 407 

analyses are available at Table S9c. 408 

Besides, 25 of these 44 (58.14%, Table S9b) mRNAs were classified as putative targets 409 

of the set of miRNAs upregulated in lean minipigs (N = 4, ssc-miR-92b-3p, ssc-miR-410 

148a-3p, ssc-miR-204 and ssc-miR-214-3p; Table S10 in bold). Target prediction and 411 

context-based pruning of miRNA-mRNA interactions for these 25 genes made possible 412 

to detect eight 8mer, 21 7mer-m8 and 24 7mer-A1 miRNA binding sites (Table S12) for 413 

upregulated miRNAs (N = 4) in lean UNIK minipigs (Table S10). Again, the SESN3 414 

gene showed the highest number of predicted putative miRNA target sites in its 3´-UTR 415 

(Table S12).  416 

Enrichment analyses for these 25 mRNAs (Table 2) showed no significant results for 417 

8mer, 7mer-m8 and 7mer-A1 miRNA binding sites (Fig. 2b). Moreover, only seven of 418 

them (26.92%) appeared as significantly downregulated (FC < -2; q-value < 0.05) in the 419 
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canonical differential expression analyses with edgeR (Table S9b and Table 2, Fig. 2c). 420 

The exonic fractions of 18 out of these 25 mRNA genes showed significantly increased 421 

covariation (P-value = 2.703E-02) compared to the covariation observed for the intronic 422 

fractions (Fig. 2d and Table S13). 423 

Regarding Tc scores, a total of 195 genes showed significant transcriptional signals (|FC| 424 

> 2; q-value < 0.05, Table S11b), and 48 of them were also significantly differentially 425 

expressed (24.61%, Tables S9a and S11b). Moreover, three of them (ARHGAP27, CDH1 426 

and LEP) were found among those with the top 5% post-transcriptional signals (Table 2 427 

and Table S11b in bold). The whole lists of expressed genes after EISA and their PTc 428 

and Tc scores are available at Table S11c and S11d, respectively. 429 

Results obtained for qPCR verification analyses are described in Fig. S5. 430 

 431 

 432 

Discussion 433 

Contribution of the Tc and PTc components of gene regulation to energy 434 

homeostasis in porcine muscle and adipose tissues 435 

After running EISA on both muscle and adipose tissue datasets, we observed that the 436 

number of genes with significant transcriptional signals (Tc) was much higher than that 437 

of loci with significant post-transcriptional signals (PTc). Such difference evidences that 438 

gene expression changes induced by feeding or adiposity might be mostly driven by 439 

transcriptional rather than post-transcriptional modulators. It is worth noting, however, 440 

that relatively few mRNAs showed post-transcriptional signals alone and were thus 441 

mixed with transcriptional signals either in concordant or in opposite directions. 442 

For prioritizing putative post-transcriptionally repressed mRNA genes by miRNAs, we 443 

focused on those with the strongest observed downregulation based on their ΔEx values 444 
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(at least 2-fold reduction) and PTc signal (top 5% negative scores). Hence, we did not 445 

consider the significance of PTc scores as a relevant criterion, as these will appear as 446 

significant only when the post-transcriptional response is strong and not confounded by 447 

a cooperative repressive transcriptional signal. Alternative thresholds other than the top 448 

5% negative PTc scores or 2-fold for ΔEx fraction could be applied, depending on the 449 

strength of the post-transcriptional signal detected. 450 

Besides, it is worth noting that our RNA-seq data was generated following manufacturer’s 451 

instructions for TruSeq stranded libraries. This commonly used protocol selects for 452 

poly(A) mRNAs, and the majority of non-poly(A) intronic lariats generated after splicing 453 

will be lost, thus producing an artificial decrease in the quantified intronic fraction 454 

(intronic reads). Although the intronic yield is decreased in poly(A) RNA compared to 455 

total RNA protocols (Ameur et al. 2011), the recoverable intronic fraction is still highly 456 

correlated with nascent transcription (Gaidatzis et al. 2015; La Manno et al. 2018), 457 

probably derived from the presence of poly(A) introns or unspliced mRNAs being 458 

sequenced, albeit at low abundance. Thus, the remaining intronic reads might conform a 459 

limited and indirect yet representative proxy of the transcriptional activity. Alternative 460 

methods for measuring such transcriptional activity by directly monitoring transcription 461 

across the genome have also been applied (Patel et al. 2020), and might be preferred over 462 

the use of intronic fractions. However, the implementation of such alternatives is limited 463 

so far, and the relatively simple and cost-effective usage of intronic reads present in 464 

already available RNA-seq data justifies the use of the EISA approach. 465 

 466 

Canonical differential expression analyses and EISA highlight different sets of genes 467 

Few genes with significant Tc and PTc components were also classified by edgeR as 468 

significantly differentially expressed. Such a discrepancy between EISA and differential 469 
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expression analyses is in agreement with the subtle regulation elicited by miRNAs, which 470 

is dependent on the expression level of miRNAs and the number of binding sites within 471 

a given mRNA 3’-UTR (Bartel 2018). In this way, EISA might serve as a good approach 472 

to identify both strong and subtle post-transcriptional effects mediated by miRNAs that 473 

canonical differential expression approaches might not be able to capture.  474 

Importantly, these discrepancies were reduced when we focused on genes with top 5% 475 

negative PTc scores and at least 2-fold reduction in their ΔEx values: as much as 69.23% 476 

(skeletal muscle) and 27.27% (adipose tissue) of such genes were also detected as 477 

differentially expressed. This increase in concordance was more pronounced in the 478 

skeletal muscle (fasted vs fed gilts) experimental system. This might be due to the overall 479 

stronger upregulation of miRNAs observed for this dataset when compared with that 480 

generated in the adipose tissue experiment, which can be explained by intrinsic genomic 481 

differences among pig breeds, the tissues analyzed and/or the metabolic challenge 482 

undertaken. 483 

 484 

Predicting the contribution of miRNAs to the post-transcriptional regulatory 485 

response in porcine muscle and adipose tissues 486 

Since the efficacy of miRNA-based repression of mRNA expression depends on the 487 

context of the miRNA binding site within the 3’-UTR (Grimson et al. 2007), we have 488 

assessed the usefulness of introducing context-based filtering criteria for removing 489 

unreliable in silico-predicted binding sites for miRNAs. Using enrichment analyses, we 490 

were able to link the expression of the set of mRNAs with downregulated exonic fraction 491 

to the expression of upregulated miRNAs predicted to target them. 492 

In the skeletal muscle system, prediction of miRNA binding sites in mRNA genes 493 

displaying the top 5% negative post-transcriptional signals and at least 2-fold reduction 494 
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in their exonic fraction (N = 26) revealed that the majority of them (80.77%) harbored at 495 

least one binding site for the corresponding set of significantly upregulated miRNAs (N 496 

= 6). In contrast, such pattern was much less evident in the adipose tissue, which could 497 

be explained by the fact that the majority of upregulated miRNAs in lean minipigs did 498 

not reach significance. 499 

Although we verified by qPCR the RNA-seq expression levels of selected downregulated 500 

mRNAs and upregulated miRNAs in the UNIK adipose tissue experiment, further 501 

experimental validation of the reported mRNA-miRNA interactions is needed. In silico 502 

predictions of miRNA binding sites, as well as EISA and covariation analyses, might be 503 

helpful to identify and prioritize miRNA-mRNA pairs to be experimentally validated with 504 

co-transfection gene reporter assays. In this way, the yet scarce collection of validated 505 

mRNA-miRNA interactions in domestic species could be expanded and improved. 506 

 507 

Covariation patterns in the expression of downregulated mRNAs predicted to be 508 

targeted by upregulated microRNAs 509 

We further hypothesized that mRNA genes showing relevant post-transcriptional 510 

downregulation might be repressed by the same set of significantly upregulated miRNAs, 511 

which could induce shared covariation in the expression profiles of such mRNAs at the 512 

exonic level. In contrast, their intronic fraction would be mainly unaffected as introns 513 

would have been excised prior to any given miRNA-driven downregulation. Therefore, 514 

an increased gene covariation in downregulated mRNAs with high post-transcriptional 515 

signals might be detectable at the exon but not at the intron level. Indeed, our results 516 

revealed an increased covariation in downregulated mRNAs with high post-517 

transcriptional signals at their exonic fraction compared with covariation patterns of their 518 
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intronic fraction, suggesting that their expression might be repressed by a common set of 519 

upregulated miRNAs. 520 

 521 

Genes displaying the strongest post-transcriptional signals in porcine skeletal 522 

muscle and adipose tissue are involved in glucose and lipid metabolism  523 

The mRNA genes showing the strongest post-transcriptional downregulation in fasted vs 524 

fed gilts displayed a variety of relevant biological functions. The DKK2 gene showed the 525 

most negative significant PTc score. This gene also displayed the strongest covariation 526 

difference in its exonic fraction compared with the intronic one. This consistent post-527 

transcriptional regulatory effect might be mediated by ssc-miR-421-5p and ssc-miR-30a-528 

3p, two highly significantly upregulated miRNAs. The DKK2 protein is a member of the 529 

dickkopf family, which inhibits the Wnt signaling pathway through its interaction with 530 

the LDL-receptor related protein 6 (LRP6). Its repression has been associated with 531 

reduced blood-glucose levels and improved glucose uptake (Li et al. 2012), as well as 532 

with improved adipogenesis (Yang & Shi 2021) and the inhibition of aerobic glycolysis 533 

(Deng et al. 2019). These results are consistent with the increased glucose usage and 534 

triggered adipogenesis in muscle tissue after nutrient supply. Other relevant post-535 

transcriptionally downregulated mRNAs detected with EISA were: pyruvate 536 

dehydrogenase kinase 4 (PDK4), interleukin 18 (IL18), nuclear receptor subfamily 4 537 

group A member 3 (NR4A3), acetylcholine receptor subunit α (CHRNA1), PBX 538 

homeobox 1 (PBX1), Tet methylcytosine dioxygenase 2 (TET2), BTB domain and CNC 539 

homolog (BACH2), all of which are involved in the regulation of energy homeostasis 540 

(Lindegaard et al. 2013; Zhang et al. 2014; Tamahara et al. 2017; Wu et al. 2018; Xu et 541 

al. 2019) and lipid metabolism in muscle cells (Monteiro et al. 2011; Pearen et al. 2013) 542 

in response to nutrient uptake. 543 
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On the other hand, several genes with high post-transcriptional signals were not predicted 544 

to be targets of upregulated miRNAs: the circadian associated repressor of transcription 545 

(CIART) and period 1 (PER1), oxysterol binding protein like 6 (OSBPL6) and nuclear 546 

receptor subfamily 4 group A member 1 (NR4A1). Interestingly, all of them were 547 

significantly downregulated (Cardoso et al. 2017; Mármol-Sánchez et al. 2020). An 548 

explanation to this might be that although miRNAs are key post-transcriptional 549 

regulators, other alternative post-transcriptional effectors, such as long non-coding 550 

RNAs, circular RNAs or RNA binding proteins might be at play. Besides, indirect 551 

repression via upregulated miRNAs acting over regulators of these genes, such as 552 

transcription factors, could be also a major influence on their observed repression (Patel 553 

et al. 2020). 554 

The use of EISA on expression data from adipocytes isolated from obese vs lean UNIK 555 

minipigs revealed several mRNA genes with high post-transcriptional repression, which 556 

are also involved in the regulation of lipid metabolism and energy homeostasis. The gene 557 

showing the highest post-transcriptional signal was the estrogen related receptor γ 558 

(ESRRG), which modulates oxidative metabolism and mitochondrial function in adipose 559 

tissue and inhibits adipocyte differentiation when repressed (Kubo et al. 2009). Another 560 

relevant locus identified with EISA was SESN3, an activator of the mTORC2 and 561 

PI3K/AKT signaling pathway that promotes lipolysis when inhibited (Tao et al. 2015). 562 

This gene showed the most significant downregulation in lean minipigs, and gathered 563 

multiple putative binding sites for all the four upregulated miRNAs under study. 564 

Other genes showing significant post-transcriptional downregulation were: sterile α motif 565 

domain containing 4A (SAMD4A), prostaglandin F2- receptor protein (PTGFR), serine 566 

protease 23 (PRSS23), ring finger protein 157 (RNF157), oxysterol binding protein like 567 

10 (OSBPL10), glycosylphosphatidylinositol phospholipase 1 (GPLD1), RAP1 GTPase 568 
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activating protein (RAP1GAP) and leptin (LEP), all of which are tightly linked to 569 

adipocyte differentiation (Perttilä et al. 2009; Martínez et al. 2013; Chen et al. 2014; 570 

Kosacka et al. 2018) or energy homeostasis (Ussar et al. 2012; Wang et al. 2018; 571 

Izquierdo et al. 2019; Kuo et al. 2020). Despite the overall weak influence of putative 572 

miRNA-driven downregulation on mRNAs expressed in adipocytes, we were able to 573 

identify a set of genes with high post-transcriptional signals indicative of putative 574 

miRNA-derived repression and tightly related to adipose tissue metabolism regulation. 575 

However, non-miRNA transcriptional and post-transcriptional modulators might also 576 

contribute to such repression. 577 

 578 

 579 

Conclusions 580 

EISA applied to study gene regulation in porcine skeletal muscle and adipose tissues 581 

showed that more genes were subjected to transcriptional rather than post-transcriptional 582 

regulation, suggesting that changes in mRNA expression are mostly driven by factors 583 

acting at the transcriptional level. More importantly, the concordance between the sets of 584 

significantly differentially expressed genes and those with significant Tc or PTc scores 585 

was quite limited, but improved (mostly in the skeletal muscle experiment) when we 586 

prioritized the downregulated genes with the top 5% negative post-transcriptional signals. 587 

Nevertheless, many of the genes with relevant PTc signals were not among the top 588 

significantly downregulated loci, thus demonstrating the usefulness of complementing 589 

canonical differential expression analyses with the EISA approach. In the skeletal muscle, 590 

we detected several mRNAs predicted to be co-regulated by a common set of miRNAs. 591 

In contrast, in the adipose tissue such relationship was more subtle, suggesting that the 592 

contribution of miRNAs to mRNA repression might be affected by tissue type, breed 593 
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and/or intrinsic experimental factors. Finally, EISA made possible to identify several 594 

genes related with carbohydrate and lipid metabolism, which may play relevant roles in 595 

the energy homeostasis of the skeletal muscle and adipose tissues. By differentiating the 596 

transcriptional from the post-transcriptional changes in mRNA expression, EISA 597 

provides a valuable view, complementary to canonical differential expression analyses, 598 

about the miRNA-driven regulation of gene expression. 599 
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Table 1: mRNA genes with the top 5% post-transcriptional (PTc) scores and at least 2-842 

fold exonic fraction (ΔEx) reduction (equivalent to -1 in the log2 scale) of gluteus medius 843 

skeletal muscle samples from fasting (AL-T0, N = 11) and fed (AL-T2, N = 12) Duroc 844 

gilts. 845 

ID Gene log2FCa ΔExb PTcc P-value q-value DEd 
miRNA 

target 

ENSSSCG00000032094 DKK2 -2.010 -1.431 -4.738 1.654E-05 3.830E-03  x 

ENSSSCG00000015334 PDK4 -2.108 -5.250 -4.698 4.693E-03 1.330E-01 x x 

ENSSSCG00000015037 IL18 -1.655 -1.191 -3.682 4.787E-03 1.340E-01 x x 

ENSSSCG00000005385 NR4A3 -1.337 -3.082 -3.646 4.038E-02 4.098E-01 x x 

ENSSSCG00000003766 DNAJB4 -1.391 -1.008 -3.348 8.358E-03 1.905E-01  x 

ENSSSCG00000015969 CHRNA1 -1.561 -1.339 -3.341 2.606E-03 9.406E-02 x x 

ENSSSCG00000039419 SLCO4A1 -1.055 -2.279 -3.180 2.820E-02 3.544E-01 x x 

ENSSSCG00000049158  -1.107 -1.096 -3.164 3.182E-02 3.735E-01   

ENSSSCG00000004347 FBXL4 -1.298 -1.126 -3.133 1.422E-03 6.520E-02 x x 

ENSSSCG00000004979 MYO9A -1.239 -1.003 -3.043 7.296E-03 1.731E-01  x 

ENSSSCG00000013351 NAV2 -1.163 -1.196 -2.863 2.605E-04 2.301E-02 x x 

ENSSSCG00000032741 TBC1D9 -0.913 -1.061 -2.736 1.534E-02 2.583E-01  x 

ENSSSCG00000031728 ABRA -1.238 -1.393 -2.704 1.295E-03 6.116E-02 x x 

ENSSSCG00000006331 PBX1 -0.891 -1.039 -2.480 1.135E-02 2.177E-01  x 

ENSSSCG00000035037 SIK1 -1.357 -1.289 -2.475 3.999E-03 1.212E-01 x x 

ENSSSCG00000038374 CIART -1.027 -1.321 -2.052 1.543E-02 2.587E-01 x  

ENSSSCG00000023806 LRRN1 -0.776 -1.013 -1.983 1.580E-01 7.074E-01  x 

ENSSSCG00000009157 TET2 -0.381 -1.123 -1.792 4.880E-01 9.582E-01  x 

ENSSSCG00000011133 PFKFB3 -0.022 -2.256 -1.785 9.712E-01 9.987E-01 x x 

ENSSSCG00000002283 FUT8 -0.578 -1.286 -1.784 9.887E-02 6.059E-01 x x 

ENSSSCG00000023133 OSBPL6 -0.432 -1.088 -1.772 3.835E-01 9.108E-01 x  

ENSSSCG00000017986 NDEL1 -0.767 -1.644 -1.759 1.006E-02 2.081E-01 x x 

ENSSSCG00000031321 NR4A1 -0.630 -1.328 -1.720 6.298E-02 5.006E-01 x  

ENSSSCG00000035101 KLF5 -0.519 -1.487 -1.708 2.942E-01 8.488E-01 x x 

ENSSSCG00000004332 BACH2 -0.714 -2.105 -1.705 9.089E-02 5.861E-01 x x 

ENSSSCG00000017983 PER1 -0.773 -1.073 -1.627 3.000E-02 3.662E-01 x  

 846 

ENSSSCG00000049158 did not have any annotated 3´-UTR so it was excluded from further analyses. aLog2FC: 847 

estimated log2 fold change for mean exonic fraction from gluteus medius skeletal muscle samples of fasted AL-T0 and 848 

fed AL-T2 Duroc gilts; bΔEx: exonic fraction increment (Ex2 – Ex1) in log2 scale when comparing exon abundances in 849 

AL-T0 (Ex1) vs AL-T2 (Ex2) Duroc gilts; cPTc: post-transcriptional signal (ΔEx – ΔInt) after z-score normalization. The 850 

q-value has been calculated with the false discovery rate approach (Benjamini & Hochberg 1995). dDE: Significantly 851 

differentially expressed (|FC| > 2; q-value < 0.05). The “x” symbols indicate significantly downregulated genes 852 

according to their exonic counts, as well as those mRNA genes targeted by at least one of the significantly upregulated 853 

miRNAs excluding redundant seeds (N = 6, Table S5). 854 
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Table 2: mRNA genes with the top 5% post-transcriptional (PTc) scores and at least 2-855 

fold exonic fraction (ΔEx) reduction (equivalent to -1 in the log2 scale) of adipocytes 856 

from lean (N = 5) and obese (N = 5) UNIK minipigs. 857 

mRNA Gene log2FCa ΔExb PTcc P-value q-value DEd miRNA target 

ENSSSCG00000010814 ESRRG -0.591 -5.305 -6.425 7.364E-01 9.996E-01  x 

ENSSSCG00000037015 SESN3 -2.000 -1.378 -5.707 2.541E-07 2.477E-03 x x 

ENSSSCG00000032452 WFS1 -2.198 -2.138 -5.510 9.509E-03 9.996E-01 x  

ENSSSCG00000039548 PTGFR -1.634 -1.590 -4.915 8.804E-03 9.996E-01  x 

ENSSSCG00000013829 SYDE1 -1.670 -1.160 -4.188 5.795E-04 6.000E-01 x  

ENSSSCG00000002265 FAM174B -1.244 -1.726 -4.179 5.385E-02 9.996E-01  x 

ENSSSCG00000016233 SERPINE2 -1.735 -2.060 -3.603 5.684E-02 9.996E-01 x x 

ENSSSCG00000006243 PENK -0.420 -2.104 -3.573 7.628E-01 9.996E-01   

ENSSSCG00000038879 RELB -1.272 -1.056 -3.512 3.659E-03 9.996E-01 x  

ENSSSCG00000023408 SAMD4A -1.328 -1.156 -3.509 4.486E-02 9.996E-01  x 

ENSSSCG00000008449 SLC3A1 -1.014 -1.154 -3.491 5.859E-02 9.996E-01   

ENSSSCG00000014921 PRSS23 -1.141 -1.739 -3.360 2.719E-01 9.996E-01  x 

ENSSSCG00000017186 RNF157 -1.218 -2.338 -3.317 2.413E-01 9.996E-01 x x 

ENSSSCG00000035403 RFX2 -1.109 -1.022 -2.958 1.550E-01 9.996E-01  x 

ENSSSCG00000010893  -0.655 -1.352 -2.931 4.068E-01 9.996E-01  x 

ENSSSCG00000031819 TP53I11 -1.002 -1.711 -2.883 4.102E-01 9.996E-01  x 

ENSSSCG00000017137 METRNL -0.674 -1.102 -2.812 2.422E-01 9.996E-01   

ENSSSCG00000032562 TMC6 -0.837 -1.152 -2.765 2.078E-01 9.996E-01   

ENSSSCG00000031261 RHOQ -0.903 -1.046 -2.750 1.839E-02 9.996E-01   

ENSSSCG00000001089 GPLD1 -0.872 -1.761 -2.723 4.302E-01 9.996E-01  x 

ENSSSCG00000034259 PMEPA1 -0.880 -1.348 -2.720 3.583E-01 9.996E-01  x 

ENSSSCG00000017014 PANK3 -0.614 -1.037 -2.557 2.288E-01 9.996E-01  x 

ENSSSCG00000003377 ACOT7 -0.790 -2.688 -2.544 3.439E-01 9.996E-01 x  

ENSSSCG00000010079 PPM1F -0.762 -1.035 -2.473 4.967E-02 9.996E-01 x x 

ENSSSCG00000040464 LEP -0.747 -2.186 -2.463 1.880E-01 9.996E-01 x x 

ENSSSCG00000022029 RAP1GAP -0.120 -1.109 -2.418 8.822E-01 9.996E-01  x 

ENSSSCG00000022099 TP53INP2 -0.628 -1.058 -2.403 3.683E-01 9.996E-01   

ENSSSCG00000025652 CDH1 -0.472 -2.592 -2.372 6.533E-01 9.996E-01  x 

ENSSSCG00000027266 PNPLA3 -0.443 -1.386 -2.198 5.725E-01 9.996E-01   

ENSSSCG00000015401 PCLO -0.674 -1.492 -2.182 4.537E-01 9.996E-01  x 

ENSSSCG00000020872  -1.029 -1.128 -2.090 1.340E-01 9.996E-01   

ENSSSCG00000032633 FAM53A -0.749 -1.033 -2.066 4.576E-02 9.996E-01 x  

ENSSSCG00000015559 NCF2 -0.679 -1.221 -2.061 3.570E-01 9.996E-01  x 

ENSSSCG00000015766 WDR17 -0.609 -1.139 -1.998 2.093E-01 9.996E-01   

ENSSSCG00000009761 NCOR2 -0.681 -1.421 -1.913 2.643E-01 9.996E-01   

ENSSSCG00000016928 RAB3D -0.491 -1.142 -1.888 2.953E-01 9.996E-01   

ENSSSCG00000011230 OSBPL10 -0.576 -1.594 -1.869 4.272E-01 9.996E-01  x 

ENSSSCG00000017298 TANC2 -0.615 -1.541 -1.846 4.896E-01 9.996E-01   

ENSSSCG00000007899  -0.524 -1.036 -1.814 4.500E-01 9.996E-01  x 

ENSSSCG00000026421 PKD2L2 -0.463 -1.230 -1.800 5.098E-01 9.996E-01   

ENSSSCG00000015332 PON1 -0.626 -1.076 -1.763 2.530E-01 9.996E-01 x x 
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ENSSSCG00000009215 ABCG2 -0.455 -1.446 -1.749 5.684E-01 9.996E-01   

ENSSSCG00000017328 ARHGAP27 -0.235 -2.788 -1.699 8.113E-01 9.996E-01 x x 

ENSSSCG00000017199 TRIM47 -0.362 -1.057 -1.645 6.717E-01 9.996E-01  x 

 858 

ENSSSCG00000016928 did not have an annotated 3´-UTR and was therefore excluded from further analyses. 859 

aLog2FC: estimated log2 fold change for mean exonic fraction from adipocytes of lean and obese UNIK minipigs; bΔEx: 860 

exonic fraction increment (Ex2 – Ex1) in log2 scale when comparing exon abundances in obese (Ex1) vs lean (Ex2) 861 

UNIK minipigs; cPTc: post-transcriptional signal (ΔEx – ΔInt) after z-score normalization. The q-value has been 862 

calculated with the false discovery rate (FDR) approach (Benjamini & Hochberg 1995); dDE: Significantly 863 

differentially expressed (|FC| > 2; q-value < 0.05). The “x” symbols indicate significantly downregulated genes 864 

according to their exonic counts, as well as those mRNA genes targeted by at least one of the significantly upregulated 865 

miRNAs excluding redundant seeds (N = 4, Table S10). 866 
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Figures 887 

 888 

Figure 1: (a) Scatterplot depicting genes expressed in gluteus medius skeletal muscle of 889 

fasted (AL-T0, N = 11) and fed (AL-T2, N = 12) Duroc gilts according to their exonic 890 

fraction (ΔEx) and post-transcriptional (PTc) scores. Genes with the top 5% negative PTc 891 

scores and at least 2-fold ΔEx reduction (equivalent to -1 in the log2 scale) are highlighted 892 

in purple and delimited by dashed lines. (b) Enrichment analyses comparing all expressed 893 

mRNA genes and the set of mRNA genes with the top 5% negative PTc scores and at 894 

least 2-fold ΔEx reduction as being putatively targeted by either significantly upregulated 895 

miRNAs (FC > 1.5; q-value < 0.05), significantly downregulated miRNAs (FC < -1.5; q-896 

value < 0.05) or the top 5% most highly expressed miRNAs, excluding significantly 897 

upregulated miRNAs. As indicated with the dashed line, a nominal P-value = 0.05 was 898 

set as a significance threshold. (c) Scatterplot depicting genes expressed in gluteus medius 899 
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skeletal muscle of fasted (AL-T0, N = 11) and fed (AL-T2, N = 12) Duroc gilts according 900 

to their exonic fraction (ΔEx) and post-transcriptional (PTc) scores. Genes significantly 901 

upregulated are in green, while those being downregulated are in red (|FC| > 2; q-value < 902 

0.05). (d) Covariation enrichment scores (CES) for the exonic and intronic fractions of 903 

the mRNA genes with the top 5% negative PTc scores and at least 2-fold ΔEx reduction 904 

predicted to harbor binding sites for upregulated miRNAs (N = 6) in the gluteus medius 905 

skeletal muscle of fasted (AL-T0, N = 11) and fed (AL-T2, N = 12) Duroc gilts (Tables 1 906 

and S8). The control set was established by generating 1,000 permuted lists of 21 genes 907 

chosen at random and using their exonic and intronic fractions for calculating their CES 908 

values. Statistical significance was assessed using a Mann-Whitney U non-parametric test 909 

(Mann & Whitney 1947). The dashed line represents a CES of 1, equivalent to an 910 

observed null fold change in covariation. 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

 919 
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 920 

Figure 2: (a) Scatterplot depicting genes expressed in adipocytes obtained from UNIK 921 

minipigs with lean (N = 5) and obese (N = 5) phenotypes (using their body mass index 922 

as reference) according to their exonic fraction (ΔEx) and post-transcriptional (PTc) 923 

scores. Genes with the top 5% negative PTc scores and at least 2-fold ΔEx reduction 924 

(equivalent to -1 in the log2 scale) are highlighted in purple and delimited by dashed lines. 925 

(b) Enrichment analyses comparing all expressed mRNA genes and the set of mRNA 926 

genes with the top 5% negative PTc scores and at least 2-fold ΔEx reduction as being 927 

putatively targeted by either significantly upregulated miRNAs (FC > 1.5; q-value < 928 

0.05), significantly downregulated miRNAs (FC < -1.5; q-value < 0.05) or the top 5% 929 

most highly expressed miRNAs, excluding significantly upregulated miRNAs. As 930 

indicated with the dashed line, a nominal P-value = 0.05 was set as a significance 931 

threshold. (c) Scatterplot depicting genes expressed in adipocytes obtained from UNIK 932 

minipigs with lean (N = 5) and obese (N = 5) phenotypes (using their body mass index 933 
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as reference) according to their exonic fraction (ΔEx) and post-transcriptional (PTc) 934 

scores. Genes significantly upregulated are in green, while those being downregulated are 935 

in red (|FC| > 2; q-value < 0.05). (d) Covariation enrichment scores (CES) for the exonic 936 

and intronic fractions of the mRNA genes with the top 5% negative PTc scores and at 937 

least 2-fold ΔEx reduction predicted to harbor binding sites for upregulated miRNAs (N 938 

= 4) in adipocytes obtained from UNIK minipigs with lean (N = 5) and obese (N = 5) 939 

phenotypes (Tables 2 and S13). The control set was established by generating 1,000 940 

permuted lists of 25 genes chosen at random and using their exonic and intronic fractions 941 

for calculating their CES values. Statistical significance was assessed using a Mann-942 

Whitney U non-parametric test (Mann & Whitney 1947). The dashed line represents a 943 

CES of 1, equivalent to an observed null fold change in covariation. 944 

 945 

 946 

Supplementary Materials 947 

Figure S1: Diagram depicting the routine/pipeline implemented for studying miRNA-948 

driven post-transcriptional regulatory signals applying the EISA approach and additional 949 

enrichment and covariation analyses. 950 

Figure S2: Diagram representing each one of the context-based filtering criteria used for 951 

excluding unreliable in silico-predicted miRNA-mRNA interactions. AU: miRNA 952 

binding sites with AU-rich flanking sequences (30 nts upstream and downstream). M: 953 

miRNA binding sites located in the middle of the 3’-UTR sequence (45-55%). E: miRNA 954 

binding sites located too close (< 15 nts) to the beginning or the end of the 3’-UTR 955 

sequences. 956 

Figure S3: Scatterplots depicting the exonic (ΔEx) and intronic (ΔInt) fractions of 957 

expressed genes from gluteus medius skeletal muscle samples of fasting (AL-T0, N = 11) 958 
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and fed (AL-T2, N = 12) Duroc gilts. (a) Genes differentially expressed and showing 959 

either significant upregulation (FC > 2; q-value < 0.05, in green) or downregulation (FC 960 

< -2, q-value < 0.05, in red) in fed (AL-T2, N = 12) Duroc gilts with respect to their fasted 961 

(AL-T0, N = 11) counterparts. (b) Genes with the top 5% negative post-transcriptional 962 

(PTc) scores and at least 2-fold reduced exonic (ΔEx) fraction (equivalent to -1 in the log2 963 

scale) are highlighted in purple. 964 

Figure S4: Enrichment analyses comparing all expressed mRNA genes and the set of 965 

mRNA genes with the (a) top 1% and (b) top 5% negative PTc scores and at least 2-fold 966 

ΔEx reduction as being putatively targeted by significantly upregulated miRNAs (FC > 967 

1.5; q-value < 0.05) from gluteus medius skeletal muscle samples of fasting (AL-T0, N = 968 

11) and fed (AL-T2, N = 12) Duroc gilts. Results show the change in enrichment 969 

significance (expressed as -log10 of the estimated P-value) when incorporating context-970 

based pruning of 8mer, 7mer-m8 and 7mer-A1 miRNA binding sites. R: Raw enrichment 971 

analyses without any additional context-based pruning. AU: Enrichment analyses 972 

removing miRNA binding sites without AU-rich flanking sequences (30 nts upstream and 973 

downstream). M: Enrichment analyses removing miRNA binding sites located in the 974 

middle of the 3’-UTR sequence (45-55%). E: Enrichment analyses removing miRNA 975 

binding sites located too close (< 15 nts) to the beginning or the end of the 3’-UTR 976 

sequences. The dashed line represents a nominal P-value of 0.05 set as the significance 977 

threshold. 978 

Figure S5: Quantification of selected genes and miRNAs expressed in the pig adipose 979 

tissue by qPCR. (a) Barplots depicting qPCR log2 transformed relative quantities (Rq) for 980 

LEP, OSBPL10, PRSS23, RNF157 and SERPINE2 mRNA transcripts measured in 981 

adipocytes from the retroperitoneal fat of lean (N = 5) and obese (N = 5) UNIK minipigs. 982 

(b) Barplots depicting qPCR log2 transformed relative quantities (Rq) for ssc-miR-148a-983 
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3p, ssc-miR-214-3p and ssc-miR-92b-3p miRNA transcripts measured in isolated 984 

adipocytes from the retroperitoneal fat of lean (N = 5) and obese (N = 5) UNIK minipigs. 985 

All the analyzed mRNA genes showed a reduced expression in lean pigs compared with 986 

their obese counterparts, and the LEP gene was the most significantly downregulated 987 

gene. For miRNAs, the opposite pattern of expression was observed, being all of them 988 

upregulated in lean minipigs. Moreover, ssc-miR-92b-3p showed the most significant 989 

increased expression in lean minipigs, in agreement with results obtained in differential 990 

expression analyses (Table S10). 991 

 992 

Table S1: Phenotypic values of body mass index (BMI) trait and sex classification 993 

recorded in 11 Duroc-Göttingen minipigs from the F2-UNIK resource population. 994 

Table S2: Primers for qPCR verification of selected mRNAs and miRNAs in the F2-995 

UNIK Duroc-Göttingen minipig population. 996 

Table S3: Raw Cq values obtained in qPCR analyses. 997 

Table S4: Differential expression analyses of RNA-seq data using the edgeR tool and 998 

comparing gluteus medius expression profiles of fasted AL-T0 (N = 11) and fed AL-T2 999 

(N = 12) Duroc gilts. (a) Differentially expressed genes (q-value < 0.05, N = 454). In bold 1000 

are genes either upregulated (N = 52) or downregulated (N = 80) with |FC| > 2 and q-1001 

value < 0.05. (b) Differential expression results for genes with top 5% post-transcriptional 1002 

(PTc) scores and at least 2-fold reduced exonic fraction (ΔEx) (equivalent to -1 in the log2 1003 

scale). The 18 genes with FC < -2 and q-value < 0.05 are shown in bold. (c) Differential 1004 

expression results showing the whole list of expressed genes with an average expression 1005 

above 1 CPM in at least 50% of samples within each group (N = 9,492). 1006 
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Table S5: Differential expression analyses of microRNAs using the edgeR tool and 1007 

comparing gluteus medius expression levels of fasted AL-T0 (N = 11) and fed AL-T2 (N 1008 

= 12) Duroc gilts. 1009 

Table S6: Post-transcriptional (PTc) and transcriptional (Tc) signals detected with EISA 1010 

in genes expressed in gluteus medius skeletal muscle samples from fasted (AL-T0, N = 1011 

11) and fed (AL-T2, N = 12) Duroc gilts. (a) Genes with significant PTc scores (|FC| > 2; 1012 

q-value < 0.05, N = 133). In bold are genes with at least 2-fold reduced ΔEx fraction (N 1013 

= 3). (b) Genes with significant Tc scores (|FC| > 2; q-value < 0.05, N = 344). In bold are 1014 

genes also significant in their PTc scores (|FC| > 2; q-value < 0.05, N = 91). EISA results 1015 

showing the whole list of genes with an average expression above 1 CPM in at least 50% 1016 

of samples within each group (N = 9,492) and their (c) PTc and (d) Tc scores. 1017 

Table S7: Binding sites in the 3’-UTRs of mRNA genes (with the top 5% negative PTc 1018 

scores and at least 2-fold reduction in the exonic fraction) predicted as targets (N = 21) 1019 

of non-redundant significantly upregulated miRNAs (N = 6) expressed in the gluteus 1020 

medius skeletal muscle samples from fasting (AL-T0, N = 11) and fed (AL-T2, N = 12) 1021 

Duroc gilts. 1022 

Table S8: Covariation enrichment scores (CES) for the exonic and intronic fractions of 1023 

mRNA genes (with the top 5% negative post-transcriptional signals PTc and at least 2-1024 

fold reduction in their exonic ΔEx fraction) predicted as targets of non-redundant 1025 

significantly upregulated miRNAs (N = 6) expressed in gluteus medius skeletal muscle 1026 

samples from fasting (AL-T0, N = 11) and fed (AL-T2, N = 12) Duroc gilts. 1027 

Table S9: Differential expression analyses of RNA-seq data using the edgeR tool and 1028 

comparing adipocyte expression profiles of lean (N = 5) and obese (N = 5) UNIK 1029 

minipigs. (a) Differentially expressed genes (q-value < 0.05, N = 299). In bold are genes 1030 

either upregulated (N = 52) or downregulated (N = 95) with |FC| > 2 and q-value < 0.05. 1031 
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(b) Differential expression results for genes with top 5% post-transcriptional (PTc) scores 1032 

and at least 2-fold reduced exonic fraction (ΔEx) (equivalent to -1 in the log2 scale). The 1033 

12 genes with FC < -2 and q-value < 0.05 are shown in bold. (c) Differential expression 1034 

results showing the whole list of expressed genes with an average expression above 1 1035 

CPM in at least 50% of samples within each group (N = 9,746). 1036 

Table S10: Differential expression analyses of microRNAs using the edgeR tool and 1037 

comparing adipocyte expression profiles from lean (N = 5) and obese (N = 5) UNIK 1038 

minipigs. 1039 

Table S11: Post-transcriptional (PTc) and transcriptional (Tc) signals detected with EISA 1040 

in genes expressed in adipocytes from lean (N = 5) and obese (N = 5) UNIK minipigs. 1041 

(a) Genes with significant PTc scores (|FC| > 2; q-value < 0.05, N = 1). In bold are genes 1042 

with at least 2-fold reduced ΔEx fractions (N = 1). (b) Genes with significant Tc scores 1043 

(|FC| > 2; q-value < 0.05, N = 195). In bold are genes also among the top 5% negative 1044 

PTc scores and at least 2-fold ΔEx reduction (N = 3). EISA results showing the whole list 1045 

of genes with an average expression above 1 CPM in at least 50% of samples within each 1046 

group (N = 9,746) and their (c) PTc and (d) Tc scores. 1047 

Table S12: Binding sites in the 3’-UTRs of mRNA genes (with the top 5% negative PTc 1048 

scores and at least 2-fold reduction in the exonic fraction) predicted as targets (N = 25) 1049 

of non-redundant significantly upregulated miRNAs (N = 4) expressed in adipocytes from 1050 

lean (N = 5) and obese (N = 5) UNIK minipigs. 1051 

Table S13: Covariation enrichment scores (CES) for the exonic and intronic fractions of 1052 

mRNA genes (with the top 5% negative post-transcriptional signals PTc and at least 2-1053 

fold reduction in their exonic ΔEx fraction) predicted as targets of non-redundant 1054 

significantly upregulated miRNAs (N = 4) expressed in adipocytes from lean (N = 5) and 1055 

obese (N = 5) UNIK minipigs. 1056 
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